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Optical simulation of a Popescu-
Rohrlich Box
Wen-Jing Chu1, Xiao-Lan Zong1, Ming Yang1, Guo-Zhu Pan2 & Zhuo-Liang Cao1,3

It is well known that the fair-sampling loophole in Bell test opened by the selection of the state to be 
measured can lead to post-quantum correlations. In this paper, we make the selection of the results 
after measurement, which opens the fair- sampling loophole too, and thus can lead to post-quantum 
correlations. This kind of result-selection loophole can be realized by pre- and post-selection processes 
within the “two-state vector formalism”, and a physical simulation of Popescu-Rohrlich (PR) box is 
designed in linear optical system. The probability distribution of the PR has a maximal CHSH value 4, 
i.e. it can maximally violate CHSH inequality. Because the “two-state vector formalism” violates the 
information causality, it opens the locality loophole too, which means that this kind of results selection 
within “two-state vector formalism” leads to both fair- sampling loophole and locality loophole, so 
we call it a comprehensive loophole in Bell test. The comprehensive loophole opened by the results 
selection within “two-state vector formalism” may be another possible explanation of why post-
quantum correlations are incompatible with quantum mechanics and seem not to exist in nature.

In 1935, Einstein, Podolsky and Rosen claimed that quantum wave function does not provide a complete descrip-
tion of physical reality, which is called EPR paradox1. Based on EPR paradox and hidden variable theory, Bell 
quantitatively analyzed and put forward the Bell inequality in a seminal paper in 19642. More precisely, the hid-
den variable theory is expressed in mathematics, which reveals that spatially separated quantum systems can 
have strong correlations. This kind of correlation is known as nonlocality, and it plays a crucial role in quantum 
information theory, such as nonlocal computation3. Meanwhile, Bell theory provides a significant criterion for 
the experimentalists to prove the validity of quantum mechanics, and the corresponding experiments verified the 
nonlocality property of quantum mechanics4–6.

From John Bell’s original inequality, John Clauser, Michael Horne, Abner Shimony, and Richard Holt derived 
a new inequality—CHSH inequality—in a much-cited paper published in 19697. The maximum violation of 
CHSH inequality can reach 2 2 in quantum mechanics domain, i.e. the so-called Tsirelson’s bound8, rather than 
the maximum value 2 in classical domain. Up to now, most of the previous Bell inequality test experiments suffer 
from the following three loopholes, i.e. the locality loophole (or communication loophole), the freedom-of-choice 
loophole, and the fair-sampling loophole (or detection loophole). The fact that the measurement choice on one 
subsystem may influence the outcome of the other (and vice-versa) opens the locality loophole. In a Bell test, the 
two users must be free to choose random measurement choices that are physically independent of one another 
and of any property of the particles, otherwise, there comes the freedom-of-choice loophole. The detection effi-
ciency must be independent of the measurement settings, i.e. the sample of detected pairs provides a fair statisti-
cal sample of all the pairs. If this is not true, it opens the fair-sampling loophole (or detection loophole). The 
results of the Bell test experiments with any one of these three loopholes only can be accepted with some assump-
tions. Very recently, Bell tests that close the most significant two loopholes simultaneously have been reported9–12.

Although loopholes have negative effects on Bell test, they play constructive roles in simulating post-quantum 
correlations whose violations of Bell inequality surpass the so-called Tsirelson’s bound. The most typical repre-
sentative of this kind of correlations is the famous Popescu and Rohrlich (PR) correlation. Popescu and Rohrlich 
showed that it is possible to construct various causality satisfying models, where the violation of CHSH ine-
quality can exceed the quantum mechanical bound and reach the algebraic maximal value 413. The nonlocality 
revealed by the violation of Bell’s inequality can be described by a correlation box shared between two parties. 
The boxes with the algebraic maximal violation 4 of CHSH inequality are termed PR boxes. Even though previous 
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researches14–17 suggested that these post-quantum correlations cannot be implemented by classical or quantum 
systems, they can be simulated by exploiting the loopholes in a Bell test. Obvious violations of Bell inequality 
beyond Tsirelson’s bound caused by the fair-sampling loophole (or detection loophole) have been observed in 
experiments where one of the entangled photons is measured and amplified18 or re-generated18,19, or we have the 
knowledge of the states being measured20. The loss-induced fair-sampling loophole (or detection loophole) can 
lead to a violation of Bell inequality beyond Tsirelson’s bound too21–25. Among these studies, the fair-sampling 
loophole is opened by the selection of states to be measured. Actually, the fair-sampling loophole is still open if we 
select the results after measurement. In other words, it is still possible to simulate post-quantum correlations via 
post-select the measurements results. Cabello showed this possibility by simulating bipartite correlations beyond 
Tsirelson’s bound via appropriately post-selecting two qubits of a three-qubit GHZ state system26, and Chen  
et al. observed this kind of supercorrelations in optical system experimentally27. But this kind of simulation of 
post-quantum correlation must make use of tripartite state, which obviously limits its persuasiveness. If this kind 
of selection is done directly on the two subsystems in a bipartite entangled state, the effect of the result-selection 
induced fair sampling loophole can be shown more obviously. Marcovitch et al. showed that it can be done within 
“two-state vector formalism”, namely, a state described by “two-state vector formalism” can exhibit a strong vio-
lation of CHSH inequality, which can exceed Tsirelson’s bound and even reach the algebraic maximal value (4)28. 
Here, the measurement is done on all the samples, and the post-selection is only done after measurement, which 
is more in line with Bell theory than the case with the selection of the states before measurement. The “two-state 
vector formalism” is a new concept defined by Yakir Aharonov and Lev Vaidman, which is a complete description 
of a quantum system at a given time based on the results of experiments performed both before and after this 
time29. In addition, because the “two-state vector formalism” violates the information causality25,30, it opens the 
locality loophole too , which makes this kind of result-selection induced loophole a comprehensive loophole 
(including both locality and fair-sampling loopholes) in Bell test. Besides information causality25,30, the compre-
hensive loophole opened by the result selection within “two-state vector formalism” is another possible explana-
tion of why post-quantum correlations are incompatible with quantum mechanics and seem not to exist in nature.

So, in this paper, we will propose a physical scheme for simulating PR correlations by using the comprehen-
sive loophole opened by the result selection within “two-state vector formalism”. In linear optical system, a PR 
correlation can be simulated by appropriately pre-selecting photon ensemble to be measured and post-selecting 
the measurement results. Because all the optical elements used here are very common ones, the physical scheme 
proposed here is feasible.

Results
In this section, we will design an optical setup, through which the probability distribution obtained from the ideal 
measurements on a pre- and post-selected ensemble of polarization entangled photon pairs is exactly a PR probabil-
ity distribution. As depicted in Fig. 1, the whole setup includes three stages: the pre-selection, the measurement and 
the post-selection. A piece of the type-2 BBO crystal (BBO1) is pumped by a femtosecond laser pulse, producing a 

Figure 1. The optical simulation of a PR box. BBO1 is a nonlinear crystal (beta-barium borate), and BBO2 is 
half the thickness of BBO1. M is a mirror, HWP denotes a half wave plate. PBSi (i =  1, 2, 3, 5, 6, 7) denotes a 
general polarizing beam splitter, which transmits horizontally polarized photons and reflects vertically 
polarized photons. PBS4 is a rotated polarizing beam splitter, which transmits the photons in state 

+H V1/ 2 ( ) and reflects the photons in state −H V1/ 2 ( ). D1, D2, D3, D4, D5, D6 are single-photon 
detectors. Sapphire laser were frequency doubled (* 2) to provide UV pulses , which are used to pump BBO1 
crystal. The results are registered through a three-port coincidence circuit (D2, D3 and D5) with a coincidence 
window.
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pair of entangled photons in the state  ψ = +H H V V( )i
1
2

 with a half wave plate (HWP3) set at 45°, and 
the BBO2, being half the thickness of BBO1, is a compensation for the longitudinal walk-off with two HWPs (1, 2) 
set at 45°31. The entangled photons are produced coherently along the entire length of the crystal, which induces the 
longitudinal walk-off between two different polarizations32, so the relative time delay equals L/2(1/uv −  1/uh) (L is 
the crystal length, and uv and uh are the vertical and horizontal polarization velocities). The two HWPs (HWP1 and 
HWP2) rotate the polarization of the beams by 90°, and thus the retardations of the h and the v components are 
exchanged, so it can be restored by the BBO2. Here finishes the pre-selection process with the initial state ψi  being 
chosen, and the next stage is the ideal measurement process. Alice (Bob) will carry out projective measurements by 
using polarizing beam splitters-PBS1(PBS2), HWP4(HWP5) and HWP10(HWP11). PBS1 with HWPs (HWP4 and 
HWP10) setting at 0° can transmit the photons in state |H〉  and reflect the photons in state |V〉 , and PBS1 with 
HWPs (HWP4 and HWP10) setting at 22.5° can transmit the photons in state +H V1/ 2 ( ) and reflect the 
photons in state −H V1/ 2 ( ). So the angle of HWP10 is always equal to that of HWP4, and similarly the angle 
of HWP11 is always equal to that of HWP5. More precisely, the two possible angles of HWP4( HWP5) and 
HWP10(HWP11) correspond to two different measurement directions as specified in Fig. 2. That is to say, the four 
possible angle combinations for the wave plates HWP4(HWP10) and HWP5(HWP11) have a one-to-one relation 
to four different inputs (x, y) =  (0, 0), (0, 1), (1, 0), (1, 1) of a PR box. To simplify this setup, we have used four HWPs 
(HWP6, HWP7, HWP8 and HWP9) to simulate different measurement results. The PBS 1 with HWP6 and HWP8 
both set at 0° can transmit |H〉 , while it can transmit |V〉  if HWP6 and HWP8 are both set at 45°. So the angle of 
HWP8 is equal to that of HWP6, and similarly the angle of HWP9 is equal to that of HWP7. The last stage is to 
post-select those photons whose states are ψ〈 | = + − −H H V V H V( ) ( )f

1
2

1
2

, which can be imple-
mented by a controlled-NOT (CNOT) gate, two HWPs (HWP12 and HWP13) both set at 22.5° and two PBSs (PBS5 
and PBS6). A single auxiliary photon and three PBSs (PBS3, PBS4 and PBS7) constitute a successful CNOT gate33, 
and more specifically, the detection of a single photon D5 projects the output in the control and target modes into 
the desired CNOT transform of the input. To generate a good interference between the auxiliary photon and one of 
the entangled photons on PBS3, the auxiliary photon is generated from the pumping pulse too, and a HWP14 set at 
22.5° prepares it in the state +H V( )1

2
. The detailed implementation setup is shown in Fig. 1.

For one specific angle combination of HWP4 and HWP5, the input of the box is fixed, i.e. (x, y). A click on D5 
indicates the success of the CNOT gate, so a three-photon (D2, D3, D5) coincidence measurement means that the 
post-selection succeeds. That is, the result of the ideal measurement between pre- and post-selection processes is 
|H〉  |H〉  when all the HWPs (HWP4, HWP5, HWP6, HWP7, HWP8, HWP9, HWP10 and HWP11) are set at 0°, 
so the output of the box is a =  0, b =  0. The count rate of this coincidence measurement is equal to p (00|01). To 
measure other components, such as p (10|01), we can set the angle of the HWP6 and HWP8 at 45°, which flips the 
value of a with b unchanged. From the sixteen HWPs settings listed in Table 1, we can get sixteen probabilities. 
List these sixteen probabilities in a 4 ×  4 matrix, we can get an exact probability distribution of a PR box. In this 
sense, we say this setup can simulate the PR box.

Conclusion
Based on the results selection after measurement within “two-state vector formalism”, an optical setup is proposed 
for simulating a PR box. The probabilities of obtaining different states for the ideal measurements between the 

Figure 2. The schematic diagram of the observables of Alice and Bob. 
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pre- and post-selection processes are exactly equal to those of a PR box. In our proposal, these probabilities can 
be easily read from the coincidence rate of a three-photon coincidence measurement. The results selection after 
measurement opens an obvious fair-sampling loophole here, and the violation of information causality caused by 
“two-state vector formalism” opens the locality loophole too, which makes this kind of result-selection induced 
loophole a comprehensive loophole. Thus, besides information causality, the comprehensive loophole opened 
by the result selection within “two-state vector formalism” is another possible explanation of why post-quantum 
correlations are incompatible with quantum mechanics and seem not to exist in nature.

In addition, all the elements used here, such as BBO crystals, HWPs, PBSs and photon detectors, are very 
common elements within the current experimental quantum information technology, so the current proposal 
can be realized in Lab. Hope the current proposal can ignite further experimental investigations on post-quantum 
correlation.

Methods
The correlations beyond Tsirelson’s bound can be described by a black box in nonsignaling theory13. The box is 
shared by two space-like separated users Alice and Bob who will give the box inputs x, y, respectively. Then they 
will get the corresponding outputs a and b with probability p (ab | xy), where x, a, y, b ∈  {0, 1}. Hence the joint 
probability distribution is expressed as

=







| | | |
| | | |
| | | |
| | | |







.P ab xy

p p p p
p p p p
p p p p
p p p p

( )

(00 00) (01 00) (10 00) (11 00)
(00 01) (01 01) (10 01) (11 01)
(00 10) (01 10) (10 10) (11 10)
(00 11) (01 11) (10 11) (11 11) (1)

The elements of the probability distribution matrix meet the nonnegativity condition,

≥ ∀p ab xy a b x y( ) 0, , , , , (2)

and the normalization condition, too

∑ = ∀ .p ab xy x y( ) 1 ,
(3)a b,

Classical communications are forbidden throughout the measurement process, that is to say the input and 
output of one user does not affect those of the other’s. Thus, the marginal probabilities p (a|x) and p (b|y) are 
independent of y and x, respectively:

∑ ∑| = | ′ = | ∀ ′p ab xy p ab xy p a x a x y y( ) ( ) ( ) , , , ,
(4)b b

∑ ∑= ′ = ∀ ′ .p ab xy p ab x y p b y b x x y( ) ( ) ( ) , , ,
(5)a a

The discussions in ref. 13 show that the correlations of the black boxes defined above can surpass the Tsirelson’s 
bound and a typical box with the post-quantum correlation is the PR box whose CHSH value reaches the alge-
braic maximum 4:

p (ab|xy) HWPs HWP4 (10) HWP5 (11) HWP6 (8) HWP7 (9)

p (00|00) 0° 22.5° 0° 0°

p (01|00) 0° 22.5° 0° 45°

p (10|00) 0° 22.5° 45° 0°

p (11|00) 0° 22.5° 45° 45°

p (00|01) 0° 0° 0° 0°

p (01|01) 0° 0° 0° 45°

p (10|01) 0° 0° 45° 0°

p (11|01) 0° 0° 45° 45°

p (00|10) 22.5° 22.5° 0° 0°

p (01|10) 22.5° 22.5° 0° 45°

p (10|10) 22.5° 22.5° 45° 0°

p (11|10) 22.5° 22.5° 45° 45°

p (00|11) 22.5° 0° 0° 0°

p (01|11) 22.5° 0° 0° 45°

p (10|11) 22.5° 0° 45° 0°

p (11|11) 22.5° 0° 45° 45°

Table 1.  The angle settings of HWPs.
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1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0 (6)

PR

But, it is well known that no quantum state can violate the CHSH inequality beyond Tsirelson’s bound 2 2 7, 
so it is not possible to realize a post-quantum correlation with a quantum state. One has to find new methods to 
simulate post-quantum correlations, especially the maximally post-quantum correlation 4 revealed by a PR box. 
The key point here is to find the rules to get the PR probability distribution in Eq. (6). Marcovitch et al. showed 
that under “two-state vector formalism” one can get probability distributions with their violations of the CHSH 
inequality beyond Tsirelson’s bound, and even the algebraic maximal violation value (4) can be achieved28.

In standard quantum theory, the state of a quantum system is determined by the system’s past. Aharonov and 
Vaidman provided an alternative description of quantum systems—“two-state vector formalism”29. This formal-
ism gives a more complete description of a quantum system than the standard quantum theory, i.e. the descrip-
tion of a quantum system at a given time not only depends on the results of experiments performed before this 
time but is based also on the results of experiments performed after this time. For instance, there is an ensemble 
of quantum systems whose states are pre- and post-selected by the following initial and final states:

ψ = ↑ ↑ + ↓ ↓
1
2

( ),
(7)i z z z z

ψ〈 | = ↑ ↑ − ↓ ↓
1
2

( ),
(8)f z x z x

respectively. |↑ k〉 , |↓ k〉  are the eigenvectors of Pauli operators σk (k =  x, y, z) respectively. An ideal measurement 
of an observable A(B) will be carried out by Alice (Bob) on the ensemble at intermediate time ti <  t <  tf, and the 
probability of getting α(β) is given by29

α β ψ ψ
ψ ψ

ψ ψ
= = | =

|〈 | ⊗ | 〉|

∑ |〈 | ⊗ | 〉|
α β

α β α β

= =

= =

p A B
t P P t

t P P t
( , , )

( ) ( )

( ) ( )
,

(9)
i f

f A B i

f A B i

2

,
2

where PA=α, PB=β are the projections onto the space of eigenvalues A =  α, B =  β. If each user only has two choices 
of observables, i.e. there are only two observables A, A′  for Alice, and B, B′  for Bob, the joint probability p(αβ|AB) 
of the event where Alice gets eigenvalue α by measuring observable A and Bob gets β on B exactly simulates the 
joint probability p (ab|xy) in Eq. (1). Here, Alice’s (Bob’s) two possible observalbes A, A′ (B, B′ ) are in a one-to-one 
correspondence with the two values (0, 1) for the input x(y) of the box. Being the eigenvalue of the observable 
A(B) in two-dimensional Hilbert space, α(β) only has two possible values + 1 and − 1, so the two eigenvalues + 1 
and − 1 of an observable are in a one-to-one correspondence with the two possible output values 0 and 1, respec-
tively, of the box. For instance, the measured observables are A′  and B, and the corresponding output values are 
α =  − 1 and β =  1, respectively, then p ( α, β|A′ B) =  p(10|10). The corresponding correlation function of CHSH 
inequality is C(A′ , B) =  p (1, 1|A′ B) +  p(− 1, − 1|A′ B) −  p (1, − 1|A′ B) −  p (− 1, 1|A′ B). If Alice and Bob perform 
measurements along the z and x axes (as depicted in Fig. 2) on the above pre- and post-selected ensembles, they 
can get p (00|00) =  p (11|00) =  p (00|01) =  p (11|01) =  p (00|10) =  p (11|10) =  p (01|11) =  p (10|11) =  1/2 using 
the Eq. (9), and the joint probabilities for the other combinations are zero. That is to say, the PR box expressed in 
Eq. (6) is simulated. To be specific, let’s demonstrate an example in optical system as shown in Fig. 1. For Alice, 
the two possible inputs (x =  0, 1) of the box corresponds to two possible observables σz and σx, respectively, and, 
on the contrary, the two possible inputs (y =  0, 1) of the box corresponds to two possible observables σx and σz, 
respectively, for Bob. For both users, they only have two possible measurement results + 1(|↑ 〉 ), − 1(|↓ 〉 ), which 
corresponds to the two values 0 and 1 of the box output a(b), respectively. So p (01|00) denotes the probability of 
the event where Alice measures σz and gets |↑ 〉  with Bob getting |↓ 〉  in measuring σx at intermediate time ti <  t <  tf:

| =
+ + +

=p P
P P P P

(01 00) 0,
(10)

01
00

00
00

01
00

10
00

11
00

where,

ψ ψ= |〈 |↑ 〉〈↑ | ⊗ |↑ 〉〈↑ 〉| =P t t( ) ( ) 1
8

, (11)f z z x x i00
00 2

ψ ψ= |〈 |↓ 〉〈↑ | ⊗ |↓ 〉〈↓ 〉| =P t t( ) ( ) 0, (12)f z z x x i01
00 2

ψ ψ= |〈 |↓ 〉〈↓ | ⊗ |↑ 〉〈↑ 〉| =P t t( ) ( ) 0, (13)f z z x x i10
00 2

ψ ψ= |〈 |↓ 〉〈↓ | ⊗ |↓ 〉〈↓ 〉| = .P t t( ) ( ) 1
8 (14)f z z x x i11

00 2
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Similarly, we can obtain p (10|00) =  p (01|01) =  p (10|01) =  p (01|10) =  p (10|10) =  p(00|11) =  p (11|11) =  0 
and p (00|00) =  p (11|00) =  p (00|01) =  p (11|01) =  p (00|10) =  p (11|10) =  p (01|11) =  p (10|11) =  1/2, and all 
these probabilities constitute a probability distribution matrix:

=







| = | = | = | =
| = | = | = | =
| = | = | = | =
| = | = | = | =







P ab xy

p p p p
p p p p
p p p p
p p p p

( )

(00 00) 1/2 (01 00) 0 (10 00) 0 (11 00) 1/2
(00 01) 1/2 (01 01) 0 (10 01) 0 (11 01) 1/2
(00 10) 1/2 (01 10) 0 (10 10) 0 (11 10) 1/2
(00 11) 0 (01 11) 1/2 (10 11) 1/2 (11 11) 0 (15)

It is easy to find that the probability distribution matrix in Eq. (15) is exactly the same as the matrix in Eq. (6), 
which means that the setup proposed here can exactly simulate a PR box.

Here, the SPDC equipments (BBO1, two BBO2s, HWP1, HWP2 and HWP3) can pre-select the state 
ψ = +H H V V( )i

1
2

, and then, adjusting the angles of eight HWPs (HWP4-11) can complete the meas-
urement with two PBSs (PBS1 and PBS2). At last, the CNOT gate (an auxiliary photon, PBS3, PBS4 and PBS7), 
two HWPs (HWP12 and HWP13), two PBSs (PBS5 and PBS6) and six detectors can post-select the state 
ψ〈 | = 〈 | 〈 | + 〈 | − 〈 | 〈 | − 〈 |H H V V H V( ) ( )f

1
2

1
2

. For example, if we want to get the p (01|00), set the HWP5 and 
HWP11 at 22.5°, HWP7 and HWP9 at 45° and HWP4, HWP6, HWP8, HWP10 at 0°, where HWP4 set at 0° and 
22.5° corresponds to the two possible input values of the box’s upper side 0 and 1, respectively, i.e. the two possible 
measurement bases, and, on the contrary HWP5 set at 22.5° and 0° corresponds to the two possible input values 
of the box’s lower side 0 and 1, respectively. HWP6(HWP 7) set at 0° and 45° corresponds to the two possible 
output values of the box’s upper (lower) side 0 and 1, respectively, i.e. two possible measurement results on the 
photons. The initial state ψ = +H H V V( )i

1
2

 is generated by the SPDC, which will be transformed into 
+ + −H H H V V V V H  after unitary transformations (HWP4-7). Only the component H H  

can transit the PBSs (PBS1, 2), and thus the result state −H H V( ) we want can be achieved after four other 
HWPs (HWP8-11). The result state −H H V( ) of the measurement stage can be reexpressed in terms of the 
entangled basis, one basis state of which is the final state in Eq. (8). To discriminate (post-select) this final state 
from other three basis states, a CNOT gate (an auxiliary photon, PBS3, PBS4, PBS7, D5 and D6)and two local 
operations (HWP12 and HWP13) are introduced to transform the joint entangled basis measurement into the 
product basis measurement. The post-selection process is just to pick up the measurement result corresponding 
to the final state ψ〈 | = 〈 | 〈 | + 〈 | − 〈 | 〈 | − 〈 |H H V V H V( ) ( )f

1
2

1
2

. After these transformations, the finial state 
ψ〈 | = 〈 | 〈 | + 〈 | − 〈 | 〈 | − 〈 |H H V V H V( ) ( )f

1
2

1
2

 evolves into 〈 H| 〈 H|, so the results we want are registered through 
a three-port coincidence circuit (D2, D3 and D5), and this three-photon coincidence rate is just the probability p 
(01|00). By adjusting the HWP 6 and HWP 7 according to the Table 1, we can get other three probabilities for the 
input 00, p (00|00), p (10|00) and p (11|00). By adjusting HWP4 and HWP5, the input can be changed. In the 
same way, we can get the sixteen probabilities for a PR box by adjusting the HWPs according to the Table 1.
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