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Capacity of very noisy 
communication channels based  
on Fisher information
Fabing Duan1, François Chapeau-Blondeau2 & Derek Abbott3

We generalize the asymptotic capacity expression for very noisy communication channels to now 
include coloured noise. For the practical scenario of a non-optimal receiver, we consider the common 
case of a correlation receiver. Due to the central limit theorem and the cumulative characteristic of 
a correlation receiver, we model this channel noise as additive Gaussian noise. Then, the channel 
capacity proves to be directly related to the Fisher information of the noise distribution and the weak 
signal energy. The conditions for occurrence of a noise-enhanced capacity effect are discussed, and the 
capacity difference between this noisy communication channel and other nonlinear channels is clarified.

It is well known that, for an additive Gaussian noise channel and an energy constrained input signal, the channel 
capacity can be explicitly calculated1–4. In practical applications, however, communication systems frequently 
encounter non-Gaussian noise environments, for instance, underwater acoustic noise and low-frequency atmos-
pheric noise5–7. Of all channels with power-constrained noise, the capacity of a Gaussian channel is the small-
est1–4. Thus, the capacities of non-Gaussian channels are of great interest5–15. Moreover, from theoretical and 
practical viewpoints, a very interesting topic is the investigation of the channel capacity with very weak input 
signals, e.g. deep space communication channels2,9 and qubit depolarizing channels15. A very noisy channel was 
introduced by Reiffen8, and extended by Gallager2 and Majani9 to model many physical communication channels 
operating at very low signal-to-noise ratio (SNR). “Very noisy” channels with very low capacity are of significant 
interest to communications, since Shannon’s theorem guarantees reliable communication as long as the capacity 
is nonzero1–4,9,16. Following the approaches developed in2,8,9 and using a power series of characteristic functions, 
Nirenberg5 derived a simple formula of the capacity for the coherent threshold channel with an optimum receiver. 
For memoryless channels with very weak inputs, Kullback10, Verdú11 and Prelov12 explicitly expressed the asymp-
totic expressions of the channel capacity closely related to the Fisher information matrix. Recently, Kostal and 
Lansky14 presented an approximate expression for the information capacity in a broad class of discrete-time chan-
nels under the constraint of vanishing input amplitude or power, which allows us to analyse the capacity of chan-
nels with memory in a convenient way13,14.

In this paper, under the assumption of low SNR, we will further derive the capacity of a very noisy communi-
cation channel, wherein the optimum receiver may be unavailable and noise is not restricted to be white. Based on 
the central limit theorem, we argue that, for sufficiently large observation times and with the constraint of weak 
signal energy, the receiver output tends to be Gaussian distributed, and the channel capacity is then computed 
by a simple formula being directly related to the Fisher information of the noise distribution. We demonstrate 
the enhancement of capacity via stochastic resonance will not occur in very noisy communication channel with 
an optimum receiver, but it can occur with generalized correlation receivers suited for practical implementation. 
Finally, we compare the asymptotic capacity expressions of this noisy communication channel with other capacity 
formulas in refs 10–14.

Results
Channel capacity for coloured noise.  For the M-ary communication channel shown in Fig. 1, the obser-
vation data vector X contains the additive noise vector Z and the signal vector Sm, = m M1, 2, , . With the 
assumptions of white noise and very low SNR, Nirenberg5 derived the capacity for the coherent threshold channel 
with an optimum receiver. We briefly present the conclusions of ref. 5 for reference (see Methods). However, the 
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idealized assumption of white noise is unpractical, and the coloured noise has practical significance2–4. We here 
further derive a general asymptotic expression of the channel capacity for coloured noise, which applies to not 
only the optimum receiver but also an arbitrary correlation receiver.

In the case of coloured noise and for very low SNR, the conditional probability function can be expanded to 
the first order
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mZ . Here, from an 

information theory point of view by Reiffen8 and Gallager2, the module Γ s x( , ) 1m  indicates the channel is 
very noisy in the sense that the channel output is almost independent of the input. For M equiprobable signals Sm, 
the receiver takes the maximum likelihood rule

> ≠f f k mx s x s( ) ( ), ( ) (2)m k

to optimally choose mth signal5,17. Substituting equation (1) into equation (2), the optimum receiver

Γ > Γ ≠k ms x s x( , ) ( , ), ( ) (3)m k

enables us to decide if the mth signal was transmitted. For clarity, we state that the statistic Γ​(sm, x) and the max-
imum likelihood decoding rule of equation (2) compose an optimum correlation receiver. The channel output is 
the decoding signal ωm of the receiver, as shown in Fig. 1.

Then, supposing the zero-mean ES(s) =​ 0 and extending the very noisy vector channel Γ s x( ( , ) 1)m
2,5,8,9, 

the mutual information between the input signal space Φ and the channel output space Ω is given by
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where the Fisher information matrix of the noise distribution is defined as3,7

= ∇ ∇ .f f fJ z z( ) E [( ln ( ))( ln ( )) ] (5)
T

Z Z Z Z

It is noted that J(fZ) is also called the Fisher information of a location parameter or the shift-invariant Fisher 
information3,6,7,18, which can be viewed as a special case of the Fisher information measuring the statistical infor-
mation contained in data about an unknown parameter. Therefore, with the energy constraint of ES(sTs) ≤​ ε and 
for the standardized vector =u s s s/ E ( )T

S , the channel capacity can be expressed as
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where Λ​ is the largest eigenvalue of the matrix J(fZ) and u takes the corresponding eigenvector.
For positive definite matrixes A, ∈ ×B N N  and an arbitrary column vector ∈X N , the inequality 

XT(A −​ B)X ≥​ 0 is abbreviated as A B. Then, for the positive semidefinite matrix
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and the noise covariance matrix ∑Z =​ EZ(zzT), we have
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T T

Z Z Z Z Z Z Z
1 1

where the equality occurs for N-dimensional Gaussian distribution π∑ ∑= − −f z z z( ) exp( /2)/ (2 ) det( )T N
Z Z Z

1  
with its Fisher information matrix ∑= −fJ( )Z Z

1. Thus, equation (7) indicates the maximum eigenvalue of ∑−Z
1 is 

Figure 1.  Mutual information I(Φ, Ω) of the communication channel and I(Φ, Ψ) of the nonlinear channel. 
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less than that of Fisher information matrix of non-Gaussian noise. This result extends the conclusion of equa-
tion (36) by Nirenberg5, and also confirms that, in terms of the channel capacity, zero-mean Gaussian noise is the 
worst case given that the noise vector has a fixed covariance matrix3,4.

However, we note the channel capacity of equation (6) is achieved by the optimum receiver of equation (3). 
In many practical cases, the optimum receiver may be not implementable for the unknown noise distribution or 
the non-closed form of distributions (e.g. α-stable noise19). Thus, we further consider the generalized correlation 
receiver
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1 2  and the function g(x) is not restricted to be memoryless. 
For the zero-mean vector of EZ[g(z)] =​ 0 (for a shift in mean)6 under fZ and for very low SNR, g(x) can be 
expanded to the first-order
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1 . Then, we argue that, for sufficiently large observation times and 

with the constraint of weak signal energy, the receiver output tends to be Gaussian distributed, and the capacity 
can be approximately calculated as
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where Λ​g is the largest eigenvalue of the matrix ∇ ∇−g gz V zE [ ( )] E [( ( )) ]T
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1  and the equality occurring for = −∇g fx x( ) ln ( )Z . This inequal-
ity (13) indicates that the eigenvalue Λ​ of J(fZ) is not less than the eigenvalue Λ​g of the matrix 
∇ ∇−g gz V zE [ ( )] E [( ( )) ]T

Z Z
1 . Therefore, based on equations (6), (11) and (13), we find

≤C C, (14)g

which extends the conclusion of ref. 5 to the case of coloured noise. In addition, the equality in equation (13) also 
demonstrates the receiver of equation (8) is optimal when = −∇g fx x( ) ln ( )Z , i.e. the optimum receiver of 
equation (3).

We argue that the asymptotic capacity expression of equation (11) has a broader applicability for an arbitrary 
correlation receiver operated in coloured or white noise environments. As a simple check for the consistency of 
the results from equation (11) to equation (14), we consider the case of white noise. Immediately, due to the sta-
tistical independence of g(z), the expectation matrices ∇ = ′g g zz IE [ ( )] E [ ( )]zZ  and V =​ Ez[g2(z)]I. Here, the 
derivative g′​(z) =​ dg(z)/dz and I is the unit matrix. Therefore, the matrix ∇ ∇−g gz V zE [ ( )] E [( ( )) ]T

Z Z
1  in equa-
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where the eigenvalue Λ​ =​ J(fz) corresponds to the Fisher information matrix J(fZ) in equation (6). Using the 
Cauchy-Schwarz inequality and integration by parts ′ = − ′ ≤g z g z f z f z g z J fE [ ( )] E [ ( )( ( )/ ( ))] E [ ( )] ( )z z z z z z

2 2 2 , 



www.nature.com/scientificreports/

4Scientific Reports | 6:27946 | DOI: 10.1038/srep27946

and the equality in equation (15) occurs when = − ′g z f z f z( ) ( )/ ( )z z  that specifies the optimum receiver in the 
presence of white noise5.

Conditions for noise-enhanced capacity.  Since the emergence of the concept of stochastic reso-
nance20, the employment of noise in enhancing the performance of nonlinear systems has become an interesting 
option13,14,21–36. Initially, the mechanism of stochastic resonance manifests itself as a time-scale matching condi-
tion for the noise-induced characteristic time of systems and the signal period20,27. Later, the notion of stochastic 
resonance has been widened to a number of different mechanisms, e.g. aperiodic stochastic resonance22 and 
suprathreshold stochastic resonance31. For such stochastic resonance effects22,31, there is no matching time-scale 
that corresponds to the input aperiodic or information-carrying random signal, but the system performance still 
reaches a maximum at an optimal non-zero noise level. Therefore, the noise-enhanced effect, instead of stochastic 
resonance, becomes a more appropriate term for describing the enhancement effect of system responses via the 
addition of noise. Here, if the channel capacity reaches a maximum at an optimal non-zero noise level, then the 
noise-enhanced capacity effect occurs. Otherwise, upon increasing the noise level, the channel capacity mono-
tonically decreases, this is to say, the noise-enhanced capacity effect does not exist.

There are two approaches for varying the noise in stochastic resonance. One is tuning the noise level but not 
changing the noise type, and the other is adding extra noise to a given noisy signal, while the extra noise type may 
be different form the original one. Next, we will demonstrate the occurrence or nonoccurrence condition of the 
noise-enhanced capacity effect by the above mentioned methods.

First, we will prove that no noise-enhanced capacity effect exists for tuning the scaled noise level in an opti-
mum receiver. For the scaled noise vector Z =​ DZn, the covariance matrix ∑Z can be factored as ∑Z =​ DDT and 
the standardized noise vector Zn has a covariance matrix being the unit matrix =z z IE( )n n

T 7. A well-known scal-
ing property of the Fisher information matrix is7,18,37–40

= − −f fJ D J D( ) ( )( ) , (16)
T

Z Z
1 1

n

which implies the largest eigenvalue Λ​ of J(fZ) is a monotonically decreasing function of Λ​n/det(∑Z) for the deter-
minants det2(D) =​ det2(DT) =​ det(∑Z). Here, the largest eigenvalue of fJ( )Zn

 is Λ​n that is a fixed quantity for Zn. 
For such a channel with its optimum receiver, equation (11) indicates the channel capacity ε ∑≈ ΛC /det( )n Z

1
2

 
monotonically decreases as the noise intensity increases. Thus, no noise-enhanced capacity phenomenon will 
occur by tuning the noise level.

For instance, we consider a threshold receiver based on the function g(x) =​ sign(x) and the Laplacian white 
noise with its distribution σ σ= −f x x( ) exp( 2 / )/( 2 )z . We note that the threshold receiver is optimum for 
the Laplacian noise, and = = − ′g x x f z f z( ) sign( ) ( )/ ( )z z  satisfies the equality condition in equation (15). In this 
case, the channel capacity in equation (15) can be calculated as ε ε σ≈ =C J f( ) /z

1
2

2, which monotonically 
decreases as the noise level σ increases. Thus, there is no noise-enhanced capacity effect.

Secondly, we usually have a given signal corrupted by noise, and the initial noise level is unadjustable. We 
will prove that the addition of extra noise cannot further improve the channel capacity achieved by the optimum 
receiver. Under this circumstance, we add an extra noise vector W, independent of Z and Sm, to the observation 
X, and the updated data vector is

= + + = +
∼X Z W S U S , (17)m m

where the composite noise vector U =​ Z +​ W with its distribution fU. In this case, we should employ the statistic 
Γ = −∇ fs x x s( , ) ( ln ( ))m

T
mU  to specify the optimum receiver, and the corresponding capacity is then given 

by

ε= Λ
∼

C 1
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with the largest eigenvalue Λ
∼

 of the Fisher information matrix J(fU). For any nonsingular matrix ∈ ×A N N , the 
Fisher information matrix inequality3,37–40 holds for
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we then find the largest eigenvalue Λ​ of J(fZ) is not less than the largest eigenvalue Λ
∼

 of J(fU) and

≤ .C C (20)

This result of equation (20) clearly shows that stochastic resonance cannot further improve the channel capac-
ity achieved by the optimum receiver, regardless of adding white or coloured noise vector W.

Thirdly, we note that the above two negative conditions of the noise-enhanced capacity effect arise with the 
optimum receiver matched to the distribution of the background noise. By Contrast, if the generalized correlation 
receivers of equation (8) are not optimal for the background noise, stochastic resonance may play an important 
role in the enhancement of capacity. For example, we consider non-scaled Gaussian mixture noise vector W with 
its distribution6,21,28,33
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where the variance σ µ ζ= +w
2 2 2 and parameters μ, ζ ≥​ 0. A useful coloured noise model of the first-order 

moving-average41 as

ρ ρ= + +− +Z W W W , (22)n n n n1 1 2 1

where the correlation coefficients are ρ1,2 and = W W WW [ , , , ]N
T

1 2  is an independent identically distributed 
(i.i.d.) random vector. For small values of ρ1,2 ρ| | ( 1)1,2 , the dependence among noise samples Zn will be weak41. 
The signum function g(x) =​ sign(x) is adopted to construct the generalized correlation receiver of equation (8), 
which is not optimal for the coloured noise Z. The optimum receiver indicated in equation (3) for the coloured 
noise Z is rather complicated, since the distribution fZ does not have a tractable analytic expression41. Using the 
approach developed in ref. 41, we have the expectation matrix

∇ ≈ ′g g wz IE [ ( )] E [ ( )] , (23)WZ
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where the error function ∫π= −x t dterf( ) 2/ exp( )x

0
2 . In Fig. 2, we show the capacity per signal energy 

Cg/ε =​ Λ​g/2 in equation (11) versus the noise parameters μ and ζ in equation (21). Here, the correlation coefficient 
ρ1 =​ 0.2 and ρ2 =​ 0 in the coloured noise model of equation (22). We regard the parameters ±​μ as the peak loca-
tions of the Gaussian mixture distribution in equation (21), while the parameter ζ as the noise level. It is then 
clearly shown in that Fig. 2, upon increasing ζ for a fixed value of μ (the noise variance σw

2 also increases), the 
noise-enhanced capacity effects exist. The corresponding maxima of Cg/ε versus optimal values of ζ are also 
marked by squares in Fig. 2.

We emphasize that the above noise-enhanced capacity effect is an illustrative case of stochastic resonance 
that exists for a suboptimal receiver not matching the background noise. However, this mismatch condition is 
not the decision criteria for the occurrence of the noise-enhanced effect, since the example illustration is under 
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Figure 2.  Stochastic resonance effect of the capacity per signal energy Cg/ε = Λg/2 in equation (11) versus 
the noise parameters μ and ζ in equation (21). Here, the correlation coefficient ρ1 =​ 0.2 and ρ2 =​ 0 in the 
coloured noise model of equation (22). The corresponding maxima of Cg/ε versus optimal values of ζ are also 
marked by squares.
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the assumptions of a small signal and a correlation receiver with a large observation size. Beyond these restrictive 
assumptions, the noise-enhanced effect has been frequently observed21,24,25,28–31. For instance, the noise-enhanced 
effect has been demonstrated for non-weak signals in threshold neurons25,29,31, where an optimal matching condi-
tion is inapplicable to the neuronal model immersed in complex noisy environments. It is sufficiently recognized 
that a well-established criterion for the noise-enhanced effect is to observe an optimal noise level at which the 
system response can be optimized.

Discussion
In this paper, we analyse the capacity of a very noisy communication channel with correlation receivers. With the 
weak signal energy constraint and for very low SNR, we generalize an asymptotic expression of capacity achieved 
by the optimum receivers in a coloured noisy environment. Moreover, for the case when the optimum receiver 
is unavailable in practice, a capacity formula is presented for the communication channel with a generalized 
correlation receiver. We further discuss the occurrence condition of the noise-enhanced capacity effect in the 
considered communication channel.

A similar asymptotic expression of capacity is also obtained in memoryless10,11 or memory additive-noise 
channels12–14. We emphasize the asymptotic capacity expressions of equations (6) and (11) are different from that 
in previous literature10–14. In Fig. 1, for the channel output Y =​ g(X), these studies assume the conditional proba-
bility density as fY|S(y|s). Then, the Fisher information matrix is defined as10–14
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Y S Y S S Y S S Y S
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. Then, for the zero-mean signal vector ES(s) =​ 0 and the weak signal 
energy ε, the mutual information between the input space Φ and the output space Ψ is approximated as10–14

Φ Ψ ≈
=

I fs J s( , ) 1
2

E [ ( ) ], (28)
T

S Y S s 0

which is different from the mutual information I(Φ, Ω) of equation (4) based on the Fisher information matrix 
J(fZ) of the noise distribution fZ. It is shown in Fig. 1 that the receiver multiplies nonlinear transformation g(x) 
with optimized coefficients, and obtains a cumulative statistic Tm that decides whether the mth signal Sm is sent 
or not. Then, the considered communication channel chooses an optimal signal Sm from the signal space to max-
imize the average mutual information. Since the receiver collecting the weighted nonlinear outputs as the statistic 
=T gc x( )m m

T , and for any nonlinear function g, the distribution of Tm tends to be Gaussian. This leads to the 
asymptotic expressions of capacity of equations (6) and (11). We recognize the asymptotic capacity expressions in 
equations (6) and (11) have application in the context of a very noisy communication channel with a correlation 
receiver. As a new analytical result of the channel capacity, it has theoretical significance and deserves some 
exposition.

We also note that, for the linear transfer function of Y =​ Z +​ S, the conditional probability density 
fY|S(y|s) =​ fZ(y −​ s), the Fisher information matrix of equation (27) becomes

= ∇ − ∇ − = ∇ ∇ =f f f f f fJ y s y s z z J( ) E [( ln ( ))( ln ( )) ] E [( ln ( ))( ln ( )) ] ( ), (29)
T T

Y S Y S S Z S Z Z Z Z Z

where the differentiation operator ∇ with respect to S is equivalent to differentiation with respect to Z3. Therefore, 
for the linear additive-noise channel, the considered communication channel has the same capacity as that 
denoted in refs 10–14.

Besides a linear channel capacity defined and calculated by Shannon1, only a few analytical results exist for a 
variety of different nonlinear channel models. We argue that our asymptotic capacity expression for a nonlinear 
channel may be valuable for practical channels and coding techniques developed for communication applications 
in order to approach the established linear Shannon limit, and deserves further extensive study. We here only 
consider a single correlation receiver for detecting the weak signal, however recent studies in general provide evi-
dence that, besides an optimal noise intensity, an optimal network configuration exists, at which the best system 
response can be obtained22,31,42–46. Thus, an interesting extension for future work is to investigate the capacity of a 
very noisy communication channel with receivers connected in various network configurations.

Methods
Very noisy communication channel model.  Consider a coherent M-ary communication channel trans-
mitting M possible signals Sm for = m M1, 2, , , as shown in Fig. 1. In an interval, the observation vector

= +X S Z, (30)m

where = X X XX [ , , , ]N
T

1 2  contains the noise vector = Z Z ZZ [ , , , ]N
T

1 2  and the signal vector 
= S S SS [ , , , ]m m m mN

T
1 2 . Then, a receiver multiplies the transformation g(X) with optimized coefficients, 

resulting in a cumulative statistic Tm(X) for deciding whether the mth signal Sm is sent or not. The capacity C of a 
communication channel is given by the maximum of the mutual information I(Φ, Ω) between the input signal 
space Φ and the channel output space Ω

Φ Ω=C Imax ( , ),
(31)f S

where the maximization is with respect to the input distribution fS over the signal space Φ1–5.
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Nirenberg’s approach for white noise.  The white noise Z has the multivariate distribution 
= ∏ =f f zz( ) ( )n

N
z nZ 1  with zero-mean and variance σz

2. Let the statistically independent signal components be 
constrained to satisfy ε≤smn n

2 , and the total signal energy has a constraint ε ε∑ ≤ ∑ == =sn
N

mn n
N

n1
2

1 . Then, for 
very low SNR of ε σ / 1z

2 , the conditional probability density can be approximated as

∏ ∏ γ| = − = − = − ′ = +
= =

f f f x s f x s f x fx s x s x s x( ) ( ) ( ) [ ( ) ( )] ( )[1 ( , )]
(32)m

n

N

z n mn
n

N

z n mn z n mZ Z
1 1

with the first two terms of Taylor series. Here, ′ =f z d f z dz( ) ( )/z z  and the statistic γ = −s x( , )m
∑ ′= s f x f x( )/ ( )n

N
mn z n z n1

5. Using the maximum likelihood rule17, the conditional probability density on the knowl-
edge that the mth signal satisfies

> ≠f f k mx s x s( ) ( ), ( ) (33)m k

which leads to the optimum receiver

γ γ> ≠k ms x s x( , ) ( , ), ( ) (34)m k

to decide if the mth signal was sent.
To simplify the mathematical manipulations, Nirenberg5 assumes the even noise distribution function 

fz(z) =​ fz(−​z) and a very noisy channel γ s x( ( , ) 1)m
2,8,9 yielding the mutual information between the output 

space Ω and the input signal space Φ as

∫ ∫

∑

γ γΦ Ω = − 





= −
=

∬I f f d d f f d d

J f s s

x s s x s x x s s x s x( , ) 1
2

( ) ( ) ( , ) 1
2

( ) ( ) ( , )

1
2

( ) [E ( ) E ( )],
(35)z

n

N

s mn s mn

X S X S
2

2

1

2 2

where the Fisher information ∫= ′ = ′J f f z f z f z f z dz( ) E [ ( )/ ( )] ( )/ ( )z z z z z z
2 2 2  of the noise density fz and the expec-

tation ∫⋅ = ⋅f s dsE ( ) ( )s s . Since the same bias ∑ = ∑= =s sE ( ) E ( )n
N

s mn n
N

s kn1
2

1
2  does not affect the decision of ine-

quality of equation (34), it may be conveniently assumed to be zero5. Then, over the class of signal distributions fS, 
the channel capacity is computed as5

∑ε εΦ Ω= = =
=

C I J f J fmax ( , ) 1
2

( ) 1
2

( ) ,
(36)f z

n

N

n z
1S

which is applicable to various white noise types.
Furthermore, for a fixed noise variance σ=zE ( )z z

2 2 and an arbitrary noise density function fz, σ≥ −J f( )z z
217, 

where the equality occurs for Gaussian distribution σ πσ= −f z z( ) exp( / )/ 2z z z
2 2 2  with its Fisher information 

σ=J f( ) 1/z z
27,18,37. Accordingly, the additive Gaussian noise channel is the worst one, and has the minimum 

capacity, as indicated in equation (36). It is well known that, for very low SNR of ε σ / 1z
2 , the capacity of 

Gaussian vector channel is approximately calculated as2–4

∑
ε
σ

ε
σ

=




+





≈

=
C 1

2
ln 1 1

2
,

(37)
G

n

N
n

z z1
2 2

which accords well with equation (36)5.
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