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Dazl is a critical player for 
primordial germ cell formation in 
medaka
Mingyou Li1,2, Feng Zhu2, Zhendong Li2, Ni Hong2,3 & Yunhan Hong2

The DAZ family genes boule, daz and dazl have conserved functions in primordial germ cell (PGC) 
migration, germ stem cell proliferation, differentiation and meiosis progression. It has remained 
unknown whether this family is required for PGC formation in developing embryos. Our recent study in 
the fish medaka (Oryzias latipes) has defined dnd as the critical PGC specifier and predicted the presence 
of additional factors essential for PGC formation. Here we report that dazl is a second key player for 
medaka PGC formation. Dazl knockdown did not prevent PGC formation even in the absence of normal 
somatic structures. It turned out that a high level of Dazl protein was maternally supplied and persisted 
until gastrulation, and hardly affected by two antisense morpholino oligos targeting the dazl RNA 
translation. Importantly, microinjection of a Dazl antibody remarkably reduced the number of PGCs and 
even completely abolished PGC formation without causing detectable somatic abnormality. Therefore, 
medaka PGC formation requires the Dazl protein as maternal germ plasm component, offering first 
evidence that dazl is a critical player in PGC formation in vivo. Our results demonstrate that antibody 
neutralization is a powerful tool to study the roles of maternal protein factors in PGC development in vivo.

In many animals, the germline is established early in development by primordial germ cell (PGC) specification. 
PGCs migrate into the gonad, and gonadal germ cells in the adult ovary and testis undergo stem cell self-renewal, 
differentiation, meiosis and post-meiotic morphogenesis, culminating in the production of eggs and sperm1. 
Defects in any of these processes will lead to reproductive deficiency and infertility. Male infertility represents 
40~50% of human infertility and affects one-sixth of couples worldwide2,3. Male infertility is often associated 
with azoospermia or oligozoospermia as a consequence of genetic alterations4. The DAZ gene family is the best 
studied that encode infertility factors in animal models5 and human6,7. This family consists of daz, dazl and boule, 
which encode RNA-binding proteins that act as functional homologs across phyla8–10. The founder member Daz 
is encoded by the human Deleted-in-azoospermia and acts as a critical male fertility factor. Four Daz genes reside 
on the human Y chromosome. Daz is restricted to primates, its autosomal homolog Daz-like (Dazl) has been 
described in several vertebrates including the human11,12, mouse13,14, Xenopus15, axolotl16, newt17, zebrafish18 and 
medaka19. Boule has been considered as the ancestor of the DAZ family and its ortholog has been found in ver-
tebrates5,7. Boule is the only DAZ family member in invertebrates including Drosophila20 and C. elegans21. In the 
rainbow trout, differential expression of boule and dazl reveals germ cell sex prior to meiosis22,23.

The DAZ family is exclusively required for germ cell development. The functions of the family members are, 
however, distinct and variable in different organisms. In invertebrates, boule is expressed only in the ovary and 
required for oogenesis of C. elegans21, but is essential for meiotic cell cycle in spermatogenesis of Drosophila, as 
male mutants are sterile and their spermatocytes are arrested at the G2/M phase20,24. In vertebrates, dazl deple-
tion in Xenopus leads to defective PGC development8, targeted dazl disruption in mouse results in the sterility in 
both sexes, with the prime spermatogenic defect being a failure of spermatogonial differentiation as germ cells 
in the testis are arrested at spermatogonial stage14. Several studies in vitro have revealed a role of the DAZ family 
members in germ cell fate decision. In mouse ES cells in culture, forced dazl expression promotes germ cell for-
mation25. In human ES cells, Dazl functions also in germ cell formation, whereas Daz and Boule promote later 
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stages of meiosis and development of haploid gametes26. It has remained unknown whether Dazl functions PGC 
specification in developing embryos.

Diverse animal species make use of two distinct modes for PGC formation, namely preformation and epigenesis27,28.  
Preformation operates in egg-laying animals such as Drosophila29, C. elegans30 and Xenopus15. In these organisms, 
the cytoplasmic germ plasm is maternally supplied to the embryo, asymmetrically partitioned to one or few cells to 
intrinsically determine the PGC fate before or during cleavage divisions. Epigenesis prevails in mammals such as 
mouse31 and urodelean amphibians such as newt16. In epigenesis, maternal inheritance of germ plasm components 
is absent, and PGC formation is independent of germ plasm but extrinsically induced by cell-cell interactions dur-
ing gastrulation31. In fish, PGC preformation has been demonstrated in zebrafish and medaka. In zebrafish, germ 
plasm components are maternally inherited and asymmetrically segregated into pPGCs during early cleavages32–34. 
In medaka (Oryzias latipes), embryo perturbation does not affect the PGC number, leading to the notion for PGC 
preformation in this organism35. Unusually, medaka maternal germ plasm components, such as the transcripts 
of boule and dazl5,19, vasa36–38 and piwi9, distribute widely during early development rather than localization into 
a small number of cells. In addition, knockdown of germ genes such as nanos39, vasa36 or piwi9 can reduce the 
number of PGCs and affect PGC migration but cannot completely preventing PGC formation. Direct evidence 
for medaka PGC preformation comes from the observation that associated single cells from midblastula embryos 
in culture are able to form PGCs in the absence of normal somatic structures and known inducing factors40. Most 
recently, we have identified dnd as the critical PGC specifier in medaka and predicted the presence of additional 
factors essential for PGC formation, as dnd overexpression can enhance the PGC number by up to 3 folds, and 
many dnd-expressing cells adopt somatic cell fates41. This study was aimed at analyzing the role of dazl in medaka 
PGC development. We show that injection of an anti-Dazl antibody is able to abolish PGC formation in medaka 
embryos, providing first evidence that maternal Dazl is required for PGC formation in vivo.

Results
Effect of dazl knockdown on PGC development.  Transgenic medaka lines Ng and Vg were used for 
PGC observation, which express GFP from the medaka nanos3 and vasa promoter (olvas-gfp) exclusively in 
germ cells, respectively36. To trace PGCs specifically by zygotic GFP expression, hybrid embryos (referred NgVg 
embryos thereafter) between Ng females and Vg males were produced for monitoring PGC development36.

Several experiments have suggested that medaka PGC formation is independent on somatic development9,35,36. 
In zebrafish, microinjection of antisense morpholino oligos against germ plasm RNA components such as vasa42, 
nanos43 and dnd44 does not affect PGC formation. In medaka, microinjection of morpholinos against vasa45 and 
piwi9 affects PGC migration but does not prevent PGC formation. Most recently, we show that dnd acts as the 
medaka PGC specifier41. We extended our study to dazl for analyzing the role of a maternal factor in medaka PGC 
formation. The dazl RNA is a maternally supplied germ plasm component in medaka19. In mouse, forced dazl 
expression promotes germ cell formation from ES cells in culture25. In human, Dazl functions in germ cell forma-
tion from ES cells, whereas closely related genes Daz and Boule promote later stages of meiosis and development 
of haploid gametes26. Two series of experiments were performed. To this end, NgVg embryos at the 2-cell stage 
were subjected to microinjection of antisense morpholino oligos (MOs) against the medaka dazl. Two MOs were 
used: MOdaz1 targets the sequence spanning the ATG codon, MOdaz2 recognizes the sequence upstream of the 
ATG (Fig. 1a). Microinjection of MOdaz1 at 2 ng or MOdaz2 at 1 ng was permissive for normal somatic develop-
ment and PGC formation (Fig. 1b–d). MO injection at higher doses, namely MOdaz2 at 2 ng prevented somatic 
development, resulting in a disorganized cell mass that lacked normal embryonic structures. Interestingly, even 
in these severely disorganized embryos, PGC formation was not prevented (Fig. 1e,e’). Similarly, coinjection 
of MOdaz1 and MOdaz2 at 1 ng led to abnormal somatic development and seemingly normal PGC formation 
(Figure S1). In a total of 83 MO-injected embryos, we failed to detect a remarkable reduction in the number of 
PGCs. As summarized in Table 1, a control embryo after water injection produces 31.8 PGCs at 40 hpf, which 
is not significantly different from 29.3 of those injected with MOdaz1 and 33.7 of those injected with MOdaz2. 
Although it is unclear whether abnormal somatic development is due to the toxicity of MOdaz1 and MOdaz2 or 
an essential role of dazl in somatic development of early medaka embryos, these data demonstrate that medaka 
PGCs can form in the absence of a normal somatic environment, conforming to the preformation mode in this 
organism.

Embryonic Dazl protein expression.  Injection of dazl MOs affects the soma but not PGC formation 
in medaka embryos is unusual, because dazl is sufficient to promote germ cell formation from mammalian ES 
cells25,26. Since MOs act through the inhibition of translation, we performed a Western analysis on Dazl protein 
expression in developing medaka embryos by using α​Dazl, a polyclonal anti-Dazl antiserum capable of specifi-
cally staining medaka germ cells in the adult testis and ovary19. The Dazl protein was seen at a high level already in 
1-cell embryos and until gastrulation, and this level was not reduced significantly by MOdaz1 or MOdaz2 (Fig. 2). 
Therefore, the Dazl protein in medaka is maternally supplied at a high level and persists until gastrulation when 
PGC formation occurs, and it is not surprising that dazl MOs are inefficient to reduce the Dazl level and thus 
unable to exhibit effect on PGC development in this organism.

Medaka PGC development requires maternal Dazl.  In Xenopus, injection of an anti-Vasa antibody 
perturbed the function resulted in failure of PGC differentiation at the tadpole stage46. The inefficiency of dazl 
MOs in reducing the Dazl protein level due to an abundant maternal supply provoked α​Dazl injection to neu-
tralize the Dazl activity. To this end, NgVg embryos at the 2-cell stage were injected with α​Dazl or preserum as 
a control. When injected at high doses (5~10 ng per embryo), either antibody produced abnormal embryos. 
Upon injection with either antibody at 3 ng per embryo, the majority of embryos appeared normal. As expected, 
injection of water and a preserum did not affect PGC formation (Fig. 3a,b), and produced an average of 33.5 
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PGCs among 25 embryos at 2 dpf. A total of 52 embryos at the 1-cell stage were injected with α​Dazl, 43 survi-
vors at 2 dpf exhibited seemingly normal development and were analyzed for PGC development. This revealed 
that the average PGC number decreased by 30.5% to 23.3 (Table 2). The inhibitory effect of α​Dazl on the PGC 
number became more evident when PGCs were examined for bilaterally asymmetric distribution. In controls, 
averages of PGCs were 14.5 and 19.0 at the left and right sides, respectively. These values became 7.9 and 15.4 
in α​Dazl-injected embryos, giving rise to a reduction by 45.5% and 18.9%, respectively (Table 2). Upon α​Dazl 
injection at the 2-cell stage, the absence of PGCs on the side from the injected blastomeres was seen in certain 
Vg embryos (Fig. 3c). Most convincingly, two of the 43 Vg embryos injected with α​Dazl at the 1-cell stage were 
found to be completely free of PGCs (Fig. 3d). In situ hybridization by using an antisense dazl riboprobe revealed 
the presence of ~34 PGCs in preserum-injected control embryo (Fig. 3b’) but only 9 PGCs upon α​Dazl injection 
(Fig. 3c’). Collectively, medaka PGC formation requires the maternal Dazl protein.

Discussion
The transcripts and protein products of germ genes are often germ plasm components that are maternally 
supplied in many egg-laying organisms. In zebrafish, maternal RNA inheritance has been known for vasa32,34, 

Figure 1.  dazl knockdown has little effect on PGC formation. NgVg embryos were injected at the 1-cell stage 
and analyzed microscopically at stage 22 for PGCs (green). (a) Positions of MOdaz1 and MOdaz2. The target 
sequences on the medaka dazl cDNA are underlined. The ATG codon is shown in bold. (b–d) Normal somatic 
development and PGC formation after injection with water (b), MOdaz1 (c) and MOdaz2 (d). (e,e’) Abnormal 
somatic development and normal PGC formation after morpholino injection. The anterior is to the top. od, oil 
droplet. Scale bars, 100 μ​m.

Injection dose
Number of 

embryos observed
Number of PGCs 

per embryo2

water 52 31.8 ±​ 5.5

MOdaz1 2 ng 47 29.3 ±​ 7.4

MOdaz2 1 ng 36 33.7 ±​ 8.0

Table 1.   Effect of dazl morpholinos on the PGC number1. 1NgVg embryos were injected at the 1-cell stage. 
PGCs were scored by GFP expression at 40 hpf. 2Data are mean ±​ s.d. No significant difference was observed 
between water injection control and experimental groups injected with MOdaz1 or MOdaz2.
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Figure 2.  Western blot analysis of Dazl protein expression. Crude protein extract from three embryos was 
used for each lane. GAPDH was detected as a loading control. Size markers in kilodalton are shown to the right. 
MOdaz1 and MOdaz2 were injected at 2 ng and 1 ng to the1-cell embryos, respectively.

Figure 3.  Dazl is required for medaka PGC formation. Vg embryos were monitored for PGCs by GFP 
expression and in situ hybridization at 40 hpf. (a) Schematic microinjection at the 1-cell or 2-cell stage and PGC 
detection at the 9-somite stage. (b,c) Control Vg embryos, showing many PGCs (green) in two bilateral clusters 
along the embryo axis without (b) or with preserum injection. (d) Embryo after α​Dazl injection at the 2-cell 
stage, showing the absence of PGCs in the right side from the injected cell. (e) Embryo after α​Dazl injection at 
the 1-cell stage, showing the absence of PGCs. (c’,d’) Embryos shown in (c,d) after in situ hybridization with an 
antisense dazl riboprobe, showing the presence of ~34 PGCs on both sides (c’) and only 9 PGCs in the left side 
from the non-injected cell (d’). 1-cell, microinjection at the 1-cell stage; 2-cell, microinjection into one of the 2 
cells at the 2-cell stage. Scale bars, 100 μ​m.
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nanos43, dnd44, zili47 and ziwi48, and microinjection of antisense morpholino oligos against some of them 
including nanos43 and dnd44 leads to abnormal PGC development, ranging from a reduced PGC number over 
defective PGC migration to survival. In medaka, maternal RNA inheritance has been reported for vasa and 
piwi, and microinjection of their antisense morpholino oligos results in a reduced PGC number and defective 
PGC migration9,36. Interestingly, accumulated data in fish show that antisense morpholino oligos of germ genes 
cannot completely prevent PGC formation but merely affect subsequent steps of PGC development, compared 
to their requirement for PGC formation as illustrated by vasa loss-of-function mutations in Drosophila46. A 
difference in phenotype between morpholino-mediated translation inhibition and loss-of-function mutations 
has been ascribed to a high level of maternal protein supply in combination with incomplete translation inhi-
bition36. In this study, we provide first evidence in medaka that the Dazl protein is indeed maternally supplied 
at a high level and persists until gastrulation when PGC formation occurs. Consequently, dazl morpholino 
oligos have little effect on the Dazl protein level and thus on PGC development. We demonstrate that α​Dazl 
injection is sufficient to remarkably reduce the PGC number and even to abolish PGC formation in certain 
cases, perhaps via neutralizing the activity of Dazl protein. Our data suggest that antibody injection offers an 
alternative tool to study the earliest event of PGC development, namely PGC formation in fish, as has been 
reported in Xenopus49.

In this study, we have revealed that α​Dazl injection leads to severe reduction in the PGC number and even a 
complete loss of PGCs, demonstrating that dazl plays an essential role in PGC formation. The PGC absence may 
be due to the absence of PGC formation or disappearance of PGCs by death prior to observation. Three obser-
vations favor the absence of PGC formation in certain α​Dazl-injected embryos. First, zebrafish PGC survival 
requires the function of nanos43 and dnd44, and PGCs are visible by transient GFP expression during somitogen-
esis and begin to die afterwards upon nanos or dnd knockdown. Second, vasa or piwi knockdown in medaka 
does not affect PGC survival even at ectopic sites of advanced embryos or in culture9,36. Finally, GFP or RFP is 
fairly stable and its fluorescence can persist in dead cells for 3 days, as illustrated by cell culture in the presence of 
puromycin40. Medaka PGCs are visible by transient GFP expression until 13 hpf39, and PGC observation in this 
study has been made from 40 hpf onwards. Well-specified PGCs, either live or dead, should be identifiable by 
GFP expression, suggesting that observation in medaka at 40 hpf is able to detect the majority–if not all–of pre-
viously formed PGCs. The fact that α​Dazl injection leads to a reduction or even loss of PGCs suggests a role for 
dazl in medaka PGC formation. Previously, we have shown in medaka that vasa or piwi knockdown reduces the 
PGC number9,36. Most recently, we have identified dnd as the critical PGC specifier and predicted the presence of 
additional factors in medaka PGC formation41. Results in this study reveals dazl as the second key player in PGC 
formation. In mammals, forced dazl expression in vitro promotes germ cell formation from ES cells of mouse25 
and human26. Hence, dazl plays a conserved role for PGC development from fish to mammals.

Materials and Methods
Animals.  Work with animals was carried out in strict accordance with the recommendations in the Guide for 
the Care and Use of Laboratory Animals of the National Advisory Committee for Laboratory Animal Research 
in Singapore and approved by this committee (Permit Number: 27/09). Medaka strains HB32C and af were 
maintained under an artificial photoperiod of 14-h light to 10-h darkness at 26 °C50–52. Transgenic line Vg was 
described previously51, which expresses GFP from the medaka vasa promoter36. Heterozygous Vg embryos were 
produced by crossing homozygous Vg males to non-transgenic females and used for microinjection and cell 
culture. In certain experiments, heterozygous Vg males were crossed with non-transgenic females, and resultant 
embryos were used for cell cultures.

Morpholino oligos.  Morpholino antisense oligos were purchased from Gene Tools (Oregon) and dissolved in 
water. MOdaz1 (TACTTCTGGGTCTGTTCAGATCCAT) and MOdaz2 (TAAAACCAAGAATTTGGCCAGAAAC) 
target the medaka dazl RNA (Accession number AY973274), the former spans the initiation codon (underlined),  
and latter is positioned 12 nt upstream of the initiation codon.

Antibodies.  Control preserum and polyclonal anti-Dazl antisera (α​Dazl) were produced and used as previ-
ously described19.

Embryo injections.  Embryos were injected at the 1- or 2-cell stages as described36. MOdaz1 and MOdaz2 
were dissolved at 0.1~5 mg/ml, which corresponds to 0.1~5 ng per injection. Preserum and α​Dazl were diluted 

Serum 
injected

Number of 
embryos Number of PGCs

Total Side 12 Side 22

Preserum 25 33.5 ±​ 5.3 14.5 ±​ 3.2 19.0 ±​ 3.1

α​Dazl 43 23.3 ±​ 6.4 7.9 ±​ 3.5 15.4 ±​ 4.6

Table 2.  Dazl depletion blocks PGC formation1. 1Preserum or α​Dazl was injected with 1.5 ng per NgVg 
embryo into one of the two cells at the 2-cell stage, and PGCs were scored by GFP expression at 40 hpf. 2Side 1  
is the injected side, which was labeled by a co-injected fluorescent dye, and side 2 is the noninjected side. 
Significant difference was observed between preserum injection and α​Dazl injection in the injected side but not 
noninjected side.
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in water at 1:3 before injection, corresponding to 3 ng protein per embryo as determined by using the BioRad 
protein assay kit (#500-0006). Successful injection was monitored on the basis of co-injected fluorescent dye 
Texas red.

In situ hybridization.  Embryos were fixed and subjected to in situ hybridization with an antisense dazl 
riboprobe as described5,19.

Western blot analysis.  Homogenates of whole embryos at representative stages were resolved in 10% 
SDS-PAGE and blotted as described (Xu et al., 2005). The blots were incubated with α​Dazl or α​GAPDH, the latter 
being a monoclonal mouse antibody against the human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
at a 1:1000 dilution (sc-47724, Santa Cruz Biotechnology, Inc.). After washing, the blots were incubated with 
secondary antibodies (A0545 or A9044, Sigma) at a 10,000 dilution and visualized by the ECL detection reagents 
(Pierce, USA).

Microscopy.  Microscopy was done as described5,50,53. Briefly, live embryos and fry were visualized using a 
Leica MZFLIII stereo microscope equipped with a Fluo III UV-light system and a GFP2 filter and photographed 
by using a Nikon E4500 digital camera (Nikon Corp). For documentation at larger magnification, live embryos 
and fry were observed and photographed on Zeiss Axiovert2 invert microscope equipped with a Zeiss AxioCam 
MRc digital camera and AxioVision 4 software.

Statistics.  Statistical analyses were calculated by using GraphPad Prism v4.0. Data consolidated were pre-
sented as mean ±​ s.d.
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