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Rotman Lens-Based Circular Array 
for Generating Five-mode OAM 
Radio Beams
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Recently, vortex beam carrying orbital angular momentum (OAM) for radio communications has 
attracted much attention for its potential of transmitting multiple signals simultaneously at the 
same frequency, which can be used to increase the channel capacity. However, most of the methods 
for getting multi-mode OAM radio beams remain up to now mainly at simulation level, since their 
implementations are of complicated structure and very high cost. This paper provides an effective 
design of generating five-mode OAM radio beams by using the Rotman lens-fed antenna array. The 
Rotman lens is a viable beamforming approach instead of electronically scanned arrays for its low cost 
and the ease of implementation. The lens-fed array employs a two-layer structure for size reduction, 
and the lens body and the antenna array are segregated by a common ground plane to eliminate 
spurious radiation and thus improve the performance of the OAM beams. The measured results coincide 
with the simulated ones, which verified the effectiveness of the proposed design for generating multi-
mode OAM beams.

Nowadays, the majority of the human information is transmitted through wireless channels and the 
fast-increasing mobile devices have led to congestion in the precious radio spectrum resource even after the 
application of many techniques showing the ability for increasing the spectral efficiency, such as orthogonal 
frequency-division multiplexing (OFDM)1. So recently, orbital angular momentum (OAM) for radio communi-
cations has attracted much attention, since it shows potential of transmitting multiple signals simultaneously at 
the same frequency, which can be used to increase the channel capacity and utilize the radio spectrum with very 
high efficiency2.

An electromagnetic wave radiates energy as well as angular momentum (AM)3. The angular momentum is 
composed of spin angular momentum (SAM) describing the polarization state and orbital angular momentum 
(OAM) relating to the helical phase structures. Since SAM has been widely used starting around 1935 when it was 
experimentally demonstrated by Beth4, OAM is not fascinating until Allen et al. investigated in 1992 that beams 
with helical wave fronts comprise an azimuthal phase term θiexp( ) and have an OAM of   per photon (where  
is topological charge, θ is the azimuthal angle)5. At first, the applications of OAM have mostly been within the 
optical regime, and by introducing OAM, the capacity of optical communication systems is largely extended6,7. It 
was not found until very recently that the photon OAM can be used in the low frequency radio domain and is not 
restricted to the optical frequency range8. From that moment on, many optical methods were introduced to give 
rise to OAM-carrying radio beams, such as dielectric or FSS spiral phase plate9–11, spiral reflector12, twisted para-
bolic reflector13–15 and the plane reflectarray16; in all these methods, the fixed-mode OAM wave is obtained by a 
transformation of the plane wave or spherical wave. Another common solution in microwave domain relies 
mainly on the circular arrays17–21, and the element is fed with the uniform amplitude but with a successive phase 
difference. At lower cost, the shunt-fed and series-fed networks are used to feed the circular arrays respec-
tively17–19, both of which generate the single-mode OAM waves. To get multi-mode OAM beams, the concept of 
phased array antenna is introduced to feed the elements with variable phases20,21; however, this method has 
remained up to now mainly at simulation level, since the phased array system is usually very complex and of high 
cost. So instead, a Butler matrix is proposed as feed network of the circular array to generate multi-mode OAM 
beams22, but the design and architecture are also very complicated and composed of many couplers and phase 
shifters, which restrict it to the initial exploitation stage of the simulation.
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In this work, a two-layer Rotman lens-fed antenna array is introduced to generate five-mode OAM radio 
beams. Through the integrated implementation of the multilayer lens-fed antenna array, a viable solution is 
obtained for the generation of multi-mode OAM radio beams. The lens-fed array has the advantages of low 
cost and ease of implementation and integration with available fabrication technologies for integrated circuits. 
Simulation results and experimental measurements validate the effectiveness of the proposed design for generat-
ing multi-mode OAM beams.

Results
Design method of the Rotman lens-fed array for multi-mode OAM beams.  The overall configu-
ration of the lens-fed OAM array is shown in Fig. 1(a), which consists of two stacked substrate layers. The circular 
antenna array is on the top surface of the upper layer, the Rotman lens is positioned on the bottom surface of the 

Figure 1.  Geometry architecture and design. (a) Proposed two-layer Rotman lens-fed antenna array for 
generating multi-mode OAM beams. (b) Schematic diagram and design parameters of the Rotman lens. (c) The 
designed Rotman lens with five beam ports and nine array ports.

Figure 2.  Configuration of the OAM-generating antenna array for D = 2λ0. (a) Initial array structure 
and the elements placement. (b) Refined array elements placement. (c) Refined array arrangement with 
transmission delay lines.
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lower layer, and a common ground is placed in the middle of the two substrate layers to segregate the direct-radi-
ating array from the lens body and thus eliminate the spurious radiation, which may degrade performance in the 
OAM modes. The signal transition from the lens to the array through the common ground is implemented in the 

Figure 3.  The simulated far-field phase distribution at 7.9 GHz. (a) = − 2. (b) = − 1. (c) = 0. (d) 
= + 1. (e) = + 2.

Figure 4.  Fabricated prototype of the antenna array. (a) Front view and the near-field test scenario in the 
anechoic chamber. (b) Back view.

Figure 5.  Measured S-parameters of the proposed antenna array. (a) Return loss. (b) Isolation of ports.
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form of vias. By employing a two-layer structure, the overall dimension of the lens-fed array is greatly reduced, 
and this method is effective and already widely available23,24.

The Rotman lens is a succinct and efficient method for the broadband microwave beamforming24–28. A general 
layout of the Rotman lens is shown in Fig. 1(b). It has an elaborately designed lens body, formed by the beam arc 
and the inner contour, and suitable transmission delay lines (Wn) from the inner contour to the outer contour 
to produce a phase difference for the successive outputs by the time delay in the wave transmission. Each input 
beam port will excite a distinct linear time delay across the output array ports, so getting different phase differ-
ence needs only to feed a different beam port. In the conventional design of the Rotman lens, there are a series 
of design parameters and formulas to ascertain the focal points F1, F0, F2 and ports positions, including the focal 
angle (α), the ratio of off-axis to on-axis focal length (β), the number of beams and array ports25,27,28.

So far, the Rotman lens is typically designed for linear electronically scanned arrays24–27. In our work, we adopt 
the Rotman lens as feed networks for a circular array to generate multi-mode OAM radio beams. To obtain the 
five-mode OAM radio beams, five beam ports and nine array ports are used to construct the lens, as shown in 
Fig. 1(c); and eight dummy ports are also added to avoid internal reflection. The Rotman lens is designed to oper-
ate at 7.9 GHz in X-band, with a diameter of about 149 mm. The substrate used for the lens is with the dielectric 
constant of 2.55 and thickness of 0.762 mm, and the detailed parameters of the proposed lens are set as follows: 
focal angle α =​ 30°, the ratio of off-axis to on-axis focal length β =​ 0.88, and the array ports vertical spacing is 
0.5λ0. During the operation, the array ports are used to feed the antenna array, the dummy ports are terminated 
with the 50-Ω loads to avoid internal reflection, and each input beam port will produce a constant phase dif-
ference for the successive array ports. When port B1 is excited, an average −​80° phase difference is generated 
successively from array port A1 to A9. For port B2 or B3, the phase difference is −​40° or 0°, correspondingly. 
Based on the symmetrical principle, we can easily derive that the phase difference is 40° or 80° when port B4 or 
B5 is excited.

For an N-element OAM circular array, to get helical wave fronts, the array element should be fed with the 
uniform amplitude but with a successive phase difference for the successive elements, which is φ π∆ =  N2 /
(where  is the topological charge)8,20. In our work, the circular array consists of nine identical rectangular patches 
to joint with the Rotman lens. The circular array was also fabricated on a substrate with the dielectric constant of 
2.55 and height of 0.762 mm, and the array diameter is D =​ 2λ0. The initial array structure and elements place-
ment is shown in Fig. 2(a). The phase increment of the feed-in signal after a full rotation is 360° for the OAM 
modes  =​ +​1 or −​1, and the phase difference for the successive elements is then 40°. For the OAM modes +​2 or 
−​2, the phase shift step is 80° from element to element. In the refined design, we make an inversion for elements 
1, 2, 8, 9 as shown in Fig. 2(b), in order to reduce the mutual coupling between elements, especially for elements 
1 and 2. An additional advantage for this refined array arrangement is that the total size of the lens-fed array can 
also be reduced, since the length of transmission lines for elements 3–7 is set half-wavelength shorter to compen-
sate the additional 180° phase shift introduced by the reversed array elements. The refined array arrangement with 
transmission delay lines is shown in Fig. 2(c). For the transmission delay lines between the lens and array, we 

Figure 6.  Screenshots of the measured near-field phase distributions at 7.9 GHz. (a) = − 2. (b) = − 1. 
(c) = 0. (d) = + 1. (e) = + 2.
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employ straight line instead of the most common bent lines used in Rotman lens to eliminate the spurious radia-
tion and unwanted phase deviations in the immediate changes of the bent sections, which may have performance 
deteriorate in the OAM modes.

The simulated far-field phase distribution of the antenna array is shown in Fig. 3, which is simulated with CST 
Microwave Studio software based on the finite integration technique (FIT) method. It is observed that, the phase 
distributions of the main lobe are of obvious azimuthal angle dependence for ≠ 0, and the changing trends for 
OAM modes with negative and positive  values are in opposite directions.

Experiment results.  To verify the proposed design, the prototype lens-fed array was fabricated by using the 
low-cost commercial printed-circuit-board (PCB) technology, and its measurement is carried out in the anechoic 
chamber, as shown in Fig. 4.

Figure 7.  Measured far-field results at 7.9 GHz. Intensity patterns: (a) = − 2. (b) = − 1. (c) = 0. (d) 
= + 1. (e) = + 2. Phase distribution:(f) = − 2. (g) = − 1. (h) = 0. (i) = + 1. (j) = + 2.
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Figure 5 shows the measured S-parameters, the measured return losses for all five beam ports are higher than 
10 dB at 7.8~8.43 GHz, and the ports isolation are higher than 10 dB at 7.78~8.5 GHz.

The near field distribution of the antenna array is measured with a 3D platform in the anechoic chamber, as 
shown in Fig. 4(a). An open-ended rectangular waveguide is used as the near-field probe, and the measuring 
plane is 180 mm far from the array plane with a scan range of 1080 mm ×​ 980 mm. Figure 6 gives the screenshots 
of the measured near-field phase distribution. Note that, for OAM mode = 0, an annular phase fronts is gener-
ated, which is the typical characteristic for plane or spherical wave; and for OAM mode ≠ 0, the characteristic 
vortex phase fronts indicate that the OAM radio beams are created, and the change in color from green to red, 
blue, and back to green again corresponds to a change in phase of 2π. When comparing the positive and negative 
modes, the phase distribution of = + + 1, 2 has a clockwise increase, while that of = − − 1, 2 would have an 
anticlockwise increase. Since the phase distribution of the OAM beam reveals such a distinctive feature, it is easily 
to determine the OAM mode by analyzing the phase variation. There are also some phase aliasing in Fig. 6, espe-
cially for the singular-phase central areas when ≠ 0, this is mainly due to the limited resolution ratio caused by 
the larger section of the open-ended waveguide. The dislocations in the measured near-field phase distribution 
attribute to the limited positional accuracy of the test system.

The far-field radiations of the array are shown in Fig. 7, which are constructed from the near-field measure-
ment by a two-dimensional fast Fourier transform (FFT) algorithm29. Figure 7(a–e) gives the intensity patterns, 
the doughnut-shaped high-intensity profile is clearly seen, and the on-axis null regions of OAM modes = ± 2 
have a clearly larger size than that of = ± 1. The far-field phase distributions of the array are plotted in Fig. 7(f–j), 
and the vortex-shaped phase distribution is of obvious azimuthal angle dependence.

To further validate the performance of the proposed array, the 2D far-field radiation patterns are measured by 
a standard horn antenna, and the measured results coincide well with the simulated ones as shown in Fig. 8. 
Conical patterns are obtained for OAM modes ≠ 0, and the peak direction of the main lobe for modes = ± 1 
is around 15° from the boresight axis, while the peak direction of modes = ± 2 is around 28°. The maximum 
gain appears on mode = 0, with a measured value of about 14.2 dB; and the array gain decreases as the absolute 
value 


 increases. The on-axis null region is over 20 dB lower than the high-intensity doughnut-shaped region for 

both = ± 1 and = ± 2. The intensity of the cross-polarization field is much lower than that of the 
co-polarization field, and the cross polarization levels are lower than −​25 dB.

Discussion
A two-layer Rotman lens-fed antenna array for generating OAM radio waves is presented. Through the inte-
grated implementation of the multilayer lens-fed antenna array, a viable solution is obtained for the generation 
of multi-mode OAM beams. The lens-fed array has the advantages of low cost and ease of implementation and 
integration with available fabrication technologies for integrated circuits. All these features make the proposed 
antenna a promising candidate for radio communications and radar applications.

Figure 8.  The measured 2D far-field radiation patterns at 7.9 GHz. (a) = − 2. (b) = − 1. (c) = 0. (d) 
= + 1. (e) = + 2.
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Methods
The multi-mode OAM radio beams are generated by using a two-layer Rotman lens-fed antenna array. The 
lens-fed array is manufactured on a 0.762-mm Arlon AD255 substrate using the PCB technology.

The measurement is carried out with a 3D platform in the anechoic chamber based on the Agilent Vector 
Network Analyzer 8722ES, and both intensity and phase distributions of the five-mode OAM waves can be 
measured.
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