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Aberrant salience network and its 
functional coupling with default 
and executive networks in minimal 
hepatic encephalopathy: a resting-
state fMRI study
Hua-Jun Chen1, Qiu-Feng Chen2, Jun Liu1 & Hai-Bin Shi1

The purposes of this study are to explore functional alterations in salience network (SN) and its 
functional coupling with default mode (DMN) and central executive (CEN) networks in minimal 
hepatic encephalopathy (MHE). Twenty cirrhotic patients with MHE, 23 cirrhotic patients without 
MHE (NHE), and 18 controls underwent resting-state fMRI and psychometric hepatic encephalopathy 
score (PHES) test. Independent component analysis was performed to obtain DMN (including three 
subsystems: anterior, inferior-posterior, and superior-posterior DMN [a/ip/spDMN]), SN, and CEN 
(including three subsystems: left-ventral, right-ventral, and dorsal CEN [lv/rv/dCEN]). The intrinsic 
functional connectivity (iFC) within (intra-iFC) and between (inter-iFC and time-lagged inter-iFC) 
networks was measured. MHE patients showed decreased intra-iFC within aDMN, SN, lvCEN, and 
rvCEN; and decreased inter-iFC and time-lagged inter-iFC between SN and ipDMN/spDMN/lvCEN 
and increased inter-iFC and time-lagged inter-iFC between SN and aDMN, compared with controls. A 
progressive trend in connectivity alterations was found as the disease developed from NHE to MHE. The 
inter-iFC between ipDMN/spDMN and SN was significantly correlated with PHES score. In conclusion, 
an aberrant SN and its functional interaction with the DMN/CEN are core features of MHE that are 
associated with disease progression and may play an important role in neurocognitive dysfunction in 
MHE.

Minimal hepatic encephalopathy (MHE) is a common neurocognitive complication of cirrhosis associated with 
increased progression into overt hepatic encephalopathy (HE) and a poor prognosis1,2, diminished quality of life3, 
and impaired driving skills, as well as a high motor-vehicle accident risk4,5. MHE results in a specific spectrum of 
high-level neurocognitive deficits, including attention deficits, working memory problems, and defects in exec-
utive functions such as response inhibition6–9. However, the mechanisms underlying these neural dysfunctions 
remain incompletely understood.

The science of large-scale brain networks has offered new ways of understanding human brain cognition pro-
cedures and investigating dysfunctional brain architecture in neuropsychological disorders10. Recently, there is 
increasing evidence that the systematic investigation of distinct large-scale neurocognitive networks can provide 
an important perspective to uncover mechanisms regarding high-level neurocognitive dysfunction11.

For example, a unifying “triple network” model proposed recently, including the salience network (SN), the 
default mode network (DMN), and the central executive network (CEN), is a representative paradigm. This 
model highlights the crucial role of the SN in initiating network switching that can lead to the engagement of the 
CEN and the disengagement of the DMN during the response to a salient stimulus. Recent studies have demon-
strated that analysis of the triple network model is helpful in synthesizing disparate findings into a common 
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Figure 1. Spatial maps of the triple intrinsic networks. MHE, minimal hepatic encephalopathy, NHE, 
patients without MHE, HCs, healthy controls. a/ip/spDMN, anterior/inferior-posterior/superior-posterior 
DMN; lv/rv/dCEN, left-ventral/right-ventral/dorsal CEN; SN, salience network.
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framework and better explaining the mechanisms underlying neuropsychological disorders, such as Alzheimer’s 
disease12, Parkinson’s disease13, major depressive disorder14, and schizophrenia15.

The SN, composed of the bilateral anterior insular cortex (AI) and dorsal anterior cingulate cortex (ACC), 
is involved in the detection of and orientation to salient external stimuli and internal events16. The CEN con-
sists mainly of the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC), while the DMN 
includes primarily the medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC). Typically, the CEN 
represents a task-positive network, which is always activated in response to external stimuli; whereas the DMN 
consistently shows deactivation and is called as a “task-negative” network17,18. The SN (with the right AI as the 
integral causal outflow) facilitates switching activity between the DMN and CEN, through initiation of appro-
priate transient control signals that engage the CEN to mediate cognitive control processes while disengaging 
the DMN16. Currently, the preservation of functional interactions among the three networks is considered to be 
essential to focus attention on external stimuli and to complete various cognitive functions smoothly11. Notably, 
the functional coupling and anti-correlated coupling among triple networks have been demonstrated to be crit-
ically involved in the brain’s attentional, working memory and executive control processes (11, 16), all of which 
have been found to be impaired in MHE6,7,19.

As described previously20–22, MHE is associated with disturbed intrinsic large-scale brain networks such as 
the DMN and CEN. However, few studies have examined alterations in SN function and its interactions with 
the distinct networks, although this may provide new insight into MHE-related mechanisms from a more com-
prehensive perspective. Both functional and structural changes in the AI (the pivotal area of the SN) have been 
demonstrated in a few previous studies in MHE. Chen et al.23 reported that cirrhotic patients can show reduced 
gray matter volume in the bilateral AI and dorsal ACC. Also, Qi et al.24 revealed decreased functional activity 
within the bilateral AI of MHE patients.

Given this context, we hypothesized that the functional organization of the SN and its functional interactions 
with the CEN and DMN are altered in MHE, which could be correlated with neurocognitive dysfunction and 
disease progression. Therefore, we examined functional connectivity (FC) within the SN and between the SN 
and CEN/DMN for the first time. Given the prominent role of the SN in modulating DMN/CEN activity15,16,25, 
we also assessed the temporal dependencies of the SN on the DMN/CEN networks. Finally, Pearson’s correlation 
analyses were performed to examine the relationship between these connectivity alterations and neurocognitive 
dysfunction assessed by psychometric hepatic encephalopathy score (PHES).

Materials and Methods
Participants. This study was approved by the Research Ethics Committee of The First Affiliated Hospital 
of Nanjing Medical University, and all experiments were performed in accordance with relevant guidelines and 
regulations. The written informed consent was obtained from all participants. Twenty cirrhotic patients with 
MHE, 23 cirrhotic patients without MHE (NHE), and 18 healthy controls (HCs) were included. Psychometric 
hepatic encephalopathy score examinations, including five subtests—digit symbol test, number connection test 
A, number connection test B, serial dotting test, and line tracing test, were used to identify MHE. Details of the 
PHES tests have been described previously26. MHE was diagnosed when PHES performance was impaired by 
two standard deviations beyond normal performance27–29. Thus, a diagnosis of MHE was made when the PHES 
score was ≤ − 5.0 points. Subjects with current overt HE or other neuropsychiatric disorders and those taking 

Figure 2. Significant differences in intra-network functional connectivity across the three groups. The 
brain areas with significantly altered intra-network functional connectivity are shown: (A) within aDMN,  
(B) within SN, (C) within lvCEN, and (D) within rvCEN. The Bar graphs show the results of post hoc 
comparisons between each pair of groups. Z values are derived from independent component analysis and 
indicate the functional connectivity strength within the network.
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psychotropic medications, suffering from uncontrolled endocrine or metabolic diseases, or with a history of 
alcohol abuse during the 6 months prior to the study were excluded.

MRI data acquisition. We acquired all MRI data using a 3.0 T scanner (Siemens, Verio, Germany). 
Resting-state functional images were acquired using an echo planar imaging sequence with the following 
parameters: 35 contiguous axial slices, TR =  2000 ms, TE =  25 ms, FOV =  240 mm ×  240 mm, matrix =  64 ×  64, 

HCs subjects 
(n = 18)

NHE patients 
(n = 23)

MHE patients 
(n = 20)

P value 
(ANOVA)

Age (year) 50.1 ±  6.6 50.8 ±  9.8 49.5 ±  9.2 0.882

Sex (Male/Female) 13/5 19/4 15/5 0.706 (χ 2-test)

Education level (year) 8.4 ±  2.6 8.2 ±  2.9 8.6 ±  2.8 0.908

Etiology of cirrhosis (HBV/alcoholism/ HBV+ alcoholism/other) – 15/3/2/3 12/3/1/4

Child–Pugh stage (A/B/C) - 16/6/1 4/12/4

PHES test

 Final PHES score 0.44 ±  2.12 − 0.87 ±  2.16 − 7.80 ±  2.28*,# < 0.001

 Number connection test A (seconds) 38.2 ±  12.6 39.5 ±  11.7 57.1 ±  14.7*,# < 0.001

 Number connection test B (seconds) 63.2 ±  31.2 73.3 ±  19.6 120.2 ±  47.8*,# < 0.001

 Serial dotting test (seconds) 43.3 ±  8.1 46.4 ±  9.1 59.1 ±  8.8*,# < 0.001

 Digit symbol test (raw score) 44.9 ±  9.3 41.6 ±  11.9 28.9 ±  8.4*,# < 0.001

 Line tracing test (raw score) 113.8 ±  17.9 148.9 ±  37.0† 183.7 ±  37.2* < 0.001

Table 1. Demographic and clinical characteristics of the subjects. Note: MHE, minimal hepatic 
encephalopathy; NHE, patients without MHE; HCs, healthy controls; PHES, psychometric hepatic 
encephalopathy score; ANOVA, analysis of variance. The markers * , †, and # respectively indicate the significant 
difference in neurological performance between MHE and HC, NHE and HC, and MHE and NHE.

Figure 3. Inter-network intrinsic functional connectivity matrix. Pair-wise Pearson’s correlations between 
the time courses of the triple networks were Fisher Z-transformed and averaged across subjects for each group: 
(A) healthy controls, (B) NHE patients, and (C) MHE patients. The intensity of colors in the correlation matrix 
indicates the averaged Z-score. (D) The statistical results by one-way analysis of variance. The marker +  
indicates a significant difference across the three groups (P <  0.05, FDR correction). The marker [+ ] indicates a 
difference across the three groups (P <  0.05, uncorrected).
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flip angle =  90°, and slice thickness =  4 mm. Participants were instructed to keep their eyes closed, to not 
think of anything in particular, and to keep their heads still. In addition, three-dimensional T1-weighted 
magnetization-prepared rapid gradient echo (MPRAGE) sagittal images were collected using the following 
parameters: TR =  1.9 ms, TE =  2.48 ms, FOV =  256 mm ×  256 mm, matrix =  256 ×  256, flip angle =  9°, slice thick-
ness =  1.0 mm, 176 slices.

VBM Analysis. VBM analysis was performed using the Statistical Parametric Mapping (SPM8, http://www.
fil.ion.ucl.ac.uk/spm) software and the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html). The diffeomor-
phic anatomical registration using exponentiated lie algebra (DARTEL) registration method was applied. Briefly, 
after segmentation of structural T1 images into gray matter (GM), white matter, and cerebrospinal fluid, GM 
maps were normalized to the GM population-specific template generated from the complete image set using 
DARTEL30. Spatially normalized images were then modulated to preserve the overall amount of GM tissue. Here, 
we considered only non-linear volume changes, so that further analyses did not have to account for differences 
in head size. The GM scores were included as covariates of no interest in the functional analyses, as described 
previously15, given that both network-specific intra-network intrinsic functional connectivity (intra-iFC) and 
inter-network intrinsic functional connectivity (inter-iFC) are thought to depend on widespread integrity of 
polysynaptic pathways. Additionally, the functional images were normalized into Montreal Neurological Institute 
(MNI) space by applying transformation parameters obtained from the unified segmentation procedure for the 
structural images.

Functional image preprocessing. Functional data were preprocessed using the SPM software and the 
Data Processing Assistant for Resting-State fMRI (DPARSF, http://www.restfmri.net/forum/DPARSF) tool. The 
first 10 volumes were discarded to allow for scanner calibration and the adaptation of participants to the scanning 
environment. The remaining volumes were then corrected for differences in slice acquisition times and were 
realigned to correct for head movements. Subjects with more than 3-mm maximum displacement in any of the 
x, y, or z directions or more than 3.0° angular rotation about any axis would have been excluded from the study, 
but no participant had to be excluded; there were no significant differences regarding translational or rotational 
movements in any direction across the three groups (P >  0.05). Finally, all of the corrected functional data were 
normalized to MNI space and resampled to a 3-mm isotropic resolution and smoothed using a Gaussian filter 
with full-width at half-maximum of 6 mm.

Figure 4. Between-group differences of inter-network functional connectivity. Spatial maps (derived from 
one-sample t-test for the control group) indicate the anterior/inferior-posterior/superior-posterior DMN  
(a/ip/spDMN), left-ventral/right-ventral/dorsal CEN (lv/rv/dCEN), and salience network (SN). (A) Red and 
blue two-way arrow indicate increased positive inter-network connectivity and decreased negative inter-
network connectivity in MHE and NHE patients, respectively. (B) The markers *  and †indicate a significant 
difference of inter-iFC between MHE and HC and between NHE and HC, respectively.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuro.uni-jena.de/vbm.html
http://www.restfmri.net/forum/DPARSF


www.nature.com/scientificreports/

6Scientific RepoRts | 6:27092 | DOI: 10.1038/srep27092

Independent component analysis (ICA). Group spatial ICA was performed using the Infomax algo-
rithm within GIFT software (http://icatb.sourceforge.net). A two-step principal component analysis (PCA) was 
used to decompose the preprocessed data into 75 independent components (ICs). In this study, we applied the 
high-model-order ICA approach, following recent studies15,31. The high-model-order ICA approach is considered 
to yield ICs that are in accordance with known anatomical and functional segmentations and can offer a more 
detailed and robust decomposition of sub-networks31–33. We ran 20 ICA (ICASSO implemented in GIFT soft-
ware) to ensure the stability of the estimated ICs. This resulted in a set of average group components, which were 
then back-reconstructed into single subject space.

To select networks of interest, we ran multiple spatial regressions on the spatial maps of 75 ICs using the previ-
ously established T-maps of intrinsic connectivity networks15,31, which were made available online by the Medical 
Image Analysis Lab (http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_tmaps.nii). Of these established 
T-maps, seven are related to the “triple network” model, including anterior DMN (aDMN), inferior-posterior 
DMN (ipDMN), superior-posterior DMN (spDMN), left-ventral CEN (lvCEN), right-ventral CEN (rvCEN), 

Regions Voxels Brodmann area

MNI coordinates
Peak F-
valuex y z

aDMN

Bilateral anterior cingulate 
cortex 68 24 3 30 15 9.57

SN

Right insular cortex 45 13 39 15 3 9.70

lvCEN

Rihgt inferior parietal lobule 47 39/40 48 − 69 39 9.59

rvCEN

Rihgt inferior parietal lobule 67 40/39 48 − 63 45 10.73

Table 2. Brain areas with significant differences in the intra-iFC across the three groups. Notes: aDMN, 
anterior DMN; SN, salience network; lvCEN, left-ventral CEN; rvCEN, right-ventral CEN.

Figure 5. Between-group differences of time-lagged inter-network functional connectivity. Spatial maps 
(derived from one-sample t-tests for the control group) indicate the anterior/inferior-posterior/superior-
posterior DMN (a/ip/spDMN), left-ventral/right- ventral/dorsal CEN (lv/rv/dCEN), and salience network 
(SN). (A,C): Red and blue one-way arrows indicate increased positive connectivity and decreased negative 
connectivity (centered on SN) in MHE patients, respectively. (B,D): The markers * , †, and #indicate significant 
differences between MHE and HCs, NHE and HCs, and NHE and MHE, respectively.

http://icatb.sourceforge.net
http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_tmaps.nii
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dorsal CEN (dCEN), and SN. These seven subsystems are in accordance with the known anatomical and func-
tional segmentations of DMN/CEN/SN31–33 and have been consistently identified throughout the distinct stud-
ies and used to explore the mechanisms underlying various neuropsychological disorders, such as Alzheimer’s 
disease12, Parkinson’s disease13, major depressive disorder14, and schizophrenia15. Thereby, following previous 
studies, the seven ICs with the largest correlation coefficients were selected as the networks of interest for our 
triple-mode network analysis, i.e. aDMN, ipDMN, spDMN, lvCEN, rvCEN, dCEN, and SN.

Intra-iFC. Each IC obtained by the ICA procedure consisted of a spatial Z-map reflecting the component’s 
functional connectivity pattern across space and an associated time course (TC) reflecting the component’s activ-
ity across time. The Z values indicate the fit of a specific area’s TC to the group-averaged component’s TC, repre-
senting functional connectivity strength within the network (intra-iFC).

The ICs corresponding to the triple networks were then extracted from all subjects. The Z-maps of each net-
work were gathered in each group for a random-effect analysis using a one-sample t-test (P <  0.05, false discovery 
rate (FDR) correction). Subsequently, the Z-maps of each network were compared across three groups using 
one-way analysis of variance (ANOVA), with age, gender, education level, and GM volume as covariates of no 
interest. A statistical map was generated using an integrated threshold at P <  0.05 (corrected by Monte Carlo sim-
ulations34). The group comparisons were restricted (masked) to the voxels within each corresponding network.

Inter-iFC. Before evaluating inter-iFC statistically, linear detrending and temporal filtering were performed 
on the functional data. Then, we extracted the subject IC’s TCs of the seven sub-networks. The pair-wise Pearson’s 
correlation coefficients of the TCs among the seven sub-networks were calculated and transformed to Z-scores 
using Fisher’s Z-transformation and compared across the three groups, with age, gender, education level, and GM 
volumes as covariates of no interests (P <  0.05, FDR correction).

Time-lagged inter-iFC. It has been documented that the SN is an integral hub in mediating dynamic inter-
actions between the CEN and DMN11. In this study, we hypothesized an altered temporal interaction between 
SN’s preceding the TC and DMN/CEN TCs in MHE. Thus, a time-lagged correlation analysis was performed to 
investigate temporal dependencies between the SN and CEN/DMN subsystems15, with a time shift of 1 to 3 time 
points (See supplemental material)15. The Pearson’s correlation coefficients obtained were then transformed to 
Z-scores using Fisher’s Z-transformation and compared across the three groups, with age, gender, education level, 
and GM volumes as covariates of no interest (P <  0.05, FDR correction).

Correlation analysis. The altered intra-iFC, inter-iFC, and time-lagged inter-iFC were extracted and corre-
lated to the PHES result using Pearson’s correlation analyses. P values <  0.05 were considered to indicate statistical 
significance.

Results
Demographic and clinical characteristics of the subjects. Table 1 shows the subjects’ demographic 
and clinical parameters. There was no significant difference in terms of age, gender, or education level across 
the three groups. The NHE patients showed a trend of impaired neurocognitive function, compared with HCs, 
whereas MHE patients produced significantly worse performances in all PHES subtests, resulting in lower PHES 
score, as compared to the other two groups.

Intra-iFC comparison. Random-effect analyses of single-subject IC maps revealed the typical spatial pat-
terns of the SN, DMN, and CEN across the three groups (Fig. 1), which matched previously established templates 
and were consistent with other studies14,15,31. The SN was represented in one component, which showed func-
tional connectivity between the dorsal ACC/MPFC and bilateral AI. Both the DMN and CEN were represented 
in three components. The aDMN included mainly the MPFC; the ipDMN consisted of the medial PPC, PCC, and 
angular gyrus; and the spDMN included primarily the bilateral precuneus and PCC. The lvCEN consisted mainly 

Figure 6. Scatter plots of PHES scores and inter-network functional connectivity in the MHE group. ip/
spDMN, inferior-posterior/superior-posterior DMN; SN, salience network.
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of the left inferior parietal lobule (IPL) and left DLPFC, while the rvCEN included primarily the right IPL and 
right DLPFC. The dCEN was left-lateralized, comprising primarily the left superior parietal gyrus/precuneus and 
right superior parietal gyrus/precuneus.

By comparing the mean intra-iFC values of the whole intrinsic network, we found that MHE patients showed 
decreased trends in intra-iFC for all DMN, SN, and CEN networks (see Supplementary Fig. 1 in supplemental 
material). Voxel-wise ANOVA revealed differences of intra-iFC within the aDMN (located in the bilateral ACC), 
SN (located in the right AI), lvCEN (located in the right IPL), and rvCEN (located in the right IPL) across the 
three groups (Fig. 2, Table 2). No between-group difference was observed within other networks. Both the MHE 
and NHE groups showed decreased intra-iFC in the SN and lvCEN regions, compared with HCs. Furthermore, 
the decrease in intra-iFC intensified as the disease progressed (from NHE to MHE), suggesting continued impair-
ment of functional integration. Regarding the aDMN and rvCEN regions, MHE showed decreased trends for 
intra-iFC, while NHE showed increased intra-iFC.

Inter-iFC comparison. Figure 3a shows the inter-iFC matrix for HCs, which matched results of previ-
ous studies14,15,31,35. Positive correlations were found between distinct DMN/CEN subsystems, consistent with 
recent findings by a high-model-order ICA approach14,15,31,35, although this result contrasts with the patterns of 
anti-correlation between the two networks previously described in other studies18. In fact, it has been proposed 
that the DMN can be subdivided into several functionally distinct sub-networks, each with its own characteristic 
patterns of correlations and anti-correlations with other intrinsic networks36.

Altered inter-network functional connectivity was found between the a/ip/spDMN and SN and between 
the SN and lvCEN (Fig. 3, Table 3). Figure 4 shows increased positive inter-network connectivity between the 
aDMN and SN in patients. Decreased negative inter-network connectivity was found between the ipDMN and 
SN, spDMN and SN, and SN and lvCEN. Furthermore, these alterations showed a trend with progression from 
NHE to MHE. Additionally, we found that the inter-iFC between ipDMN-lvCEN differed across the three groups, 
but this change did not reach statistical significance after FDR correction (Fig. 3, Table 3).

Time-lagged inter-iFC comparison. For lag =  1, the time-lagged inter-iFC of the SN onto the ipDMN/
spDMN decreased in the MHE group, while the time-lagged inter-iFC of the SN onto the aDMN increased, 
compared with HCs (Fig. 5, Table 4). For lag =  2, the cirrhotic patients showed reduced time-lagged inter-iFC 
of the SN onto the ipDMN/spDMN, which progressed from NHE to MHE. For lag =  3, there was no significant 
difference in time-lagged inter-iFC across the three groups.

Inter-iFC HC subjects NHE patients MHE patients
P value 

(ANOVA)

aDMN - ipDMN 0.466 ±  0.197 0.482 ±  0.257 0.364 ±  0.279 0.268

aDMN - spDMN 0.154 ±  0.192 0.168 ±  0.257 0.075 ±  0.268 0.425

aDMN - SN 0.013 ±  0.200 0.279 ±  0.305† 0.303 ±  0.330* 0.005‡

aDMN - lvCEN 0.435 ±  0.228 0.384 ±  0.271 0.334 ±  0.258 0.479

aDMN - rvCEN 0.410 ±  0.166 0.437 ±  0.210 0.440 ±  0.189 0.871

aDMN - dCEN − 0.449 ±  0.214 − 0.380 ±  0.210 − 0.420 ±  0.262 0.625

ipDMN - spDMN 1.131 ±  0.235 1.133 ±  0.269 1.084 ±  0.311 0.811

ipDMN - SN − 0.494 ±  0.240 − 0.231 ±  0.252† − 0.168 ±  0.277* 0.001‡

ipDMN - lvCEN 1.037 ±  0.264 0.949 ±  0.284 1.154 ±  0.220 0.040

ipDMN - rvCEN 0.903 ±  0.331 0.846 ±  0.239 0.971 ±  0.277 0.351

ipDMN - dCEN 0.084 ±  0.252 0.072 ±  0.232 0.145 ±  0.203 0.550

spDMN - SN − 0.545 ±  0.223 − 0.354 ±  0.269† − 0.263 ±  0.215* 0.002‡

spDMN - lvCEN 0.539 ±  0.271 0.489 ±  0.216 0.617 ±  0.242 0.229

spDMN - rvCEN 0.533 ±  0.293 0.446 ±  0.246 0.503 ±  0.280 0.581

spDMN - dCEN 0.358 ±  0.219 0.318 ±  0.237 0.405 ±  0.168 0.413

SN – lvCEN − 0.320 ±  0.225 − 0.092 ±  0.247† − 0.056 ±  0.249* 0.002‡

SN – rvCEN − 0.226 ±  0.279 − 0.090 ±  0.269 − 0.005 ±  0.271 0.050

SN – dCEN − 0.256 ±  0.237 − 0.201 ±  0.251 − 0.158 ±  0.244 0.466

lvCEN - rvCEN 0.984 ±  0.304 0.987 ±  0.185 1.034 ±  0.196 0.744

lvCEN – dCEN 0.185 ±  0.252 0.259 ±  0.156 0.261 ±  0.288 0.527

rvCEN – dCEN 0.001 ±  0.213 0.021 ±  0.188 0.071 ±  0.247 0.586

Table 3.  Altered inter-network functional connectivity across the three groups. Note: P values in bold 
are < 0.05. The marker ‡indicates P <  0.05 after FDR correction for multiple comparisons. The markers *  and 
†indicate a significant difference in inter-iFC between MHE and HCs and between NHE and HCs, respectively. 
MHE, minimal hepatic encephalopathy; NHE, patients without MHE; HC, healthy control; ANOVA, analysis 
of variance. a/ip/spDMN, anterior/inferior-posterior/superior-posterior DMN; lv/rv/dCEN, left-ventral/right-
ventral/dorsal CEN; SN, salience network.
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Correlation analysis. We first extracted the values of the intra-iFC (from the areas shown in Fig. 2), 
inter-iFC (shown in Fig. 4), and time-lagged inter-iFC (shown in Fig. 5) and then correlated them to PHES. 
Figure 6 shows the results of the correlation analysis between altered connectivity and impaired neurocognitive 
performance. In MHE group, the inter-network connectivities between the ipDMN/spDMN and SN were neg-
atively correlated with PHES scores. No correlation was found between altered intra-iFC/ time-lagged inter-iFC 
and PHES result.

Discussion
In this study, we investigated the FC alterations within and between the SN, CEN, and DMN in MHE patients, 
based on a prior theory of a triple-network mode11. The primary findings included: (i) MHE patients showed 
decreased intra-iFC in the aDMN, SN, lvCEN, and rvCEN; (ii) MHE patients showed an increased positive cor-
relation between the aDMN and SN and decreased negative correlations between the ipDMN and SN, spDMN 
and SN, and SN and lvCEN; (iii) the time-lagged inter-iFC (centered on SN) was decreased between the ipDMN 
and SN and between the spDMN and SN, whereas it was increased between the aDMN and SN in MHE patients; 
(iv) the altered functional correlation between the ipDMN/spDMN and SN was correlated with impaired neu-
rocognitive performance in MHE group; and (v) the progressive changes of intra-iFC and inter-iFC were found 
as the disease developed from NHE to MHE. Our results provide the first evidence about atypical connectivity 
patterns across the core neurocognitive networks in MHE, which may further elucidate the mechanisms that 
underlie MHE.

Impairments in several high-level neurocognitive domains comprise the characteristic manifestations of 
MHE. For example, attention deficit is one of the main components of MHE19. The anterior attention system, 
which is hypothesized to modulate response inhibition, behavioral selection, and executive control, is sensitive 
to early HE37. In fact, impaired executive function is well documented in MHE6,9. Correspondingly, recent rest-
ing state functional network analyses have revealed connectivity disruptions within the intrinsic brain networks 
related to those neurocognitive functions affected by MHE, such as the default-mode, attention, and executive 
networks20,21,26. Consistent with these previous findings, we also found altered intra-iFC in the aDMN, lvCEN, 
and rvCEN in MHE.

More importantly, we found altered SN and its functional coupling with the DMN and CEN. The SN-related 
controlling model, which engages the brain’s attentional, working memory and higher-order control processes 
while disengaging other systems that are not immediately task-relevant, has been proposed recently. This repre-
sents the optimal organization of cognitive resources and is essential for responding to salient stimuli and suc-
cessfully completing various core neurocognitive functions11,16. Based on the triple network analysis, we found 
alterations in functional coupling between the SN and DMN/CEN in cirrhotic patients. The decreased coupling 

Time-lagged inter-
network connectivity HC subjects NHE patients MHE patients

P value 
(ANOVA)

Lag = 1

SN →  aDMN 0.002 ±  0.177 0.198 ±  0.277† 0.223 ±  0.280* 0.015‡

SN →  ipDMN − 0.196 ±  0.105 − 0.243 ±  0.232 − 0.081 ±  0.105* ,# 0.008‡

SN →  spDMN − 0.220 ±  0.103 − 0.357 ±  0.233† − 0.118 ±  0.081* ,# 0.001‡

SN →  lvCEN − 0.113 ±  0.079 − 0.073 ±  0.234 − 0.029 ±  0.093 0.278

SN →  rvCEN − 0.079 ±  0.112 − 0.064 ±  0.250 − 0.013 ±  0.101 0.468

SN →  dCEN − 0.092 ±  0.097 − 0.167 ±  0.250 − 0.065 ±  0.094 0.138

Lag = 2

SN →  aDMN 0.026 ±  0.151 0.108 ±  0.236 0.112 ±  0.212 0.070

SN →  ipDMN − 0.325 ±  0.192 − 0.198 ±  0.192† − 0.153 ±  0.195* 0.015‡

SN →  spDMN − 0.377 ±  0.186 − 0.301 ±  0.189 − 0.211 ±  0.148* 0.016‡

SN →  lvCEN − 0.169 ±  0.132 − 0.029 ±  0.207 − 0.054 ±  0.176 0.041

SN →  rvCEN − 0.113 ±  0.215 − 0.019 ±  0.215 − 0.035 ±  0.181 0.322

SN →  dCEN − 0.151 ±  0.209 − 0.119 ±  0.234 − 0.113 ±  0.188 0.833

Lag = 3

SN →  aDMN − 0.052 ±  0.140 0.020 ±  0.198 0.008 ±  0.160 0.376

SN →  ipDMN − 0.160 ±  0.148 − 0.120 ±  0.154 − 0.097 ±  0.170 0.476

SN →  spDMN − 0.193 ±  0.135 − 0.200 ±  0.143 − 0.117 ±  0.137 0.115

SN →  lvCEN − 0.067 ±  0.120 0.018 ±  0.173 − 0.036 ±  0.158 0.206

SN →  rvCEN − 0.042 ±  0.173 0.020 ±  0.175 − 0.039 ±  0.152 0.392

SN →  dCEN − 0.058 ±  0.193 − 0.057 ±  0.206 − 0.058 ±  0.166 0.980

Table 4. Altered time-lagged inter-network functional connectivity between SN and other networks across 
the three groups. Note: P values in bold are < 0.05. The marker ‡indicate P <  0.05 after FDR correction for 
multiple comparisons. The markers * , †, and #indicate significant differences between MHE and HCs, NHE and 
HCs, and NHE and MHE, respectively. MHE, minimal hepatic encephalopathy; NHE, patients without MHE; 
HC, healthy control; ANOVA, analysis of variance. a/ip/spDMN, anterior/inferior-posterior/superior-posterior 
DMN; lv/rv/dCEN, left-ventral/right-ventral/dorsal CEN; SN, salience network.
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between the SN and CEN/DMN could indicate functional impairment in MHE, while the increased FC has been 
regarded as a compensatory reallocation or recruitment of cognitive resources, as previous reports in MHE22,26,38. 
Beyond the reports about single network analysis, our results can provide more comprehensive insight into the 
mechanisms about MHE, because triple network analysis can offer opportunity to organize the findings about 
altered networks into a systematical framework. In fact, analysis of complex brain networks has revealed that 
MHE is associated with aberrant connectivity patterns at the whole-brain scale, such as impaired small-world 
network efficiency and altered modular organization of intrinsic networks39–41, rather than with aberrant con-
nectivity at a single-network level. Additionally, Chen et al.21 revealed that the investigation of multiple intrinsic 
brain networks is more helpful to depict the clinical state of MHE. In consideration of these previous studies, it is 
expected that changes of functional coupling among SN/CEN/DMN triple networks occur in MHE.

The NHE subjects, who represented an intermediate stage of disease, also showed an impaired trend in neu-
rocognitive functions and intra- and inter-network FC across SN/DMN/CEN. Thus, we illustrated that the pro-
gression of HE is characterized by abnormal functional brain network organization. This is consistent with recent 
neuroimaging studies20,21,39–41. For example, Jao et al.39 demonstrated a stepwise deterioration of topological prop-
erties in the whole brain network across HE development. Our findings further confirm the continuous nature of 
HE that is associated with the same pathological mechanism. Therefore, analysis of the triple network mode could 
potentially be useful for monitoring the progression of HE. Additionally, the correlation between the altered 
inter-network connectivity and the clinical marker of MHE—PHES further indicates the utility of atypical func-
tional coordination for reflecting the pathologies of MHE and as a complementary biomarker for MHE detection.

This study has several limitations. First, we performed group ICA empirically, because previous studies 
demonstrated that an ICA model order of approximately 75 components could ensure network stability15,42, but 
the selection of the optimal ICA model order to analyze resting-state fMRI data remains an issue of debate. 
Second, the connectivity patterns among seven sub-networks obtained by high-model-order ICA were incon-
sistent with several previous reports. The similar phenomenon has been described and explained by Allen et al.31 
and Manoliu et al.15, but the nature of the interaction among these different intrinsic networks will need to be 
addressed in the future. Third, the triple network model has demonstrated the role of the SN in initiating network 
switching between the DMN and CEN, which suggests a controlling effect direction. However, our analysis based 
on resting-state fMRI cannot provide sufficient evidence regarding the alterations of this functional controlling 
direction in MHE. A task-related fMRI study may be needed to consider this issue. Finally, the longitudinal stud-
ies are recommended to clarify the utility of altered FC as a biomarker for detecting and monitoring HE.

In conclusion, a triple-mode network analysis highlighted the aberrant SN and its functional interaction with 
the DMN/CEN in MHE, which may underlie the mechanisms of neurocognitive dysfunction in MHE patients. 
Moreover, the continuous impairment of FC suggests a role of abnormal functional networks in HE progression. 
Thus, it could be helpful to examine the changes of functional connections among the triple networks for the 
diagnosis of MHE (individual identification) and monitoring of disease development.
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