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Optical control of filamentation-
induced damage to DNA by 
intense, ultrashort, near-infrared 
laser pulses
J. A. Dharmadhikari1, A. K. Dharmadhikari2, K. C. Kasuba3, H. Bharambe3, J. S. D’Souza3, 
K. D. Rathod2 & D. Mathur2

We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light 
of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma 
formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of 
the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ 
generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce 
nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, 
double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to 
repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under 
different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical 
aperture is the experimental handle that delineates the two regimes, permitting simple optical control 
over the extent of DNA damage.

Due to ready availability of ultrashort pulsed laser sources, investigations of how such pulses propagate through 
transparent media have gained considerable contemporary research interest. The drivers for these investigations 
involve both the basic understanding of the underlying physics1–3 as well as the tantalizing prospects of a plethora 
of applications like remote sensing4,5 and remote control6 of processes that occur in the earth’s atmosphere, broad-
band spectroscopy7,8, modification of materials9–12, and bond-selective chemistry13. Interestingly, the potential 
for applications has, in recent years, begun to infringe upon the domain of the life sciences: experiments have 
been reported in which ultrashort, intense laser pulses have probed the possibility of non-invasively monitoring 
stress-related proteins in human saliva14; such pulses have also become of utility in medical applications like 
dental and eye surgery15. A break in a strand of DNA constitutes damage that can occur either naturally or via 
artificial means. Filamentation-induced damage has recently been demonstrated in biomolecules such as DNA 
kept under physiological conditions16–18. It has been suggested that detrimental dose distributions within tissue 
that are irradiated by gamma radiation - one of the major difficulties in radiotherapy - might be avoided by use 
of femtosecond laser induced filamentation18. This is due to ultrashort laser pulses, particularly in the infrared 
region, being spatially confined to volumes (~125 μm3) that are very much smaller than what is possible to attain 
using contemporary clinical radiation sources. There is some evidence that 800 nm laser pulse induced filamenta-
tion can yield essentially the same radiation dosage in the radiolysis of water as that obtained using very energetic 
γ-radiation19.

Filamentation and supercontinuum generation are spatial and temporal manifestations, respectively, of 
how ultrafast pulses of intense light propagate through matter. Supercontinuum generation is a consequence 
of self-phase modulation (SPM)20,21 in tandem with a complex interplay of a gamut of processes, such as 
ionization-enhanced SPM22, four-wave parametric processes, self-steepening, group velocity dispersion and 
shock waves23–29. At incident power levels in excess of the critical power for self-focusing (typically ~4 MW for 
intense 800 nm light in water, and about three orders of magnitude larger in air) the optical Kerr effect causes the 
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beam to self-focus. Upon reaching a small enough volume, the peak intensity of the self-focused beam can attain 
values that are high enough (~1012 W cm−2) to induce ionization of the medium, thereby creating electrons whose 
negative index contribution leads to defocusing of the beam. Along with diffraction, the dynamic balance that 
is set up leads to a series of focusing-defocusing cycles that enables the incident laser pulse to propagate to dis-
tances very much larger than the Rayleigh range, leaving behind a plasma channel with typical densities as large 
as ~1018 cm−3 being attained. Water molecules are ionized and dissociated within such a plasma channel, giving 
rise to low-energy electrons and OH-radicals16,17. These in-situ particles are utilized by us to probe electron- and 
radical-induced damage to DNA in an aqueous environment with a view to attaining an optical method to control 
the extent of damage that is induced, as described in the following.

In practice, filamentation, or formation of plasma channels, is achieved by externally focusing the incident 
laser beam. Competition between optical breakdown and filamentation in water was first investigated by Chin 
and coworkers30 in experiments that established the possibility of utilizing external focusing conditions to yield 
filamentation without breakdown, breakdown without filamentation, and filamentation with breakdown. Values 
of NA used in these studies spanned the range from 0.034 to 0.231. Theoretical simulations whose results are in 
accord with these experimental findings have subsequently been reported31. The effect of geometrical focusing 
on parameters like filament length within condensed media, such as a BaF2 crystal32 and plasma density in air33, 
has been studied. Very recently, a comprehensive numerical and experimental study was carried out on how fila-
mentation in air can also be altered by the numerical aperture of the external optics34. Values of NA used in these 
studies spanned the range from 0.00085 to 0.011. Two distinct regimes were identified which depend on NA. For 
high values of NA, external (geometrical) focusing as well as plasma effects govern the filamentation dynamics. 
On the other hand, at low values of NA, it is the Kerr nonlinearity - that underpins the self-focusing-defocusing 
cycle referred to above - that dominates filamentation dynamics. The transition value of NA delineates linear and 
nonlinear focusing regimes, with different physical mechanisms dominating the dynamics in the two regimes. 
We explore here the possibility of utilizing external optics to affect the type of damage induced in DNA (SSBs or 
DSBs) and its extent. Our experiments are carried out in water and conducted at an order of magnitude higher 
values of NA than those used earlier. Values of NA used in our experiments spanned the range from 0.015 to 0.09. 
As has been shown earlier16,17, simple considerations of nonlinear absorption of incident laser light fail to properly 
account for the dynamics that drive plasma-mediated DNA damage. The results that we present offer clear indi-
cations that the extent and nature of DNA damage can be controlled optically simply by altering the numerical 
aperture of the external optics. We believe that our results provide a ready handle for optimizing this laser-based 
ionizing source for biological and biomedical applications.

Results and Discussion
We exposed plasmid DNA (pBR322) to plasma channels created in water (in which the plasmids were  
suspended). The extent of resulting damage was quantified using gel electrophoresis. As has already been reported 
by us16,17, formation of bubbles (including microbubbles) accompanies formation of the plasma channel over the 
range of irradiance values achieved in our experiments. In the present experiments, bubbles were clearly visible 
over the range of incident laser energies we used, for all NA values. However, at the lowest laser energies, bub-
bles were not always clearly visible: microbubbles were formed which had to be imaged on a CCD camera using 
a microscope objective. The time evolution of bubble diameter as a function of irradiation conditions follows 
complex dynamics35 and results pertaining to the present experimental conditions will be presented elsewhere. 
Under normal conditions, for a given preparation of plasmid DNA, around 80–99% of DNA are expected to be 
in their usual supercoiled state. A schematic depiction of such supercoiled geometry is shown in Fig. 1a. Between 
1% to 20% of the population is usually found to possess a relaxed, open-circular geometry which results from 
single stand breaks (SSBs) that may be induced by a host of extraneous events (including handling of DNA in 
the course of preparation, interactions with cosmic rays, ultraviolet radiation, oxidizing agents, and such like). 
Our results (Fig. 1b) show that upon irradiation by 800 nm pulses (for up to 180 s) the resulting conformational 
changes are dramatic, with more than 80% becoming relaxed when the shortest focal length lens is used (gener-
ating the highest intensity); more than 50% become relaxed even at the lowest intensity that is obtained when we 
used the longest focal length lens (30 cm). Upon irradiation, less than 5% of DNA plasmids are seen to maintain 
their initial supercoiled structure. As many as 5% become linear. Our observations of the supercoiled →  relaxed 
transformation are in agreement with earlier results obtained in near-IR experiments conducted at considerably 
lower intensity values16; tighter focusing and higher incident energy also permitted the occurrence of DSBs.

We observed that, in the case of 5 cm lenses, only SSBs are induced at incident energy values of 2 μJ. At higher 
energy values, DSBs also manifest themselves in the form of linear DNA, as seen in Fig. 1a obtained after 180 s 
exposure at an energy of 230 μJ. The linearization of DNA is a clear-cut signature of the occurrence of DSBs 
wherein two complementary strands of the DNA are simultaneously damaged. In the cellular context, this is the 
most lethal form of DNA damage, one that might lead to cell death or cancer if left unrepaired36. Within cells 
DSBs can occur due to many factors, such as oxidative damage by free radicals, ionizing radiation like X-rays37 
and UV radiation38. DSBs generally constitute a small percent of the total damage39 but they are, of course, very 
pernicious. DSBs were, until recently, thought to be caused exclusively by high-energy radiation but recent 
work16,17 has shown that both SSBs and DSBs are induced within the laser-induced plasma channels formed in 
water. Thermal effects also induce SSBs, more so when longer laser wavelengths are employed17; however, they 
have no role to play in inducing DSBs.

Plasma formation upon propagation through water of intense (~100 TW cm−2) femtosecond laser pulses has 
been theoretically modeled40 by treating water as an amorphous semiconductor whose band gap is generally 
taken to be 6.5 eV41 although recent work has offered indications that the value is closer to 8 eV42. Ionization of 
water molecules occurs via both multiphoton absorption as well as tunneling; the ionized electrons are further 
accelerated by the optical field - by inverse Bremsstrahlung - before hydration sets in on relatively long time scales 
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(in excess of a few picoseconds). In case of optical breakdown in water electron densities of 1018–1020 cm−3 have 
been deduced40. These low-energy (≤ 5 eV) electrons readily take part in dissociative attachment collisions with 

Figure 1. (a) Gel images obtained after pBR322 plasmid was irradiated with laser light using a 10 cm focal 
length lens. The negative and positive signs above the image panel indicate, respectively, no laser exposure 
and laser exposure for 180 seconds. Also shown are schematic depictions of single strand breaks (SSBs) and 
double strand breaks (DSBs) induced upon laser irradiation. Linear DNA results from DSBs. (b) Dependence 
of the percentage of DNA in supercoiled, relaxed, and linear states on the focal length of the external lens. 
The bars marked “Control” pertain to DNA prior to irradiation. (c) Dependence of the percentage of DNA in 
supercoiled, relaxed, and linear states for focal lengths of 8.5 cm to 12.5 cm. In each case irradiation was for 
180 seconds using 820 nm laser light with the laser energy kept fixed (230 μJ) for different lenses.
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H2O: multiple transient negative ion states are formed within DNA which rapidly decay into damaged struc-
tures19,43–45. In contrast, high energy radiation induces such strand breakages mostly as a consequence of the 
sugar-phosphate backbone being ionized. Thus, femtosecond laser-induced breakdown may be regarded - in a 
loose sense - as resembling the effects of high energy ionizing radiation, such as γ-rays.

In our experiments on aqueous DNA, the key initiator of the damage-inducing dynamics is the strong optical 
field that is the precursor to excitation, ionization, and dissociation of H2O, yielding species like electronically 
excited H2O* , H2O+, OH, OH* , and low-energy ionized electrons46. Solvated electrons are long-lived enough 
to participate in the dynamics we describe here; their lifetime values are estimated to range from 300 ns47 to 
~500 ps48. As discussed later, collisions between electrons and H2O can yield electronically excited H2O* . In turn, 
collisions between H2O*  and H2O+ give rise to the formation of OH radicals, H2O*  +  H2O+ →  OH +  H3O+. Slow 
electrons, of specific energy, can also attach to H2O via a resonant process known as dissociative attachment, 
e +  H2O →  H2O− →  OH +  H−. For instance, 7 eV electrons lead to formation of an H2O− state that survives for 
a few hundred attoseconds49 before dissociating. It is the slow electrons and OH-radicals that are generated,  
in situ, in strong-field interactions with H2O that, in turn, induce transformation of DNA that we seek to explore.

Is it possible to exert experimental control over the extent of damage that is induced by ultrashort laser irradia-
tion? We explore this possibility by quantifying the effect of external focusing of the laser beam that is incident on 
the water+ DNA sample. Typical results are shown in Fig. 1b,c in which the percentage of supercoiled, relaxed and 
linear DNA is monitored as a function of the focal length of the lens used, keeping the incident laser energy at a 
fixed value (230 μJ). As the focal length is varied from 5 cm to 30 cm, the numerical aperture changes from 0.09 to 
0.015. Perhaps more significantly from an experimental viewpoint, the confocal volume within which laser-DNA 
interactions take place changes from a compact 150 μm3 for f =  5 cm to more than 32000 μm3 for f =  30 cm. These 
numbers are computed without taking into account the fact that plasma formation, especially at high NA values, 
will make the effective confocal volume larger30, although the extent of such enhancement is difficult to quantify 
experimentally. The dependence of both parameters on focal length is shown in Fig. 2. The upper panel depicts, in 
cartoon form, two distinct regimes. At high NA values, where tight focusing is obtained using short focal length 
lenses, the interaction volume (confocal volume) is very small. On the other hand, for low NA values that are 
obtained when longer focal length lenses are used, the interaction (confocal) volume is larger: it takes the form 
of an extended plasma channel. For purposes of later discussion, we denote the high NA regime as Regime I and 
the low NA regime as Regime II. The observation that the percentage of relaxed and linear DNA does not change 
monotonically either with confocal volume or with incident energy indicates that an interplay of both factors 
determines the overall dynamics that cause strand breakages.

We note that the maximum energy to which the ionized electrons are accelerated is > 5 eV at an intensity of 
100 TW cm−2; it may be as high as a few hundred eV at 10 PW cm−2. Electron attachment is generally a resonant 
process but its overall cross section falls off very rapidly as electron energy increases. Thus, we anticipate that 

Figure 2. Upper panel: Cartoon depiction of Regime I and Regime II Lower panel: Variation of confocal 
volume on the focal length of the external lens.
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electrons play little or no role in inducing strand breakages in the high intensity regime that is accessed in our 
experiments. At incident energy of 2 μJ we observe SSBs while at 230 μJ we also observe DSBs in the case of the 
f =  5 cm lens. On increasing the focal length we observe an increase in the percentage of DSBs for the f =  10 cm 
lens but a reduction in DSB percentage for f =  15 cm. Further increase in focal length results in increase in DSB 
percentages.

It is clear from our results (Fig. 1b,c) that there are two regimes that play a role in our experiments: the two 
regimes are delineated by NA. The two regimes are further exemplified in Fig. 3 where we discuss the biologically 
important result pertaining to linearization of initially supercoiled DNA by seeking an answer to the impor-
tant question: Is it the electrons or the OH-radicals formed upon strong-field interactions with H2O that induce 
the conformational changes (supercoiled →  relaxed, supercoiled →  linear, and relaxed →  linear) that we observe 
under different external focusing conditions? To probe this question we added electron- and OH-scavengers to 
the DNA+  water sample; sodium acetate is an OH-radical scavenger while 5-bromouracil is predominantly an 
electron scavenger. We investigated how DNA damage is affected in the presence of sodium acetate (over the 
concentration range 0–200 mM) and 5-bromouracil (over the concentration range 2–65 mM). On the basis of 
such concentration dependent measurements, we deduced that both electrons and OH radicals induce damage 
in DNA but that the latter is four times more pernicious than the former16. The relative invariance of percent-
ages observed in relaxed DNA indicates clearly that electrons play little or no role in strand breakages that we 
observe in these experiments (inset of Fig. 3). As noted above, this is consistent with the electron energies under 
our experimental conditions being too high for attachment processes to occur with reasonable efficiency. In this 
context we note that higher-energy electrons (~7 eV) can, indeed, contribute to formation of H2O− states49 but 
their ultrashort lifetime, of a few hundred attoseconds, preclude a significant role in inducing DNA damage. On 
the other hand, the results depicted in Fig. 3 show that the presence of the OH-scavenger strongly affects the 
percentages of relaxed species. Under our experimental conditions - high intensity irradiation by 800 nm light - it 
may be the OH-radicals that are overwhelmingly responsible for DNA strand breakages.

Multiphoton excitation of DNA, which exhibits maximum linear absorption around 260 nm wavelength, 
might be expected to cause a variety of lesions, including DSBs50,51. However, our earlier experiments conducted 
at 1350 nm and 2200 nm wavelength17 have established that the extent of damage is not wavelength dependent 
and, consequently, multiphoton effects are unlikely to play a direct role in the strand breakage dynamics. Strand 

Figure 3. Variation in the percentage of relaxed DNA as a function of the focal length of the external lens in 
the presence of the OH-scavenger (sodium acetate). The inset shows the corresponding result obtained in the 
presence of the electron-scavenger (5-Bromouracil).
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breakages are most likely induced by indirect effects that occur as the strong optical field interacts with H2O. 
Interactions of high energy x-rays and γ-rays with water give rise to OH formation which, in reactions with DNA, 
accounts for the majority of radiation damage to cellular systems52. Despite the reactions of OH radicals with the 
DNA (composed of a series of smaller molecules called nucleotides, with each nucleotide made up of nitroge-
nous base, sugar molecule called deoxyribose, and a phosphate group attached to the sugar molecule) have been 
investigated both experimentally and theoretically (see53,54, and references therein). However, the mechanism of 
OH-induced DNA damage are yet to be elucidated. Experimental evidence suggests that hydrogen abstraction 
mainly leads to damage in the form of SSBs which, as already noted, are amenable to repair. The occurence of 
DSBs, on the other hand, seems to require interactions involving electronically excited states of OH17 which are 
produced when H2O is electronically excited and then predissociates into OH* . For energies in excess of ~9 eV, 
direct dissociation of H2O*  is adiabatically correlated to OH fragments in the excited A2∑ + state. In order to 
explore the efficacy of excited OH to induce DSBs, we made measurements at various values of incident laser 
energy. As is seen from the results shown in Fig. 4, measurable percentages of linear DNA are obtained only at 
laser energy in excess of 50 μJ. At lower energy levels it is likely that the energy gained by ionized electrons is 
insufficient to electronically excite H2O, precluding formation of excited OH* . The mechanism involved in OH* 
+ DNA interactions leading to DSBs remains to be elucidated, mainly because of the currently intractable nature 
of the problem of understanding OH reactivity in an aqueous medium. The root of the problem arises due to 
the dynamics being dependent on the arrangement and conformations of all neighboring H2O molecules. It has 
been computationally demonstrated that by simply changing the water conformation the potential barrier for 
OH-induced hydrogen abstraction from a methane molecule alters by more than a factor of two55. Symptomatic 
of the difficulties of modeling is the computational demonstration in the case of guanine53 of the OH-induced 
hydrogen abstraction energy from the N1H or NH2 site increasing from its zero gas-phase value (indicating no 
barrier) to as much as 7–10 kcal/mol when guanine is solvated by only a dozen water molecules.

It is interesting to note in the context of our present work that OH-induced strand breakages are strongly 
dependent on external focusing conditions. This is clearly brought to the fore in results depicted in Fig. 5 where 
the percentage of linear DNA is plotted as a function of the focal length of the external focusing optics. These 
measurements were made at an incident energy of 230 μJ. We observe DSBs at NA values of around 0.09, obtained 
with a 5 cm lens. Increasing the focal length we observe an increase in the percentage of DSBs for a 10 cm lens 
(where the NA is 0.045). This case corresponds to the situation wherein both optical breakdown and filamenta-
tion are operative30. On reducing the NA, or increasing the focal length of the external lens, we observe a slight 
reduction in the DSB percentage which, upon further decrease in NA value (further increase in focal length) 
again produces an increase in DSB percentage. The functional dependence shown in Fig. 5 clearly allows demar-
cation of two distinct regimes: regimes I and II.

Experiments conducted using a 5 cm and 8.5 cm lenses show that geometric focusing plays a key role in 
restricting the region where low energy electrons and OH radicals are generated. For the 10 cm lens, we are oper-
ating close to the transition region where even though the effect of geometric focusing may be somewhat reduced, 
the Kerr focusing provides an extended region (Fig. 2) for generation of low energy electrons and OH radicals. At 
even higher focal lengths (12.5 cm and beyond) the Kerr focusing plays the dominant role; the external focusing 
appears to exert correspondingly less influence. In this regime electron energies can be large enough to induce 
formation of OH radicals in rotationally hot states. Although the intensities within the plasma channel may be 
clamped the accompanying spatial extension of the plasma channel in the Kerr focusing regime (Regime II) leads 
to a larger propensity for DSBs to occur. This is clearly reflected in our data pertaining to the occurrence of SSBs 
and DSBs as a function of the focal length of the external lens.

Figure 4. Variation in the percentage of relaxed and linear DNA as a function of incident laser energy. 
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Summary
In summary, we conducted experiments to probe damage to aqueous DNA upon interactions with low-energy 
electrons and OH-radicals produced in plasma channels formed in water. Our measurements have used DNA 
damage as a readout. Our results provide evidence for single and double strand breakages occurring in two dis-
tinct regimes: low NA and high NA. Our method relies on a novel use of strong-field interactions with water 
wherein electrons and free radicals are generated in situ upon multiphoton and tunneling ionization and dissoci-
ation of H2O. The low-energy electrons and OH radicals interact with DNA plasmids under physiological condi-
tions, producing nicks. We quantify the damage caused by using electron and OH-scavengers. Our experiments 
offer indications that OH-radicals are mainly responsible for formation of DSBs, with a prominent role being 
played by electronically excited OH*  radicals that are produced upon pre-dissociation of electronically excited 
H2O*  states. Such electronically excited states of H2O are, of course, themselves formed from interactions involv-
ing electrons in the plasma channel that is induced in water upon intense laser irradiation. We have carried out 
systematic quantification of SSBs and DSBs at different values of incident laser intensity (keeping the focal length 
of the external lens constant) as well as under different external focusing conditions. We have demonstrated 
the feasibility of employing a simple optical method to vary the extent of damage in DNA. Our findings have 
implications beyond studies of damage to DNA per se. Our experimental technique of generating, in situ, slow 
electrons and radicals within aqueous media has important implications in different scenarios where the effects 
of non-ionizing radiation need to be probed under physiologically relevant conditions.

Methods
Ultrashort pulses of 800 nm laser light are generated from an Ti:sapphire amplifier operating at 1 kHz repetition 
rate that has been described in several recent reports17,46. Using spectral shear interferometry the incident laser 
pulse duration was measured to be 40 fs. The incident beam had a M2 value of 1.3. and the beam diameter was 
9 mm. Different lenses of focal lengths in the range 5 to 30 cm were used to carry out irradiation of our DNA 
sample for a period of 180 seconds.

Our DNA (pBR322), obtained from a commercial source (Merck-Millipore, India). The samples were dis-
pensed into convenient volumes and stored at − 20 C. The concentration of DNA was spectrophotometrically 
determined and we standardized the amount of DNA to yield maximum nicking, establishing a working range of 
2–6 ×  1011 molecules in 300 μℓ sample volume. We found that the lower end of this range yielded the best percent-
age of relaxed species following laser irradiation for 180 s. The concentration of our plasmid DNA was measured 
to be in the range 1.9–3.8 ×  1011 cm−3, corresponding to concentrations of 0.9–1.8 μg per 300 μℓ, out of which 
~3 ×  108 plasmids were expected to be within the plasma channel (the confocal volume) - constituting 0.03% of 
plasmids. Related work16,17 carried out in our laboratory has established that strong thermal gradients are set up 
as our intense laser beam propagates through water + DNA, giving rise to convective flow. Thus, DNA molecules 
within the confocal volume are constantly replenished.

After irradiation, DNA fragments were separated using gel electrophoresis. Post-separation, the gel was stained 
with a DNA binding fluorescent dye, ethidium bromide, which enabled us to image and carry out quantification using 
a BIORAD Gel Documentation system in conjunction with standard gel-analysis software (ImageJ). We made use of 
commercially available DNA ladders containing linear fragments of known length to identify the DNA fragments.

Figure 5. Variation in the percentage of linear DNA as a function of the focal length of the external lens. 
These measurements were made at an incident laser energy of 0.23 mJ. The value of numerical aperture (NA) for 
the 5 cm lens is 0.09; the corresponding value for the 30 cm lens is 0.015. As shown in Fig. 2, high NA values are 
denoted as Regime I while low NA values designate Regime II.
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