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Definition of a Skp2-c-Myc Pathway 
to Expand Human Beta-cells
Shiwani Tiwari1, Chris Roel1, Mansoor Tanwir2, Rachel Wills2, Nidhi Perianayagam1, 
Peng Wang1 & Nathalie M. Fiaschi-Taesch1,2

Type 2 diabetes (T2D) is characterized by insulin resistance and reduced functional β-cell mass. 
Developmental differences, failure of adaptive expansion and loss of β-cells via β-cell death or de-
differentiation have emerged as the possible causes of this reduced β-cell mass. We hypothesized that 
the proliferative response to mitogens of human β-cells from T2D donors is reduced, and that this might 
contribute to the development and progression of T2D. Here, we demonstrate that the proliferative 
response of human β-cells from T2D donors in response to cdk6 and cyclin D3 is indeed dramatically 
impaired. We show that this is accompanied by increased nuclear abundance of the cell cycle inhibitor, 
p27kip1. Increasing nuclear abundance of p27kip1 by adenoviral delivery decreases the proliferative 
response of β-cells from non-diabetic donors, mimicking T2D β-cells. However, while both p27kip1 gene 
silencing and downregulation by Skp2 overexpression increased similarly the proliferative response of 
human β-cells, only Skp2 was capable of inducing a significant human β-cell expansion. Skp2 was also 
able to double the proliferative response of T2D β-cells. These studies define c-Myc as a central Skp2 
target for the induction of cell cycle entry, expansion and regeneration of human T2D β-cells.

T2D (T2D) has traditionally been regarded to be the result of insulin resistance in liver, skeletal muscle and adi-
pose tissue1–3. Recently, autopsy and genome-wide association studies (GWAS) suggest that it is also associated 
with β -cell deficiency and dysfunction4–10. The major factor associated with T2D is obesity, although not all obese 
subjects become diabetic1,3,10. In autopsy studies, patients with T2D display a reduced β -cell mass as compared to 
non-diabetic patients with comparable BMI. In contrast, β -cell mass is increased in non-diabetic obese subjects 
as compared to lean subjects8,11,12. In rodents, β -cell expansion in obesity models is associated with replication of 
endogenous β -cells1,3. However, there is little evidence for β -cell replication in human obesity or T2D.

In humans, understanding how the β -cell mass evolves during insulin resistance and the development of T2D 
is challenging due to the limitations of autopsy studies. Studies in children and young adults suggest that it is 
possible that some people accrue lower than average β -cell mass during their first years of development13,14. These 
individuals would thus require greater expansion of β -cell mass in response to insulin resistance. Indeed, β -cell 
mass is primarily established during the first years after birth and is highly variable among children and young 
adults13,14. A second possibility is that if β -cell expansion can occur in adults, some individuals may not expand 
their β -cell mass as effectively as others in response to obesity and insulin resistance. A third possibility is that 
β -cell death and/or dedifferentiation may be more prevalent in some individuals, leading to the emergence of 
T2D. Finally, it is likely that combinations of the above occur. In any case, the failure of β -cells to adapt to insulin 
resistance seems to be central to the development of T2D, whether due to reduced β -cell proliferative response, 
and/or increased β -cell death, and/or loss of β -cell function and de-differentiation.

A number of studies have linked the deregulation of cell cycle genes in β -cells with the development of T2D. In 
GWAS studies, T2D susceptibility loci have been identified in or near cell cycle genes6,7. In mouse genetic studies, 
the cell cycle inhibitor, p27kip1, has been linked to the development of T2D. For example, p27KIP1 progressively 
accumulates in the nuclei of pancreatic β -cells in T2D mouse models which lack either the insulin receptor sub-
strate 2 (IRS2), or the leptin receptor15. In these two models of T2D, the genetic knockout of p27kip1 reduces the 
hyperglycemia, increases β -cell mass and maintains hyperinsulinemia, predominantly via β -cell proliferation. In 
addition, p27kip1 mRNA is increased in islets from human T2D donors as compared to non-diabetic donors16.

p27kip1 may be either an activator or inhibitor of cell cycle progression. In rodent β -cells, p27kip1 has been 
shown to be a cell cycle inhibitor17–19. However, in other cell types, p27kip1 has also been shown to act as an acti-
vator of cell cycle. By facilitating the formation and stabilizing the complex formed between D-cyclins and cdk4 
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or cdk6, p27kip1 acts as a chaperone for the assembly and nuclear translocation of the complex20. This leads to an 
activation of cell cycle entry. With regards to human β -cells, p27kip1 is known to be expressed in whole human 
islets21 and in human β -cells, mostly in their cytoplasm22,23. [… ]. The precise role of p27kip1 in regulating β -cell 
mass and proliferation is not known in humans.

p27kip1 expression is mostly regulated post-transcriptionaly by poly-ubiquitinylation and proteosomal deg-
radation. The S-phase kinase-associated protein 2 (Skp2), a component of the SCF (Skp1-Cullin 1-F-box) E3 
ubiquitin-ligase complex, has been shown to be the major p27kip1 -ubiquitin ligase. Although p27kip1 is a critical 
target of Skp2, many additional substrates of Skp2 has been identified. Many of these proteins, such as p21cip, 
p57kip2, E2F1, MEF, p130 Tob1, cyclin D1, cyclin E, Smad4 and c-myc are cell cycle regulators24. c-myc is unique 
among Skp2 targets, since Skp2 induces not only its ubiquitinylation, but also increases its transcriptional 
activity25–27.

While several studies have focused on β -cell loss of function and/or de-differentiation and/or susceptibility to 
cell death in T2D, no prior study has examined the possibility that the proliferative response of human β -cell from 
T2D donors is impaired. We hypothesized that this is the case. We further hypothesized that abundance of p27kip1 
may be elevated in the nuclei of human T2D β -cells, limiting their response to mitogens. Finally, we hypothesized 
that the downregulation of p27kip1 might lead to increased proliferative response of human β -cells.

Methods
Human cadaveric islets. Human islets were provided by the NIH- and JDRF-supported Integrated Islet 
Distribution Program (iidp.coh.org), Prodo Lab (Irvine, CA) and the University of Alberta (Edmonton, Alberta, 
Canada). One hundred and six different cadaveric preparations from non-diabetic donors and six from T2D 
donors were used for these studies. The means age of the donors was 44.5 years ±  1.2 with a BMI of 30.9 ±  0.6 kg/M2  
for the non-diabetic donors and 54.0 years ±  3 with a BMI of 29.3 ±  2.4 kg/M2 for the T2D donors. Upon arrival, 
islets were incubated in RPMI medium (Gibco, Grand Isle, NY) containing 5.5 mM glucose, 1% penicillin and 
streptomycin with 10% fetal bovine serum until they were utilized for experiments. The use of human cadaver 
islets was approved by and in accordance with University of Pittsburgh School of Medicine and the Icahn School 
of Medicine at Mount Sinai Institutional Review Boards.

Adenovirus production and transduction. Adenoviruses, all under control of the CMV promoter, were 
prepared using human cDNAs encoding human cdk6, human cyclins D3 and human c-Myc as described previ-
ously22,23,28,29. Ad.human Skp2 was purchased from Vector Biolabs (Philadelphia, PA). Dispersed islets on covers-
lips were transduced with either Ad.LacZ or relevant control adenoviruses for two hours, cultured for 72 hours as 
described in the Figures, and immunolabeled as described below.

Islet Cell Dispersion and Immunocytochemistry. Human islets were aliquoted into 400 IEQ and 
washed twice in PBS and dispersed, transduced, fixed and immunolabelled as previously described18,19,24,25. 
Primary antisera and secondary antisera are described in Supplemental Table 1.

Immunoblotting. Islet extracts were resolved using 10% or 12% SDS-PAGE, and transferred to 
Immobilon-P membranes (Millipore Inc., Bedford, MA). Primary antisera and secondary antisera are described 
in Supplemental Table 1. Each experiment shown is representative of 3–6 human islet preparations.

Assessment of β-cell mass in vitro. Human islets were dispersed as described previously18,19,24,25 
and transduced with either Ad.LacZ or Ad.cdk6 +  Ad.cyclinD3 or Ad.cdk6 +  Ad.cyclinD3 +  Ad.Skp2 or 
Ad.cdk6 +  Ad.cyclinD3 +  Ad.shp27kip1 as described previously. Ten thousand transduced islets cells from each 
group were plated in a high-content imaging glass bottom 96 well plate (Corning, Corning, NY), coated with 
poly-D lysine (Sigma-Aldrich, St Louis, MO). Five, 10, 15 and 20 thousand untransduced dispersed human islet 
cells were plated as controls. One day later, 50 ul of Matrigel (Corning, Corning, NY) was added to each well, 
and cells were fixed five days after plating. Cells were then immunolabelled for insulin and DAPI as previously 
described18,19,24,25. The β -cell mass was assessed as previously described28.

Real-Time PCR. Human islets were dispersed as described previously and transduced with either Ad.LacZ 
or Ad.cdk6 +  Ad.cyclinD3 or Ad.cdk6 +  Ad.cyclinD3 +  Ad.Skp2 or Ad.cdk6 +  Ad.cyclinD3 +  Ad.c-Myc as 
described previously. Three days after transduction, islets cells were harvested and mRNA extracted using the 
Absolutely RNA miniprep purification kit (Agilent Technologie, Santa Clara, CA) following the manufacturer’s 
instructions. cDNA and quantitative real-time PCR were performed as previously described29. Primers sequences 
are in Supplemental Table 2.

Statistics. Statistical analysis for Figs 1E, 2D, 3C, 4D, 5B, 6 was performed using one-way ANOVA for 
repeated variable with Bonferroni’s post-hoc correction. Student’s paired, two-tailed T-test was employed in 
Figs 1C, 3D, 4E and 7. A one-way ANOVA for repeated variable with Bonferroni’s post-hoc correction was per-
formed for Fig 8B,C. All values are expressed as means ±  SEM. “p” values <  0.05 were considered significant.

Results
The proliferative response of human T2D β-cells is reduced. Since β -cell mass is diminished in T2D 
individuals8, we explored the proliferative response of β -cells from T2D donors by overexpressing cdk6 and cyc-
lin D3 in human dispersed islets. In this system, 14.1 ±  2.3% of normal human β -cells were labeled with Ki67 
(Fig. 1). This robust response permits the proliferative response to be easily assessed. As shown in Fig. 1A–C, the 
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proliferative response of T2D human β -cells was dramatically reduced by 80% as compared to non-diabetic β 
-cells.

p27kip1 nuclear abundance is increased in β-cells from T2D donors. Since p27kip1 is an important 
cell cycle inhibitor in rodent β -cells, and since p27kip1 overexpression is linked to T2D in rodent models, we ques-
tioned whether the reduction of proliferative response in T2D human β -cells correlates with an increased level of 

Figure 1. Proliferative response and p27kip1Cip/Kip expression in T2D human β-cells. (A) Dispersed human 
islets from normal (Normal) or T2D (Type 2) donors were transduced with control adenovirus (“CTL”) or with 
Ad.cdk6 and Ad.cyclin D3 (“C6 +  D3”). Immunolabelling for Ki67 is shown in red, insulin in green, and DAPI  
in blue. (B) Scattered plot of % of Ki67+ /insulin +  cells in response to cdk6 and cyclin D3 in non-diabetic β -cells  
(NL) (n =  8) and in β -cells from T2D donors (T2D) (n =  5). (C) Quantitation of % of Ki67+ /insulin +  cells. 
Bars indicate mean ±  SEM. (D) Dispersed human islets from normal (Normal) (n =  7) or T2D (Type 2) (n =  6) 
donors were transduced with control adenovirus (“CTL”) or with Ad.cdk6 and Ad.cyclin D3 (“C6 +  D3”). 
Immunolabelling for p27kip1cip/kip is shown in red, and insulin in green. (E) Quantification of data in C at 
72 hours after cdk6 +  cyclin D3 transduction. Bars indicate mean ±  SEM of the % nuclear localization of the 
p27kip1 shown in insulin+  (beta) cells.
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nuclear p27kip1. As shown in Fig. 1D,E, in human β -cells from normal and T2D donors, p27KIP1 was detected more 
often in the nuclei of T2D β -cells as compared to normal β -cells, both under basal conditions, as well as when cell 
cycle entry was induced by cdk6 and cyclin D3 overexpression (Fig. 1D,E).

Figure 2. Effect of p27kip1 overexpression on human β-cell proliferation. (A) Dispersed human islets from 
normal donors (n =  5) were transduced with control adenovirus (CTL) or with of Ad.p27kip1. Immunolabelling 
for p27kip1 is shown in red, insulin in green, and DAPI in blue. (B) Quantitation of the % nuclear localization 
of the p27kip1 shown in insulin+  (beta) cells with increasing doses of adenovirus. Bars indicate mean ±  SEM. 
(C) Dispersed human islets from normal donors (n =  3–5) were transduced with control adenovirus (CTL) 
or with cdk6 and cyclin D3 (K6 +  D3), or cdk1 and cyclin A (K1 +  A), or cdk1 and cyclin E (K1 +  E), or cdk2 
and cyclin A (K2 +  A), or cdk2 and cyclin E (K2 +  E), without (top panels) or with (bottom panels) Ad.p27kip1. 
Immunolabelling for Ki67 is shown in red, insulin in white, and DAPI in blue. (D) Quantification of data in C 
at 72 hours after transduction. Bars indicate mean ±  SEM of the % of the proliferation in each condition without 
Ad.p27kip1.
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Figure 3. P27KIP1 decreases the proliferative response of human β-cells. (A) Representative immunoblot 
of human islets transduced with a control adenovirus (CTL) or with Ad.cdk6 and cyclin D3 (C6 +  D3), or 
with Ad.cdk6 and cyclin D3 with shRNA to silence p27kip1 (C6 +  D3 +  shp27kip1), or with shRNA to silence 
p27kip1 (shp27kip1). (B) Densitometric analysis of p27kip1 immunoblots. Experiments were repeated five 
times. * p <  0.05. (C) Dispersed human islets from normal donors were transduced with control adenovirus 
(“CTL”) or with Ad.cdk6 and Ad.cyclin D3 (“C6 +  D3”) or with Ad.cdk6 and cyclin D3 with shRNA to 
silence p27kip1 (C6 +  D3 +  shp27kip1). Immunolabelling for Ki67 is shown in red, insulin in white, and DAPI 
in blue. (D) Quantification of data in C at 72 hours after transduction. Bars indicate mean ±  SEM of the % 
of the proliferation with cdk6 and cyclin D3 (n =  5). (E) Dispersed human islets from normal donors were 
transduced with control adenovirus (“CTL”) or with Ad.cdk6 and cyclin D3 with shRNA to silence p27kip1 
(C6 +  D3 +  shp27kip1). Immunolabelling for γ -phospho-H2AX (H2AX) is shown in red, insulin in white, and 
DAPI in blue. (F) Quantification of H2AX immunolabelling at 72 hours after transduction (n =  5). Bars indicate 
mean ±  SEM of the % of H2AX positive β -cells.
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Figure 4. Skp2 reduces p27kip1 expression and enhances the proliferative response of human β-cells.  
(A) Dispersed human islets from normal donors were transduced with control adenovirus (“CTL”) or with Ad. 
Skp2. Immunolabelling for Skp2 is shown in red, insulin in green, and DAPI in blue (n =  3). (B) Immunoblot 
of human islets transduced with a control adenovirus (Lac Z) or with Ad.cdk6 and cyclin D3 (C6 +  D3), or 
with Ad.cdk6 and cyclin D3 and Skp2 (C6 +  D3 +  skp2). (C) Densitometric analysis of p27kip1 immunoblots. 
Experiments were repeated three to five times. * p <  0.05. (D) Dispersed human islets from normal donors 
were transduced with control adenovirus (“CTL”) or with Ad.cdk6 and cyclin D3 (C6 +  D3), or with Ad.cdk6 
and cyclin D3 and Skp2 (C6 +  D3 +  skp2). Immunolabelling for Ki67 is shown in red, insulin in green, and 
DAPI in blue. (E) Quantification of data in C at 72 hours after transduction. Bars indicate mean ±  SEM of the 
% of Ki67 in insulin +  cells, (n =  8). (F) Dispersed human islets from normal donors were transduced with 
control adenovirus (“CTL”) or with Ad.cdk6 and cyclin D3 and Skp2 (C6 +  D3 +  Skp2). Immunolabelling for 
γ -phospho-H2AX (H2AX) is shown in red, insulin in white, and DAPI in blue. (G) Quantification of H2AX 
immunolabelling at 72 hours after transduction. Bars indicate mean ±  SEM of the % of H2AX positive β -cells 
(n =  6).
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Introduction of p27KIP1 decreases the proliferative response of human β-cells. Next, we explored 
whether increased nuclear abundance of p27kip1 would decrease the proliferative capacity of human β -cells and 
mimic the decreased proliferative response seen in β -cells from T2D donors. Figure 2A,B shows that adenoviral 
expression of p27kip1 increased nuclear accumulation of p27kip1 in human β -cells to a frequency similar to those 
observed in β -cells from T2D donors. At 100 moi, 33.5 ±  3.7% of β -cells displayed p27kip1 in their nuclei, an abun-
dance similar to that in β -cell from T2D donors (29.1 ±  4.5%) (Fig. 1E). In addition, p27 overexpression reduced 

Figure 5. Skp2, but not p27kip1 silencing, induces the expansion of human β-cells. (A) Representative 
picture-montages covering the entire wells of high imaging content 96-well plates plated with dispersed human 
islets cells. Dispersed human islets (ten thousand islet cells), transduced with Ad.LacZ (LacZ), Ad.cdk6 +  cyclin 
D3 (K6 +  D3), or Ad.cdk6 +  cyclin D3 +  Skp2 (K6 +  D3 +  Skp2) or Ad.cdk6 +  cyclin D3 +  shp27kip1 
(K6 +  D3 +  shp27kip1) were plated and fixed five days after plating. Islet cells were immunolabelled for insulin 
(shown in grey). (B) Quantitation of the insulin staining area as a percentage of the control ten thousand islet 
cells transduced with LacZ. (n =  8).
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Figure 6. Skp2 induces c-Myc downstream target cell cycle genes. Dispersed human islets from normal donors 
were transduced with control adenovirus (“CTL”) or with Ad.cdk6 and cyclin D3 (C6 +  D3), or with Ad.cdk6 
and cyclin D3 and Skp2 (C6 +  D3 +  skp2) or with Ad.cdk6 and cyclin D3 and c-Myc (C6 +  D3 +  c-Myc). The 
transduced islet cells were then harvested three days after transduction, and the mRNA was extracted. Real-time 
qPCR was performed. Data for the D-, A, E- and B-cyclins, cdk1, 2, 4 and 6, cdc25a, E2F1, 2 and 3, p15, p21, 
p27kip1, p57, Skp2 and c-Myc are shown. Experiments were repeated on five to seven human islet preps.
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the proliferation induced by the expression of cdk6 and cyclin D3 or any combination of G1/S cyclins and cdks 
(Fig. 2C,D).

p27kip1 silencing enhances the proliferative response of human β-cells. We next asked whether 
p27kip1 silencing would increase the proliferative response of human β -cells. As shown in Fig. 3A,B, and as 
expected, p27kip1 expression in whole islets increased when proliferation was induced with cdk6 and cyclin D3. 
Silencing p27kip1 by adenoviral delivery of an shRNA targeting p27kip1 (shp27kip1) significantly decreased the 
expression of p27kip1, both under basal conditions and with the induction of proliferation with cdk6 and cyclin 

Figure 7. Skp2 induces cell cycle genes in a c-Myc-dependent manner. Dispersed human islets from normal 
donors were transduced with Ad.cdk6 and cyclin D3 and Skp2 (C6 +  D3 +  skp2, left panels) or with Ad.cdk6 
and cyclin D3 and c-Myc (C6 +  D3 +  c-Myc, right panels) without (black bars) or with (grey bars) the c-Myc 
inhibitor 1RH. The transduced islet cells were then harvested three days after transduction, and the mRNA was 
extracted. Real-time qPCR was performed. Data for the cyclin D3, E1, E2, cdk6, cdc25a, E2F1, E2F2 and E2F3 
are shown. Experiments were repeated on four to five human islet preps.
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Figure 8. Skp2 enhances the proliferative response of human β-cells in a c-Myc dependent manner and 
increases the proliferative response of T2D β-cells. (A) Dispersed human islets from normal donors were 
transduced with control adenovirus (“CTL”) or with Ad.cdk6 and cyclin D3 (C6 +  D3), or with Ad.cdk6 and 
cyclin D3 and Skp2 (C6 +  D3 +  skp2) and treated with or without the c-Myc inhibitor 1RH. Immunolabeling 
for Ki67 is shown in red, insulin in white, and DAPI in blue. Experiments were repeated on at least four human 
islet preps. (B) Quantification of data in C at 72 hours after transduction. Bars indicate mean ±  SEM of the % of 
the proliferation with cdk6 and cyclin D3. (C) Dispersed human islets from T2D donors were transduced with 
control adenovirus (“CTL”) or with Ad.cdk6 and cyclin D3 (C6 +  D3), or with Ad.cdk6 and cyclin D3 and Skp2 
(C6 +  D3 +  skp2). Quantification of the % of Ki67 in insulin +  cells at 72 hours after transduction. Bars indicate 
mean ±  SEM of the % of Ki67 in insulin +  cells. Experiments were repeated on at least three human islet preps 
from T2D donors. (D) Schematic cartoon of the actions of Skp2 in human β -cells. Skp2 reduces the expression 
of p27kip1. The reduction of p27kip1 expression alone leads to an increased proliferative capacity, but not an 
increased in β -cells number. Skp2 also increases, directly or indirectly (as indicated by multiple arrows and a 
question mark), the transcriptional activity of c-Myc, inducing the expression of cyclin E1, E2, cdc25a, E2F1 
and E2F3, therefore leading to an increased proliferative capacity and expansion of human β -cells in vitro.
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D3. Importantly, the proliferative response induced by cdk6 and cyclin D3 was significantly increased when 
p27kip1 was silenced (Fig. 3C,D). No significant increase in DNA damage response, measured by γ P-H2AX immu-
nolabelling, was detected (Fig. 3E,F).

Skp2 reduces p27kip1 expression and enhances the proliferative capacity of human β-cells.  
Since p27kip1 expression is regulated at the protein level by ubiquitinylation and proteosomal degradation30,31, and 
since silencing p27kip1 increased the proliferative response of human β -cells, we explored whether accelerating 
p27kip1 degradation would lead to increased proliferative response as well. As shown in Fig. 4A, the adenoviral 
delivery of Skp2 led to a marked increasing expression of Skp2 in human β -cell nuclei. In parallel, the expres-
sion of p27kip1 was increased when cdk6 and cyclin D3 were overexpressed (Fig. 4B,C). p27kip1 expression was 
reduced when Skp2 was overexpressed in addition to cdk6 and cyclin D3 (Fig. 4B,C). Overexpression of Skp2 
alone did not lead to a significant cell cycle entry, as assessed by Ki67 immunolabelling (Fig. 4D,E). However, 
Skp2 expression significantly enhanced the proliferative response by cdk6 and cyclin D3 (Fig. 4D,E). The DNA 
damage response was not significantly increased (Fig. 4F,G).

Skp2, but not p27kip1-silencing, induces the expansion of human β-cells. While it is possible to 
demonstrate increases in markers of β -cell proliferation by downregulating p27kip1, it is crucial to determine 
whether this translates into increased numbers of human β -cells. Thus, we directly counted human β -cell number. 
As shown in Fig. 5A,B, the expression of Skp2 led to the appearance of greater numbers of β -cells. Surprisingly, 
however, silencing p27kip1 did not.

Skp2 induces c-Myc transcriptional activity. Since the overexpression of Skp2, but not the silencing 
of p27kip1, led to the expansion of human β -cells, we hypothesized that Skp2 might activate additional path-
ways besides the downregulation of p27kip1. While p27kip1 remains a major substrate of Skp2, other targets of 
Skp2 ubiquitinylation have been described32. Specifically, the transcriptional activity of c-Myc is stimulated by 
Skp2 monoubiquitinylation25–27. c-Myc has also been shown to be essential for the development and expansion 
of rodent insulinoma cells33, and modest overexpression of c-Myc, or its induction by small molecules such as 
harmine, are capable of inducing cell cycle entry of human β -cells33,34. Thus, we explored whether the induction of 
cell cycle entry and expansion by Skp2 was associated with the induction of c-Myc target genes in human β -cells. 
We measured the activation of cell cycle genes, known to be target genes of c-Myc transcriptional activity, and 
controls, inducing the D-, A, E- and B-cyclins, cdks 1, 2, 4 and 6, cdc25a, E2Fs 1, 2 and 3, p15Ink4, p21cip1, p27kip1, 
p57kip2, Skp2 and c-Myc under control conditions (CTL), or when cdk6 and cyclin D3 were overexpressed with 
or without Skp2. As a positive control for c-Myc effects, we also measured the expression of the same genes when 
cdk6, cyclin D3 and c-Myc were overexpressed. As shown in Fig. 6, overexpression of cdk6 and cyclin D3 led to 
the upregulation of mRNA encoding cyclin A1 (CCNA1), cyclin E1 (CCNE1), cyclin E2 (CCNE2), E2F1 (E2F1), 
E2F3 (E2F3) and, as expected, cdk6 (CDK6) and cyclin D3 (CCND3). The cell cycle inhibitor, p57 (CDKN1C), 
was however, significantly downregulated. When Skp2 was overexpressed, cyclin E1, cyclin E2, cdc25a, E2F1 and 
E2F3 mRNAs were significantly further upregulated. The same mRNAs were further upregulated when c-Myc 
was overexpressed and their abundance was comparable to that induced by Skp2. E2F2 was the only transcript to 
be markedly upregulated by c-Myc but not by Skp2 cdk6 or cyclin D3.

To determine whether the upregulation of cyclin E1, cyclin E2, cdc25a, E2F1 and E2F3 by Skp2, cdk6 and cyc-
lin D3 was dependent on c-Myc transcriptional activation, we measured their expression in presence of the c-Myc 
inhibitor, 1RH. As shown in Fig. 7, the Skp2-induced expression of cyclin E1, cyclin E2, cdc25a, E2F1 and E2F3 
were all significantly reduced in presence of 1RH (Fig. 7, left panels). Similarly, the expression of the same genes 
was also significantly reduced with 1RH when c-Myc was overexpressed, with the sole exception being E2F2. 
Finally, as expected, the overexpression of cdk6 or cyclin D3 were not affected by the 1RH treatment.

Skp2 enhances the proliferative response of human β-cells in a c-Myc-dependent man-
ner and increases the proliferative capacity of T2D β-cells. Since Skp2 induces the expression of 
cell cycle genes in a-c-Myc dependent manner, we wondered whether the proliferative effects of Skp2 were 
also c-Myc-dependent. As shown in Fig. 8A,B, Skp2 overexpression increased the proliferative response in 
human β -cells induced to cdk6 and cyclin D3. In presence of 1RH, this effect of Skp2 was markedly attenu-
ated, but the proliferative response to cdk6 and cyclin D3 remained constant. When Skp2 was overexpressed in 
β -cells from T2D donors, the proliferative response almost doubled (3.7± 1.4% to 8.1± 1.0% for cdk6 +  D3 and 
cdk6 +  D3 +  Skp2, respectively) (Fig. 8C).

Discussion
In this report, we suggest that the proliferative response of β -cells from human T2D subjects is dramatically 
impaired. We show that this altered proliferative response is accompanied by substantially increased nuclear 
abundance of the cell cycle inhibitor p27kip1 and that increasing nuclear abundance of p27kip1 decreases the pro-
liferative response of normal β -cells from non-diabetic donors. Unexpectedly, we show that while both p27kip1 
gene silencing and downregulation by Skp2 overexpression increase the proliferative response of human β -cells, 
only Skp2 is capable of inducing significant measurable human β -cell expansion. Skp2 was also able to double the 
proliferative response of T2D β -cells. We, thus, define c-Myc as a principal Skp2 target for the induction of cell 
cycle entry and expansion in human β -cells (Fig. 8D).

Evidence indicates that the inadequate functional β -cell mass is an essential component of T2D in humans. 
Autopsies from normal and T2D subjects show that the β -cell mass is reduced by about 50–65% in obese or lean 
T2Ds as compared to normal subjects8,9,35,36. The β -cell mass is also diminished, to a less extend, in patients with 
impaired fasting glucose8,35. Developmental differences, failure of adaptation and increased loss of β -cells via 
β -cell death or de-differentiation have emerged as the possible causes of this reduced β -cell mass. In rodents, 
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β -cell proliferation contributes to the expansion of β -cell mass in non-diabetic obesity, and a failure to proliferate 
and/or an increased apoptosis seem to be the features of T2D1–3. In humans, data suggest that the proliferation in 
response to obesity is more limited or absent. Studies by Butler et al. show no difference in the very low rates of 
β -cell proliferation among obese, lean and T2D individuals8,37. In contrast, a more recent study by Hanley et al.,  
reports increased β -cell proliferation in obese non diabetic subjects as compared to lean non diabetics, with 
a significant decrease rates of replication in T2D donors38. Surprisingly, the group of Kulkarni et al. shows an 
increased proliferation rate in β -cells from T2Ds, as assessed by PCNA immunolabelling, together with the 
reduced expression of key cell cycle drivers, such as cdk239. However, no difference between the two groups was 
detected when the proliferation was detected using Ki67 immunolabelling in this study39. It is unclear whether 
this increased PCNA labeling was representative of a true replication or representative of an increased DNA dam-
age, as reported in other cell types40.

In our study, we observe that β -cells from T2D donors have a significantly reduced proliferative response. 
Whether this reduced proliferative response may have contributed to developmental differences and/or failure to 
adapt later in life in response to an increased metabolic load, or whether this reduced proliferative response was 
the result of diabetes per se is not certain. Nonetheless, in the light of our findings, therapies aiming to regenerate 
endogenous T2D β -cells appear more challenging than anticipated.

One possible explanation for the reduced proliferative capacity in T2D human β -cells is the increased expres-
sion of p27kip1, notably in the nuclei of β -cells. Numerous studies in mice indicate that p27kip1 is a key regula-
tor of β -cell mass. p27kip1-deficient mice display enhanced glucose tolerance, β -cell mass and proliferation19. In 
addition, p27kip1 accumulates in terminally differentiated non-proliferative β -cells19. Overexpression of p27kip1 
during development leads to severe glucose intolerance, reduced β -cell mass and proliferation17. In mouse mod-
els of T2D, loss of p27kip1 reduces hyperglycemia by increasing β -cell mass and maintaining hyperinsulinemia, 
predominantly via β -cell proliferation15. Finally, inactivation of the Men1 gene acutely enhances proliferation of 
pancreatic islet cells, due to loss of p27kip1 and p1818. Taken together, these studies suggest that p27kip1 is a potent 
cell cycle inhibitor in rodent β -cells.

We have shown previously that the induction of proliferation of normal human β -cells was associated with 
an increased nuclear translocation of p27kip1 and that this nuclear p27kip1 was never observed in proliferating 
β -cells23. This suggests that p27kip1 may act as an inhibitor of cell cycle in human β -cells, but its precise role has 
not been explored previously. Here, we show that the level of nuclear p27kip1 is already increased under basal 
conditions in T2D β -cells and is dramatically further enhanced when cell cycle is activated (Fig. 1C,D). A recent 
study by Chen et al. shows an increased level of p27kip1 mRNA in pancreatic islets from T2D subjects41. We also 
show that overexpressing p27kip1 in normal β -cells to induce levels of nuclear p27kip1 similar to those detected in 
T2D β -cells reduces the proliferative response of human β -cells, mimicking the reduced proliferative response of 
T2D β -cells (Fig. 2). Altogether, these suggest that p27kip1 is a potent inhibitor of cell cycle progression in human 
β -cells, and may contribute, at least in part, to the decreased proliferative response observed in T2D human 
β -cells.

Although p27kip1 silencing with shRNA or its downregulation by Skp2 both led to a similar increased prolifer-
ative response in human β -cells, only Skp2 overexpression resulted in a measurable expansion of human β -cells 
in vitro. This was surprising because studies described above in rodents and humans suggest that p27kip1 down-
regulation is important for a normal progression of β -cell cycle, and that Skp2-mediated p27kip1 proteolysis is the 
principal regulator of p27kip1 in β -cells in mice. Like p27kip1, Skp2 is essential for β -cell development, replication 
and β -cell mass31. Skp2 knockout mice display accumulation of p27kip1 in β -cell nuclei. As a result, Skp2-null mice 
have a decreased β -cell mass, hypoinsulinemia and glucose intolerance. When challenged with a high fat regi-
men, Skp2 null-mice become diabetic relative to wild-type littermate, due to their inability to expand β -cell mass 
in response to a metabolic load31. In human islets, we show that expression of Skp2 and p27kip1 expressions are 
inversely correlated as expected. However, the finding that Skp2 overexpression, but not p27 silencing, induces 
human β -cell proliferation and expansion, suggests that Skp2 operates via an alternative and/or additional path-
way beyond p27kip1 downregulation. In this regard, it was previously reported that Skp2 transcriptionally acti-
vates c-Myc via mono-ubiquitination, which then leads to the upregulation of a subset of target genes involved 
in the cell cycle entry and completion25–27. For example, in HepG2 human hepatoma cells, Skp2 induces cell 
cycle progression via the activation of c-Myc transcriptional activity and independently of p27kip1 expression42. 
In addition, c-Myc has been shown to be associated with β -cell proliferation. In rodent insulinoma cell lines, 
c-Myc is uniquely and specifically upregulated, and is responsible in major part of their replications33. C-Myc is 
induced by a factor of 1.5 to 3 fold in response to glucose or partial pancreatectomy in association with rodent 
β -cell proliferation43,44. As another example, the induction of c-Myc by adenoviral delivery or harmine treatment 
drives human β -cell replication33,34. In the present study, the observation that Skp2 induces the transcription of 
cell cycle mRNA in a c-Myc-depend manner (Figs 6 and 7) supports that Skp2 functions as a transcriptional 
activator of c-Myc rather than as a component of the SCF complex responsible for p27kip1 degradation. Thus, we 
define c-Myc as an important target for Skp2 in expansion of human β -cells. However, whether Skp2 directly, or 
indirectly, activates c-Myc transcriptional activity (as shown by multiple arrows and a question mark in Fig. 8C) 
will require further investigation.

Previous studies have shown that high levels of c-Myc expression lead to immediate cell death and/or dedif-
ferentiation, not only in β -cells, but also other cell types33,44,45. In our hands, however, we did not detect any DNA 
damage when Skp2 was overexpressed and c-Myc transcriptional activity was induced. We presume that since 
the induction of c-Myc activity remained moderate, it did not induce cell death, as in other studies using low 
levels of c-Myc overexpression or harmine in human β -cells have shown that a modest induction of c-Myc by 
adenoviral delivery or harmine33,34. In addition, recent studies suggest that the domain-specific ubiquitination 
of c-Myc by Skp2 control, not only its transcriptional activity, but also its apoptotic activity as well27. In that con-
text, the overexpression of Skp2 is capable of inhibiting the recruitment of the tumor suppressor ARF to c-Myc 
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transcriptional domains, leading to the inhibition of c-Myc-induced apoptosis27. Thus, one can speculate that, in 
human β -cells, and in our hands, Skp2, not only drives c-Myc transcriptional activity and cell cycle progression, 
but also simultaneously inhibits c-Myc induced apoptosis via ARF inhibition. Further studies will determine 
whether this scenario occurs.

The findings reported here suggest that human β -cells from human T2D organ donors fail to replicate at 
appropriate levels, and that this failure might contribute to the reduced β -cell mass in people with T2D. We show 
that increased nuclear abundance of p27kip1 is one possible culprit driving this reduced proliferative response. 
We propose that activating the Skp2-c-Myc pathway may be capable of restoring an appropriate proliferative 
response leading to β -cell expansion through reduction of p27 combined with direct Skp2 effects on c-Myc acti-
vation. Thus, therapies aiming at inducing the Skp2-c-Myc axis in β -cells may be beneficial for β -cells and their 
expansion in T2D.
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