
1Scientific RepoRts | 6:28926 | DOI: 10.1038/srep28926

www.nature.com/scientificreports

Indefinite Plasmonic Beam 
Engineering by In-plane Holography
J. Chen1,2, L. Li1,2, T. Li1,2,  & S. N. Zhu1,2 

Recent advances in controlling the optical phase at the sub-wavelength scale by meta-structures offer 
unprecedented possibilities in the beam engineering, holograms, and even invisible cloaks. In despite of 
developments of plasmonic beam engineering for definite beams, here, we proposed a new holographic 
strategy by in-plane diffraction process to access indefinite plasmonic beams, where a counterintuitive 
oscillating beam was achieved at a free metal surface that is against the common recognition of light 
traveling. Beyond the conventional hologram, our approach emphasizes on the phase correlation on 
the target, and casts an in-depth insight into the beam formation as a kind of long depth-of-field object. 
Moreover, in contrast to previous plasmonic holography with space light as references, our approach is 
totally fulfilled in a planar dimension that offers a thoroughly compact manipulation of the plasmonic 
near-field and suggests new possibilities in nanophotonic designs.

Controlling the light propagation at will is what the people are always in pursuit of. In recent year, light beam 
has been discovered in novel forms with nondiffracting properties rather than the common Gaussian beam (e.g., 
Bessel beam1, Airy beam2,3, Mathieu and Webber beams4, etc.). Moreover, these novel beams have even been 
realized in the surface plasmon polaritons (SPP)-a bounded electromagnetic wave with strong field confinement 
at the metal surface, which enables people to manipulate the light at sub-wavelength scale in unconventional 
ways5–9. Among these progresses, the phase design was a key point, and the amplitude modulation was also con-
sidered more recently10, which are indeed consistent with the principle of optical holography.

Nowadays, optical holograms are undergoing a rapid development in three-dimensional (3D) imaging 
and colorful displays11–14 using plasmonic metasurfaces, owing to the artificial elements provide flexible pixel 
designs. In addition to these spatial holograms where the target and reference beams are both free space light, 
the near-field SPP wave has already been set as the reference beam15–18, or the target9,10,19,20, or even both21 in the 
recent progresses. Therefore, near-field hologram has stepped into a more popular view with powerful ability in 
near field routing and beam engineering. Although those impressive SPP beams have been demonstrated, their 
2D holograms were usually encoded from a mathematically derived phase20 (and amplitudes9,10) that belong to 
definite solutions of wave equations or trajectory functions. However, from another point of view, can a prop-
agating beam be regarded as a collection of discrete point objects (see the scheme in Fig. 1a)? If yes, one would 
suppose to use a group of point holograms to build any type of beam (even any field distribution) that would go 
far beyond the definite forms.

In this paper, we intensively analyzed the holographic beam engineering in an in-plane plasmonic scheme, 
and found the critical importance of the phase correlation of a longitudinal target (e.g., a propagating beam) in a 
holographic process. As an example, we proposed and realized an indefinite plasmonic beam that propagates in 
a trigonometric function of sine-oscillation, which is absolutely against any solution of the free space beams. By 
carefully investigation, it is concluded that the amplitude distribution of the source (corresponding to conven-
tional phase mask) plays an important role in the formation of high quality oscillating beam, which was usually 
ignored in conventional holograms and caustic beam designs. Our research deepens the understanding of plas-
monic beam formation in a holographic perspective, and would enrich people more possibilities in handling the 
optical field in holographic display, optical trapping, etc.

Results
Holographic design of an oscillating beam. Since considerable self-bending beams have been designed 
and revealed in free space and plasmonic regimes2–10, a straightforward challenge is whether a beam can be 
twisted to be an oscillation form. It also appears to challenge the people’s common recognition of the light 
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traveling in free space. To make it clear, therefore, a sine function trajectory for a propagating SPP beam is prelim-
inary proposed with the oscillating amplitude of 3 μ m and period of 50 μ m ( = π( )f x x( ) 3 sin 2

50
). This beam can 

be considered as composition of N discrete target points within a propagation distance of an oscillation period 
(50 μ m). Here, we define the oscillating beam propagates along x direction, which is contributed from the sources 
arranged in y axis with particular phase and amplitude modulation (see Fig. 1b). According to the reversal pro-
cess, the holographic SPP field of the sources in x-axis can be calculated by summarizing all the radiations from 
those local virtual points as22

∑= = ⋅


E y x
r

E ik r( , 0) 1 exp[ ],
(1)

source

n n
n0

where rn is the distance between the nth point in beam and the real source position in y-axis. Firstly, we define 
these virtue points are independent without particular phase correlation for a propagating wave. So that, a fixed 

Figure 1. Schematic of source derivation in two-dimensional holography and theoretical calculation of 
independent points reconstruction. (a) Schematic illustration of source derivation from the object sample 
points and (b) source detivation of an oscillating beam. The reconstruction result of N independent points along 
beam’s trajectory, (c) N =  5, (d) N =  10, (e) N =  20, (f) N =  25.

Figure 2. Schematic of caustic beam design and parameters retrieved from the holography method.  
(a) Schematic of caustic curve that constructed by the geomerical rays tangent to the curve. (b) Phase evolution 
in x along the beam propagation with different oscillation amplitudes (2.5 μ m, 10 μ m and 20 μ m). (c) Phase and 
(d) amplitude distribution in y-axis derived by our holography method with different number of virtual points 
selected along beam’s trajectory.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:28926 | DOI: 10.1038/srep28926

phase of ϕ 0 is set for all target points in retrieving the source profile. In this case, a set of diffraction processes 
with respect to N =  5, 10, 20, and 25, are theoretically obtained by numerical calculations (see Fig. 1c–f). It can be 
seen that in the sparse designs (N =  5, 10, 20) the desired target points are clearly focused ready to form a beam, 
while in the denser one (N =  25) the beam formation collapses. This interesting phenomenon would account for 
the improper initial phase setting of these target points. From the results of Fig. 1c–e, we may find these target 
points are well independent without connecting field, indicating they are unable to form a continuous beam. So 
the collapse in a denser point case is the destination, where a natural phase evolution is not provided as the two 
virtue points of the beam are close enough.

With this concept kept in mind, we need to work out a precise phase evolution along such an indefinite oscil-
lating beam. Although the sine-function trajectory does not satisfy any solution of wave equation, fortunately, the 
geometric caustic beam design provides us a convenient method to deduce the phase evolution23,24. The deriva-
tion is based on the principle that the beam in a caustic curve can be constructed by multiple geometrical rays that 
tangent to the curve itself, shown in Fig. 2a. For example of the sine-oscillation beam trajectory of f(x) =  sin(x), 
we can determine the spatial phase distribution ψ(y) in the start line x =  0 by integrating the phase equation as23

ψ∂
∂

=
′

+ ′
=

+

y
y

k f x

f x

k x

x

( ) ( )

1 ( )

cos( )

1 cos ( )
,
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where k is the value of wave vector. It is easy to deduce the phase evolution of the target beam along its propaga-
tion as

φ ψ= + ⋅


x y k r( ) ( ) , (3)

where r is the optical path along the tangent line with respect to every local point in the beam and correspondent 
source.

Figure 2b shows nonlinear relations between φ(x) and x of beams with different oscillating amplitudes, which 
indicate that the phase evolution along the x direction depends on the oscillation of the beam. After we get the 
phase on the beam φ(x), equation (1) used to calculate the distribution of amplitudes (A) and phases (ψ) of the 
real sources arranged along y-axis, will be rewritten as

∑ φ= = + ⋅ .


E y x
r

i x k r( , 0) 1 exp[ ( ( ) )]
(4)

source

n n
n n

With equation (4), the information of sources along y-axis (Esource) can be retrieved from N virtual points of 
target beam, where the phase and amplitude distributions are convergent when the number of points is large 
enough, as shown in Fig. 2c,d. It indicates the virtue points group with large enough density (N >  50) of is able to 
be considered as a continuous beam, which is consistent with the physical fact. Therefore, we calculated the whole 

Figure 3. Reconstruction result by our holography method. Theoretical calculation of N phase collerated 
points along beam’s trajectory, (a) N =  5, (b) N =  10, (c) N =  20, (d) N =  50.
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diffraction processes with respect to N =  5, 10, 20, and 50, as the results shown in Fig. 3a–d. It is evident that the 
calculated sine-oscillating beam becomes better and better as the setting points increases, which rightly validates 
our holographic design with respect to a group of phase-correlated target points. This design is flexible and not 
limited to such a sine-oscillation trajectory. For examples, further amplitude-changed oscillating beams are also 
designed and revealed by calculations (see Supplementary Information), confirming the generality of our strategy.

Experimental results. Based on the holographic design, the required phase and amplitude dis-
tributions of a sine-oscillating beam have been obtained, and the next step is to fulfill it in experiment. The 
non-perfectly-matched Bragg diffraction provides us a convenient method to manipulate those well defined SPP 
beams by a totally in-plane process7,22,25,26. However, only the phase distributions were mainly controlled in pre-
vious works. In this holographic process, the amplitude distribution of the diffraction process would as same 
important as the phase does. So, this in-plane process should be developed to load the amplitude information.

According to the in-plane diffraction method7, a well-defined nanohole array with a period of ax =  610 nm 
in x direction and a various lattice (ay) in y direction are designed, where the parameter ay is retrieve by solving 
equation

φ φ π ψ= − + = .y k y m y( ) 2 ( ) (5)m SPP0

Here φm is the discrete phases at the mth local lattice and ψ(y) is the required lateral phase distribution 
designed by the holography (see Fig. 2c). According to an oscillating beam with a trajectory of  =f x( )
. π( )x2 5 sin 2

50
, the parameter of ay is achieved by equation (4), and the corresponding locations of lattices are 

shown in Fig. 4a. In a common occasion, this nanohole array is designed with a fixed hole number in each row 
with respect to a homogenous diffraction intensity approximately. However, in order to control the local intensity 
for diffractions, a variation is introduced in every row, where the diffraction intensity is supposed to be propor-
tion to the number of diffraction units. Since the diffraction process by the nanohole array should be discrete 
ones, the continuous amplitude distribution is therefore discretized firstly, as shown in Fig. 4b, which is ready to 
be imported into the sample by controlling the number of nanoholes in every row. Figure 4c shows the scanning 
electric microscope (SEM) image of the controlled sample designed for the sine-oscillating beam, and the details 
can be clearly observed in the zoom-in image Fig. 4d.

Figure 5a shows the experiment result observed by a LRM system27,28, where two branches of curved oscil-
lating SPP beams from the center nanohole array are clearly manifested. For a clearer characterization of the 
achieved SPP beam, the cross-section profiles at different propagation distances of the right branch beam are 
plotted in Fig. 5b, where a remarkable intensity peak is manifested with preserved narrow beam width (~1.3 μ m) 
and sine oscillation (amplitude about ~2.48 μ m). A theoretical calculation result is shown in Fig. 5c for a compar-
ison, where a very good coincidence is obtained indicating the successful realization of such an indefinite beam by 
the in-plane holographic approach. This good beam quality in micro-scale with intensive narrow peak and con-
siderable small noises indicates potential applications in further near field routine and opto-mechanics designs.

Figure 4. Micro/nano structure design and fabrication. (a) Lattice locations in y direction designed by 
in-plane diffraction process according the required phase distribution. (b) Discrete amplitude distribution 
by our holography strategy, which corresponds to the number of diffraction units designed in experiment. 
(c) SEM image of the sample fabricated by the focused ion beam with a controlled hole amount in every row. 
(d) Zoom-in image of partial of the sample.
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Discussions
Descritizing a propagating beam into multiple points has been successfully demonstrated in 3D holography by 
metasurface12, where the phase correlations between the points were not clearly clarified. In this work, it has been 
well manifested that an approximate beam shape will still be formed with a limited point density even lacking 
particular phase design, as shown in Fig. 1c–f. However, this design would inevitably introduce stray light since 
the fields from other points are rather dispersive with respect to a certain focal plane being checked. The lack 
of necessary phase evolution between those target points restricts more precise level of the holographic image. 
As for the caustic beam design by geometric optics, it has already gained great successes in self-bending beams 
recently20, however, the ignorance of the amplitude information makes it powerless in achieving those indefinite 
beams. A detailed comparison between the results of sine-oscillation beam by our holography and caustic beam 
designs are provided in the Supplementary Online Information both in calculations and experiments, which 
clearly shows the insufficiency of the caustic design.

In summary, we have successfully developed an amplitude hologram to realize an indefinite plasmonic oscil-
lating beam, which is totally implemented in an in-plane process. The underlying mechanism of the beam for-
mation has been emphatically investigated from the viewpoint of discrete virtue points for holography, where 
the phase correlation is discovered, for the first time to our knowledge, playing a critical role. In experiments, 
in-plane diffraction method was further upgraded to an intensity controlled process in diffractions to build up 
the high quality oscillating beam. In principle, this new strategy is not limited in achieving such kind of oscillating 
SPP beam, but wider indefinite beam engineering or optical controlling depending on one’s imaginations. Finally, 
comparisons between our strategy and 3D holography and caustic beam designs were addressed and discussed. 
Our study offers a unique insight into the plasmonic holography for beam engineering and is expected to inspire 
more intriguing phenomena and potential applications in beam engineering and optical manipulations.

Figure 5. Optical characterization of the sine-ossilliating SPP beams. (a) The overall result of the sine-
oscillating beam formation by diffractions recorded by the leakage radiation microscope system with an oil-
immersed objective (NA =  1.42). (b) Extracted lateral field intensity profiles along the beam propragating, 
showing preserved beam peak (~1.3 μ m) and osscilating trajectory (amplitude ~2.48 μ m). (c) The 
corresponding theoretical result for comparision.
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Methods
In experiment, the required phase and amplitude distributions of an oscillating beam are stored in a well-defined 
nanohole array. All the holes are about 200 nm in diameter and 20 nm in depth, which were fabricated by focus 
ion beam (FIB dual-beam FEI Helios 600 i) on an 80 nm thick silver film with a silica substrate. A grating with 
period of 610 nm besides the array is introduced to couple the incident laser to in-plane propagating SPP. When 
the SPP wave propagates through the hole array, it will be both diffracted out as radiation light and still confined 
on the metal surface as diffracted SPP waves. The property of diffracted SPP waves will be determined by the hole 
array, which can be characterized by Leakage radiation microscopy (LRM)27,28. The LRM is based on the detec-
tion of coherent leaking of SPP waves through the substrate, when the metal film is thin enough (usually below 
100 nm) and the substrate optical constant is higher than that of the superstrate medium, which has been widely 
used in analyzing SPP propagations on thin metal films7,22,25,26 and nanowires29,30. In our LRM optical character-
ization, a He-Ne laser (λ 0 =  632.8 nm) was coupled to the silver surface by the grating to form a plane SPP wave, 
which then propagates into the nanohole array and be diffracted. The overall result of SPP diffraction and the 
beam formation is recorded by an oil-immersed objective (NA =  1.42).
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