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Impact of Information based 
Classification on Network 
Epidemics
Bimal Kumar Mishra1, Kaushik Haldar2 & Durgesh Nandini Sinha3

Formulating mathematical models for accurate approximation of malicious propagation in a network is 
a difficult process because of our inherent lack of understanding of several underlying physical processes 
that intrinsically characterize the broader picture. The aim of this paper is to understand the impact 
of available information in the control of malicious network epidemics. A 1-n-n-1 type differential 
epidemic model is proposed, where the differentiality allows a symptom based classification. This is 
the first such attempt to add such a classification into the existing epidemic framework. The model is 
incorporated into a five class system called the DifEpGoss architecture. Analysis reveals an epidemic 
threshold, based on which the long-term behavior of the system is analyzed. In this work three real 
network datasets with 22002, 22469 and 22607 undirected edges respectively, are used. The datasets 
show that classification based prevention given in the model can have a good role in containing network 
epidemics. Further simulation based experiments are used with a three category classification of attack 
and defense strengths, which allows us to consider 27 different possibilities. These experiments further 
corroborate the utility of the proposed model. The paper concludes with several interesting results.

Scientific efforts to model and accurately approximate the spread of malicious content over the Internet have 
received significant attention from researchers ever since the appearance of the Morris worm in 1988. The aims 
and methods employed by attackers, as well as the level of damage inflicted, have all changed significantly, over 
the years. The aim initially was to infect as many computers as possible. Then the infected computers were used to 
spread the infection in an automated manner with an exponential rate of spread1. This characterized the so-called 
fast spreading worms, which included the highly popular Code Red2 and Nimda worms3. Internet security threats 
have evolved consistently and considerably over the last one and a half decade as the malware authors have shown 
constant innovation in their methodologies. Recently the number of attacks which focus primarily on a finite, 
often small, set of specific IP addresses has started to gain significant popularity. Such attacks are called targeted 
attacks. Symantec reports reveal an ever increasing trend in the global average of reported cases of targeted attacks 
since 2010. The reported number was 77 in 2010, 82 in 20114, and then 116 in 20125. These attacks are charac-
terized by malicious intentions like cyber espionage (Ghostnet attack 2009), cyber sabotage of critical physical 
resources (Stuxnet attack of 2010), and industrial espionage (Nitro attack of 2011). The traditional threats are now 
becoming more critical as they are expanding into newer forums like social media and mobile devices. The pro-
portion of mobile malware has also shown a steadily increasing trend over the last few years. Symantec reported 
a 58% increase in the number of mobile malware families in 20125.

The constant use of specialized techniques for intrusion and also customized tools makes it very difficult to 
defend against such attacks. Stealth techniques incorporating patience and persistence are being used to reduce 
the detection risk. In the light of such attacking methods, the traditional manual patching approaches to defense 
are clearly not efficient. The need is to develop detection and response systems which are intelligent enough to 
identify malicious attacks before they are able to inflict serious damage. The decision making can be improved by 
including a cooperative strategy where appropriate additional information about the status of infection is readily 
available. Such information may include data on the infection rate, or the response rates of different nodes in 
the network. This collective approach can help in a meaningful use of the available evidence on the severity and 
certainty of an attack, which is rarely used.
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There are several approaches that have been suggested over the years for a proper understanding of malware 
and their spread on networks. The initial theory based models proposed by the founding fathers of this domain 
are responsible for giving birth to what is now called theoretical computer virology6,7. Their methods were based 
on the intriguing similarities that existed between viruses which are computer based and those that are biological. 
A very novel suggestion was made by Murray when he highlighted that the methods existing for the study of epi-
demic spread of biological infections could be useful in understanding the propagation of computer viruses8. A 
popular biological epidemic model called the SIS (Susceptible - Infectious - Susceptible) model was then applied 
as the first such application to study the manner in which computer viruses spread on different kinds of net-
works9. The approaches may roughly be classified into two broad categories. In the first category, we can put those 
approaches which are based on purely epidemic homogeneous contact models10–12. Such models are devoid of the 
complexities arising from topological considerations. They are also robust enough in providing strong analytical 
insights about various dynamical properties of the system like epidemic thresholds, equilibrium points of the 
system, stability of the equilibria, and periodic behavior of solutions, among others. In the second category are 
included approaches that rely on the topology of networks. Such approaches have provided useful results on the 
existence of epidemic thresholds for simple models including the SI, SIS and SIR models13,14. There is however a 
difficulty in proving theoretical results like stability of equilibrium points, owing to the large number of different 
kinds of possible topologies of large scale networks. Instead of theoretical proofs, often simulation and experi-
mentation based proofs have been provided. One of the most important findings of this category of approaches 
is the lack of the universal epidemic threshold for infinite-size scale-free networks15. Another important contri-
bution was the N-intertwined mean-field approximation based model and its fully heterogeneous extension16,17. 
These models provided useful dimensions outlining the relation between network topology and the spreading 
process on the network. In the epidemic approaches used so far, there has still not been an effort to include the 
effect of anticipating such attacks before they actually occur. Instead of a wait-and-watch approach, anticipation 
of an epidemic path can be useful in identifying the course of action to pursue.

This paper basically addresses the following research scopes:

➢ How can we model the spread of an attack in a network with respect to time? How does a network attack start 
from one or two nodes and propagates to infect often millions of nodes?

➢ What is the long term behavior of the network with respect to time? A network may recover completely in 
most scenarios, but is there a possibility that a number of nodes remain infected? If so, what is the stable value 
of such a fraction of infection that persists?

➢ Is there a threshold condition that determines the long term behavior of the system with respect to the infec-
tion persisting or perishing? Such a threshold exists in epidemic literature and is called the basic reproduction 
number. Based on related ideas, we try to obtain a threshold condition for our system as well.

➢ Can the symptoms exhibited by nodes infected by different types of attacking agents be used to improve the 
intelligence level of the underlying detection and response system? What is the impact of such a behavioral 
classification on the spread of infection? Based on the above classification, can the network be made to react 
in a more efficient manner?

➢ Is there a possibility that the nodes use the additional information available with them and also disseminate 
it, so that they can act in a collaborative manner?

The remaining portion of the paper is structured as follows. The proposed architecture is presented in the next 
section. Then the various aspects of the model and its mathematical formulation are detailed. The next section 
analyzes the model to establish the long term behavior of the epidemic system. Experiments and the correspond-
ing results are then discussed. Finally, the paper is concluded with an elaboration on the major findings of the 
present work.

Proposed Architecture
The proposed architecture for a differential symptom based epidemic classification and defense is shown in Fig. 1. 
The architecture involves five different components which are as follows:

Data Processing Unit. This component receives raw data from the different hosts and extracts two kinds 
of information necessary for the working of the other components. It uses the raw data to get meaningful infor-
mation that is subsequently used for a behavioral classification. This information is sent as an output to the clas-
sification unit. It also extracts the epidemic data from the raw data and sends it as an output to the epidemic unit.

Classification Unit. This component uses the behavior based data received to perform a behavioral classifi-
cation. A number of classifiers exist for an automated malware classification and analysis. The work of Bailey et al. 
can in particular be mentioned18. They first examined the effectiveness of existing host based antivirus products 
in providing semantically meaningful information concerning the malicious software (or malware) and tools 
used by attackers. Using a large collection of malware that spanned a variety of attack vectors, it was shown that 
different antivirus products characterize malware in different ways. This characterization is inconsistent across 
antivirus products, incomplete across malware, and they fail to be concise in their semantics.

They proposed a new classification method that described malware behavior in terms of number of system 
state changes like files written, processes created, etc. and not in sequences or patterns of system calls. Also to 
address the large volume of malware and the diversity of their behavior, a method was provided to automatically 
categorize these profiles of malware into groups representing similar classes of behaviors. They also demonstrated 
how behavior based clustering provides a more direct and efficient way of classifying and analyzing Internet 
malware. In the present paper, we do not attempt to go into the details of the classification unit and the relative 
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efficiency of the classification algorithms that can be used, but it can be taken up as a separate work. The informa-
tion regarding the number of classes, and the symptoms associated for the classification, and the corresponding 
optimal defense mechanism is sent as an output to the gossip unit.

Epidemic Unit. This component receives the epidemic data from the data processing unit and then uses it to 
find a number of values, which can be used to effectively describe the epidemic state of the whole network. These 
values will be in the form of a number of rates and also an epidemic threshold. Subsequent sections of this paper 
focus on finding these values, and establishing their relevance. Its output is sent to the evaluation unit.

Evaluation Unit. This component uses the data received by it to perform short and long term predictions 
regarding the epidemic state of the system. This basically allows evaluating the performance of the system, and 
particularly the classifier involved. A negative feedback may be used as a suggestion to fine tune the performance 
of the classification unit.

Gossip Unit. This component plays the essential role of disseminating the classification information to the 
hosts. It also needs to optimize the view that it chooses to use. An efficient working of this unit is important 
mainly because it is responsible for providing the backup support needed for an intelligent anticipation by the 
overall system.

The epidemic information needs to be analyzed, for which a suitable epidemic model is necessary. A model 
incorporating the difference in symptoms is proposed in the subsequent sections. We call our architecture as 
DifEpGoss architecture as it is based on such an EPidemic model which uses a DIFference in symptoms, along 
with a GOssip based information dissemination.

The D-SEIR Model and its mathematical formulation
In this paper, we use the Susceptible-Exposed-Infectious-Recovered (SEIR) model12,19 as the basic underlying 
framework. Figure 2 provides a schematic representation of this model. We attempt to provide greater signif-
icance to the model, by making use of the fact that once a system gets infected and it starts to show specific 
symptoms, then the role of the defense mechanism can be more targeted and based on intelligent anticipation. 
If there is a specific response to the stage where identified symptoms are just beginning to appear, then there is 
a greater chance that even a strong attack can be thwarted before it becomes significant. We do not attempt to 
make a classification of specific symptoms or the specific defense to be adopted, but use a more abstract approach 
and consider n different groups or sub-classes based on the symptoms exhibited. The proposed model considers 
a difference between nodes based on the characteristic features or symptoms exhibited, and hence it is referred 
hereafter as the differential – SEIR or D-SEIR model. The assumptions that lead to a formulation of the model can 
be enlisted as follows:

Initial susceptibility. All nodes in the network are initially taken in the susceptible (S) class. This accounts 
for the fact that the modeling process starts at time zero for an attack. All nodes are thus non-infected at that point 
but have a chance of being infected, as time progresses.

Differential Infection probability. It is assumed that the probability of the susceptible nodes getting 
infected into the ith exposed sub-class (Ei) is = …p (i 1, 2, , n)i , such that ∑ == p 1i 1

n
i . This assumption allows 

mathematical tractability but a point that arises out of it is whether it is essential for all nodes to become exposed, 
before getting recovered. This point can be included by introducing the concept of direct immunity. In the present 

Figure 1. DifEpGos Architecture. 
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paper, this factor has been ignored for the sake of simplicity, but it can very well be included for a more concrete 
analysis in some related future work.

Node removal from network. The removal of nodes from the network is assumed to be because of two 
reasons. Firstly when nodes succumb to the infection (at a rate δ ), and secondly due to node failures for other 
reasons (at a rate μ ). Other reasons may include hardware failure, physical damage, or power discharge (in case of 
sensor and ad hoc networks). Such kind of removal can occur from each of the four classes. Removal because of 
infection however takes place only from the infectious (Ij) sub-classes.

Post latent infection. A latently infected node in sub-class Ei becomes infectious and moves into sub-class 
Ij with a rate γij. One fact that needs to be accounted for is that it is not at all necessary that the transitions occur 
only between the corresponding sub-classes (i.e. Ei to Ii only). There is a possibility that a symptom is misclassified 
or a node shows symptoms of more than one class. Under such a scenario, the probabilities for Ei to Ij transitions 
will have non-zero value. The situation where all probabilities except the corresponding ones are zero (i.e. only 
Ei to Ii probabilities exist) will be possible only when we have an ideal classifier with no classification error. In the 
present model, therefore small non-zero values have been assumed for Ei to Ij transitions (i ≠  j) and for transitions 
between the corresponding sub-classes (when correct classification is made) higher values have been assumed.

Recovery. The infectious nodes get disinfected on use of anti-malicious measures. Upon recovery the nodes 
from each of the infectious sub-classes (Ij) move into the recovered class (R). The immunity is considered to be 
permanent based on assumptions already specified earlier (in case of the SEIR model).

Contact distribution. The average number of contacts per node is assumed as a function c(N) of the pop-
ulation size, i.e. c(N) =  c0N, where N is the total population size and c0 is a constant of proportionality. This fits 
well into our homogeneity assumption. Here the nodes constituting the network are assumed to have an ability to 
interact and spread their infection to every other node, which is the most general form of interaction possible. The 
constant c0 is the factor by which the number of contacts scales as the population of the network varies. It basically 
provides a best case situation for the malware to spread, and hence a worst case for the analysis. The distribution 
may be modified to fit in to other specific topologies.

Based on these assumptions, the model can be schematically represented as in Fig. 3 below.

Figure 2. The SEIR (Susceptible-Exposed-Infectious-Recovered) framework. 

Figure 3. Schematic Representation of the D-SEIR Model. 
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The nomenclature of basic terminology used in the model is summarized in Table 1.
The transformations shown in Fig. 3 can be used to obtain the following system of ordinary differential equa-

tions, which gives the mathematical representation of the model.
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considering the average number of contacts per node c(N) as a function of the population size and β j as the infec-
tivity of nodes in jth infectious class, the rate of infection λ  for the nodes in the susceptible class can be given as
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here I

N
j  represents the probability that a contact with a node of infectious sub-class j results in an infection. 

Assuming c(N) as being directly proportional to the population size N, we have c(N) =  c0N, and so the rate of 
infection reduces to a bilinear form, given as

∑λ = β
=

c I
(3)

0
j 1

n

j j

The rate of infection is thus dependent on the total sum of infectivity of nodes, where we consider the infectivity 
of the corresponding infectious sub-class. In the next section, the various analytical aspects of the model are 
discussed.

Stability Analysis
In this section our focus is on examining the long term behavior of the network with respect to time. The model 
is analyzed to find conditions under which the network will recover completely or if there is a possibility that a 
number of nodes will remain infected. In such a case, the stable value of the persisting infectious fraction will also 
be found. Firstly, we establish an epidemic threshold. It will determine the conditions for long term behavior of 
the system and would enable us to know if the infection persists or dies out.

Epidemic threshold. The epidemic threshold will be a value R0 called the basic reproduction number (bor-
rowing terminology from biological epidemics) which may be defined as follows.

Definition 1 (Basic Reproduction Number). The basic reproduction number (R0) may be defined as the 
expected number of secondary infections produced by a single node during its entire infectious period, in a pop-
ulation of all susceptible nodes20.

Nomenclature

S(t) Number of nodes in the susceptible class. n The number of exposed and infectious sub-classes.

Ei(t) Number of nodes in the ith exposed sub-class. S0 Initial number of nodes in the network.

Ij(t) Number of nodes in the jth infectious sub-class. λ Rate of infection of susceptible nodes.

R(t) Number of nodes in the recovered class. γ ij
Rate at which exposed nodes in the ith subclass 
become infectious into the jth subclass.

N(t) Total number of nodes in the network. δ The per capita death rate due to infection.

μ The per system death rate due to reasons other 
than the infection ν j

Rate of recovery of infectious nodes in the jth sub-
class.

β j Infectivity of nodes in jth infectious sub-class. c(N) Average number of contacts per node.

Table 1.  Nomenclature used in the Model.
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The value of R0 will be used to obtain an epidemic threshold (say τ0) which is a value such that

•	 the infection dies out over time if R0 <  τ0
•	 the infection persists and becomes an endemic if R0 <  τ0

We first obtain a value of R0 for our model and then use it to find conditions involving the epidemic threshold.

Theorem 1. The value of the basic reproduction number for the D-SEIR model is given as

∑ ∑=
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Proof. The derivation follows along a method called the next generation matrix method20–22.

A quantity that would be useful in the derivation is the partial derivative of the infection rate λ at the infection 
free equilibrium (IFE), which is given as
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We consider the system of equations with the infected classes represented first, and from it we obtain the 
matrices representing the rate of appearance of new infections (F̂ij) and the matrices representing the difference 
between outward and inward flow of nodes into a compartment (V̂ij) as follows
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Next, taking the partial derivatives with respect to the infectious classes, we get
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where the sub-matrices are as defined in (7), and the two matrices are observed to be non-negative and 
non-singular respectively. Now the basic reproduction number is given as the spectral radius (ρ ) of the next gen-
eration operator FV−1 and so we have

= ρ −R (FV )0
1

where, the inverse of the block matrix V is given as =








−

−









−
−

− − −
V

D 0
D D D D

1 22
1

33
1

32 22
1

33
1

So, the value of R0 becomes

=


























−

−














=

−

− − −
− −R trace 0 D

0 0
D 0

D D D D
trace(D D D D )0

23 22
1

33
1

32 22
1

33
1 23 33

1
32 22

1

whose diagonal elements are ∑ β γ µ + δ + ν µ + ∑ γ=
−

=
−( )c(S ) p ( )0 i 1

n
1 i 1i i

1
j 1
n

1j
1
,

∑ ∑β γ µ + δ + ν





µ + γ






…

=

−

=

−

c(S ) p ( ) , and0
i 1

n

2 i 2i i
1

j 1

n

2j

1

∑ ∑β γ µ + δ + ν





µ + γ





=

−

=

−

c(S ) p ( )0
i 1

n

n i ni i
1

j 1

n

nj

1

and hence we have

∑ ∑=






β γ

µ + δ + ν µ + ∑ γ





= = =( )
c SR ( ) p

( ) (8)
0 0

k 1

n

k
i 1

n
i ki

i j 1
n

kj

◽ 

Equilibrium Points. For a system of differential equations, an equilibrium point (also called critical point or 
equilibrium solution) may be defined as follows:

Definition 2 (Equilibrium Point). For a system of differential equations

=
dx
dt

Ax

a substitution of zero in the right hand side gives points that correspond to constant solutions (that do not change 
with time) and are called equilibrium points23.

The D-SEIR model has two equilibrium points. The first of these has a zero value for all Ij (and in fact for all Ei 
as well) and hence is referred to as the infection free equilibrium (IFE) point. The second one, on the other hand, 
has a positive component of infection and hence is called an endemic equilibrium point.

Infection free equilibrium: The infection free equilibrium point for the D-SEIR model is given as 
= = = = … = … =µ
µ λ+

S S E I i n j n R( , 0, 0; 1, 2, , ; 1, 2, , , 0)0 i j

Endemic equilibrium: The endemic equilibrium point for the D-SEIR model is given as
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The relevance of the endemic equilibrium point is that it gives a quantitative measure for the infected popu-
lation, when the infection survives. This allows us to have an estimate for the number of nodes that are expected 
to be infected in the long run.

Value of the threshold τ0. The definition of the basic reproduction number as the expected number of sec-
ondary infections induced by a single infected host, leads us to an intuitive idea the threshold has to be one. This 
is because when an infected node infects at least one other node, then only we can expect the infection to spread. 
In the following we give a mathematical reasoning for this intuitive idea.

We consider a function f to be defined as
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Therefore, a solution exists for f(λ) =  0, and hence an endemic equilibrium exists if and only if f(0) >  0 or  
R0 > 1.

Stability of the Infection Free Equilibrium. The infection free equilibrium, as explained above, cor-
responds to a state where the infection disappears in the long run from the network. The epidemic threshold 
condition for this scenario was already seen to be R0 <  τ0 and we also established the value of τ0 to be one. Next 
we consider the impact of a small or a large perturbation on the stability of the infection free equilibrium point. 
Stability on the face of a large perturbation will give us a guarantee that the infection will continue to disappear, 
even if the attack uses a large number of nodes initially. We thus consider the impact of a minor attack (corre-
sponding to a small perturbation – referred to as local stability) and that of a major attack (corresponding to a 
large perturbation – referred to as global stability) on the stability of the infection free equilibrium. A mathemat-
ical proof is provided for the more stronger case of global stability.

Theorem 2. The infection free equilibrium is globally asymptotically stable when R0 <  1.

Proof. Here we prove the global stability of the infection free equilibrium (IFE) using Lyapunov’s method. For 
the total collection of nodes, we have

∑= µ − − δ
=

dN
dt

(S N) I0
j 1

n

j

and so, ∈N S[0, ]0 . Then the domain Γ  =  {(S, E, I, R) | 0 ≤  N ≤  S0} where, E =  (E1, E2, … ., En)T and I =  (I1, I2, … ., In)T,  
is positive time-invariant set for the system (1). A real-valued function L defined on Γ  is selected, which is analo-
gous to the potential function of classical dynamics, which is popularly referred to as the Lyapunov function. The 
function needs to have a non-negative value at all points in tis domain, and for stability at an equilibrium point it 
needs to have a zero value there and its time derivative at nearby points needs to be negative. This corresponds to 
the energy of a system which will dissipate as it approaches an equilibrium point. The choice of L considers the 
transitions for the infectious classes, and in general the ith exposed sub-class and the jth infectious sub-class has 
been taken into consideration. We consider the function
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∑ ∑= γ +





µ + γ





= =
L E I

(10)i 1

n

ij i
j 1

n

ij j

Then at the infection free equilibrium L(IFE) =  0 and otherwise ≠ >L x IFE( ) 0, for all x ∈  Γ . Also, the time 
derivative of L is given as

∑ ∑= γ +





µ + γ





= =

dL
dt

dE
dt

dI
dti 1

n

ij
i

j 1

n

ij
j

which on substitution of values of the derivatives from (1) becomes

∑ ∑ ∑= γ





λ −






µ + γ












+





µ + γ






γ − µ + δ + ν

= = =

dL
dt

p S E ( E ( )I )
i 1

n

ij i
j 1

n

ij i
j 1

n

ij ij i j j

On simplification and cancellation of common terms and also using the value of the rate of infection λ , the 
equation reduces to the following form

∑ ∑ ∑= µ + ν





µ + γ













β γ

µ + ν µ + ∑ γ
−




= = = =

dL
dt

( ) c(S ) p
( )( )

1 Ij
j 1

n

ij 0
i 1

n

i
j 1

n
j ij

j k 1
n

ik
j

where the dummy index in the denominator has been changed to avoid repetition. Replacing the indices i, j and 
k inside the parenthesis with k, i and j respectively, the expression becomes

∑ ∑ ∑= µ + ν





µ + γ













β γ

µ + ν µ + ∑ γ
−




= = = =( )
dL
dt

( ) c(S ) p
( )

1 Ij
j 1

n

ij 0
k 1

n

k
i 1

n
i ki

i j 1
n

kj
j

Using the value of R0 from (8), gives

∑= µ + ν





µ + γ






−

=

dL
dt

( ) (R 1)I
(11)

j
j 1

n

ij 0 j

hence dL/dt <  0 if R0 <  1 and dL/dt =  0 if and only if R0 =  1 or Ij =  0, i.e. at the infection free equilibrium. As such 
the function L is positive definite over Γ  and its time derivative is negative definite. Moreover when R0 >  1, then 
dL/dt >  0 if Ij >  0, which shows that the infection free equilibrium is unstable when R0 >  1. This validates the claim 
that the infection free equilibrium is globally asymptotically stable if R0 ≤  1.                                                                       ◽ 

Next we use numerical simulations on the D-SEIR model to illustrate the fact that the infection free equilib-
rium is both locally and globally stable (asymptotic stability follows because the trajectories approach the equilib-
rium point for large values of time).

Figure 4. Local stability of infection free equilibrium. 
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Starting with an initial population of 100 susceptible nodes and 1 I1 node (for small perturbation – minor 
attack), the system is seen to stabilize to the infection free equilibrium (Fig. 4). Three different values of R0 have 
been used (0.7410, 0.4940 and 0.3705), all of which do not violate the threshold condition of R0 ≤  1. In all the sim-
ulated cases, a total of three sub-classes have been considered for both the exposed (E1, E2, E3) as well as infectious 
(I1, I2, I3) classes. In Fig. 4, the asymptotic behaviors of the sub-classes I1 and I2 are shown. A difference is observed 
in the two sets of curves, owing only to the fact that they have a different initial infectious value (initially I1 is 1 
and I2 is zero). Behaviorally they are similar behavior because in both cases the final value of I (i.e. I1 and I2) are 
both zero.

Next we consider 50 I1 nodes initially and 10 nodes each of I2 and I3 subclasses (large perturbation). In Fig. 5, 
both I1 and I2 populations are seen to converge to the infection free equilibrium point. This shows the global sta-
bility of the infection free equilibrium for R0 ≤  1.

Stability of Endemic Equilibrium. Theorem 3. The endemic equilibrium is globally stable when R0 >  1.

Proof. We use the geometric approach suggested by Li and Muldowney24 to prove the global stability condition for 
the endemic equilibrium point. Based on this approach, it is known that if the mapping ⊂ →f: D R Rn n, where 
D is an open set, be such that each solution x(t) of the differential equation x′  =  f(x) is uniquely determined by its 
initial value x(0) =  x0, and an equilibrium point ∈x D satisfies the following assumptions

(A1) D is simply connected
(A2) There is a compact absorbing set K ⊂  D
(A3) x is the only equilibrium point in D,

then the global stability of x in D is given by the additional Bendixson criteria

∫= µ <
→∞ ∈

dsq lim sup sup1
t

(B(x(s, x ))) 02
t x K 0

t
0

0

In this criteria, x(t, x0) denotes the solution x(t) determined by the initial point x0, and B is given as

= +
∂
∂

− −B A A A f
x

Af
1

[2]
1

where = ∂
∂

J[2] f
x

[2]
represents the second compound Jacobian matrix given as

=










+ −
+

− +










J
j j j j

j j j j
j j j j

[2]
11 22 23 13

32 11 33 12

31 21 22 33

and A is a matrix-valued function satisfying

Figure 5. Global stability of infection free equilibrium. 
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µ + ≤ − δ <− −(A A AJ A ) 0f
1 [2] 1

on K and μ  denotes the Lozinskii measure, given as

µ =
+ −

→ +
(M) lim

I hM 1
hh 0

for an N ×  N matrix M.
Now the existence of a compact set that is absorbing in the interior of Γ  follows from the uniform persistence 

of the system, where it can be shown that

> > > > .
→∞ →∞ →∞

S t c E t c I t c clim inf ( ) , lim inf ( ) and lim inf ( ) for some 0i
t t t

j

The proof for the Bendixson criteria <q 02 , can be enumerated in the form of the following steps:

(1) Jacobian of reduced system: The reduced system obtained by neglecting the recovered class, which is possible 
because of its non-involvement in the dynamics of the other classes, is given as

∑

∑

= µ − − λ

= λ −





µ + γ






= …

= γ − µ + δ + υ = …

=

=

dS
dt

(S S) S

dE
dt

p S E ; i 1, 2, , n

dI
dt

E ( )I ; j 1, 2, , n

0

i
i

j 1

n

ij i

j

i 1

n

ij i j j

where λ = ∑ β= Ic(N)
N j 1

n
j j

Then the Jacobian matrix of the reduced system is given as

=










−µ − λ 
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D D D
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32 33

where
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D32

11 21 n1
12 22 n2

1n 2n nn

= − µ + δ + ν − µ + δ + ν … − µ + δ + νD diag[ ( ), ( ), ( )]33 1 2 n

(2) Second Compound Matrix of the Jacobian: For the Jacobian matrix of the reduced system obtained above, the 
second additive compound matrix is given as
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=
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(3) Definition of matrix B in the Bendixson Criteria: We consider a diagonal matrix A defined as

=











A(S, E , I ) diag 1, E

I
, E

Ii j
i

j

i

j

considering in general the ith exposed sub-class and the jth infectious sub-class. If f denotes the vector field of the 
system, then
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using these two matrices, gives the block matrix
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(4) Lozinskii Measure of matrix B: The Lozinskii measure for matrix B can be estimated as

µ ≤ g(B) sup{ , g }1 2

where g1 and g2 are defined as
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here the Lozinskii measure μ  is with respect to the vector norm defined as

= +(u, v, w) sup{ u , v w }

while the Lozinskii measure μ 1 is with respect to the l1 norm and the norms of matrices B12 and B21 are also 
obtained with respect to the l1 vector norm.
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and so from the reduced set of equations,
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using these values in the equations for g1 and g2, gives

= −µ − λ +
′

g E
E1

i

i

and

= −µ − λ + λ +
′

g p E
E2 i

i

i

so, the Lozinskii measure of matrix B becomes

µ ≤

≤
′
− µ − λ + λ

(B) sup{g , g }

E
E

sup{0, p }

1 2

i

i
i

which finally gives

∫ µ ≤ − µ + λ < − µ + λ <
1
t

(B)dt log E (t) ( ) 1
2

( ) 0
0

t
i

for all (S(0), Ei(0), Ij(0)) in the absorbing set, where the bound on the sizes of the classes are implied by the uni-
form persistence of the system.

Hence it is shown that the additional criterion <q 02  is also satisfied and thus the endemic equilibrium is 
globally stable. This condition also itself proves the local stability of the endemic equilibrium24.                    ◽ 

Numerical simulations are once again used to clearly illustrate the situation in a phase plane. In Fig. 6, it is 
shown that for a value of R0 =  1.1116 (which exceeds the threshold value), there exists a stable endemic equilib-
rium point at (S*  =  94.6992, E1*  =  2.0738, E2*  =  1.0371, E3*  =  0.3456, I1*  =  0.2592, I2*  =  0.2304, I3*  =  0.2034, 
R*  =  0.4575). The figure shows the phase plane formed by the variables S (susceptible class) and I1 (first infectious 
sub-class). The trajectories are seen to asymptotically approach the stable endemic equilibrium point. The equi-
librium point is unique and globally stable in the entire phase plane, as can be clearly seen.

In Fig. 7, the stability condition is verified using the phase plane formed by the variables S (susceptible class) 
and E1 (first exposed sub-class). In this case, the equilibrium point is observed to be (S*  =  65.6816, E1*  =  13.4289, 
E2*  =  6.7145, E3*  =  2.2378, I1*  =  1.6786, I2*  =  1.4921, I3*  =  1.3166, R*  =  2.9623) and can be seen to be globally 
asymptotically stable. Here, each of the trajectories assumes initially 10 infective nodes in the population.
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In the next section, experiments are performed for both real and synthetic data to explore the validity of the 
proposed model.

Numerical Simulations
In the previous section we obtained a threshold condition defined in terms of the basic reproduction num-
ber. Conditions for the infection to disappear with time or to persist into an endemic were also highlighted. 
Experiments through simulations were already used to verify the results as they were analytically obtained in sec-
tion 4. In this section we perform some more experiments, mainly to bring forth the impact of the classification 
into sub-classes that was suggested in the model. We first perform the experiments with a real network dataset. It 
shows that the results can be generalized and applied to networks, with varying underlying topology.

Real network data. The experiments on real network datasets which includes an AS (autonomous systems) 
graph instance containing AS-level connectivities inferred from the Oregon route-views. Three datasets are used- 
peer.oregon.010331, peer.oregon.010414 and peer.oregon.010505, which are available online at http://topology.
eecs.umich.edu/data.html. The datasets contain pairs of interconnected ASs according to the Oregon route-views 
of a given collection date. The total number of undirected edges in the resulting AS graph for the three datasets 
were 22002, 22469 and 22607 respectively.

In the experiments three situations are explored:

Figure 6. Global stability of endemic equilibrium point when R0 > 1 depicted in S − I1 phase plane. 

Figure 7. Global stability of endemic equilibrium point when R0 > 1 depicted in S − E1 phase plane. 

http://topology.eecs.umich.edu/data.html
http://topology.eecs.umich.edu/data.html
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•	 No classification: Spread of infection on the network without any classification (with an infection of every 
fifth susceptible node encountered and a recovery of one node after every 10 units of time).

•	 No prevention: Spread of infection on the network with classification into two kinds of attack (one with 
infection as earlier and the other for every susceptible node encountered; the recovery remains same).

•	 D-SEIR model (with prevention): Spread of infection on the network with classification and prevention of 
more severe attack (infection same; recovery of critical class is one node for every time unit, and for other 
class it is every fifth time unit).

The results are shown in Fig. 8. The third case is clearly seen to have the least infection value once the network 
stabilizes. For all the three datasets, initially 20 nodes were randomly selected to spread the infection. The asymp-
totic values were plotted in each of the cases.

Simulative experiments. The experiments performed in this section are based on the following 
assumptions:

Attack and defence categories. Three abstract categories of attacks have been considered – strong, medium and 
mild. Analogously the defence mechanism is also considered to be of three types – strong, moderate and weak. 
Three classes have been assumed in the model for the exposed (E1, E2, E3) and infectious (I1, I2, I3) populations. It 
is also assumed that the first class in the model is equipped with a strong defence system, the second class with a 
moderate defence and the third class with a weak defence.

Variable parameters. The parameter values are assumed to be variable. This makes it possible to quantitatively 
analyze more realistic scenarios with respect to the interaction between the attacking and defence mechanisms. 
The attacking scenario is represented through a variable probability of infection (pi), whose characterization is as 
shown in Fig. 9. From the figure, it can be seen that:

•	 A strong attack takes effect instantaneously, i.e. it spreads at a very fast rate and infects as many systems, as 
quickly as possible. It has a large impact for a long duration. It then slowly starts to lose its effect, because of 

Figure 8. Performance of the D-SEIR model on the Oregon datasets. 

Figure 9. Characterization of Attack Categories. 
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various reasons like network congestion, or inability of the scanning algorithm to further detect more vul-
nerable systems.

•	 A medium attack begins with a lesser impact compared to a strong attack. It then spreads but again to a com-
paratively smaller scale. It also takes greater time to reach its peak stage, and also spends relatively lesser time 
in this stage. Both the strong and medium attacks have been characterized using trapezoidal functions, but 
with different slopes, peak values and time spent at the peak.

•	 Mild attacks have been characterized using a two step decreasing function. This allows us to consider a very 
less starting impact, which subsequently becomes negligible.

The characterization of the defense scenario is shown in Fig. 10. Here the modeled parameters are γ i where the 
value i =  1 represents a strong defense, i =  2 represents a moderate defense while i =  3 represents a weak defense 
scenario.

Impact of D-SEIR model. Next we consider 27 possibilities arising from our consideration of 3 attack types 
and 3 defense types for 3 classes. This number will change depending on the actual considerations. In Fig. 11(a), 
a strong attack has been considered in the first class (shown by a 1 as the first element in the attack triplet). 
Consequently greater and faster spread of infection is observed in class 1. In Fig. 11(b), it can be seen that even a 
strong attack is not able to survive when the D-SEIR model uses a strong prevention.

It is thus clear that a distributed defense is able to change the course of even a very strong attack.

Figure 10. Characterization of Defense Categories .

Figure 11. (a) Dynamical behavior of system for a strong attack in class 1 (b). Impact of Model on Dynamical 
Behavior of System for a Strong Attack in Class 1



www.nature.com/scientificreports/

17Scientific RepoRts | 6:28289 | DOI: 10.1038/srep28289

Conclusion
Epidemic studies are known to provide important insights on network epidemics. Various kind of information 
may be obtained including the scale and long-term behavior of an attack. Epidemic models however still do not 
use available information to improve the model performance. In this paper, the utility of including available infor-
mation in controlling the spread of a network epidemic was explored. A 1-n-n-1 type differential epidemic model 
has been proposed and analyzed to see the improvement in quality of an epidemic system. An overall epidemic 
architecture is also suggested that can be useful in providing a more practical utility to the epidemic models. An 
epidemic threshold of the system was obtained which clearly demarcated the long-term behavior of a network 
epidemic into two exhaustive classes, one with persistent infection and the other without any infection. An anal-
ysis of real network datasets also revealed a better performance for the model in controlling an epidemic when 
compared to previous models. Simulation based experiments allowed us to perform generalized scenario based 
experiments, which again corroborated the analytical findings. In future, the model can be extended to deal with 
different specific network topologies.
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