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Topological triple-vortex lattice 
stabilized by mixed frustration 
in expanded honeycomb Kitaev-
Heisenberg model
Xiaoyan Yao & Shuai Dong

The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the 
next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase 
diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an 
inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to 
the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two 
sources: the geometrical frustration arising from the lattice structure as well as the frustration from the 
Kitaev couplings.

The Kitaev model with the unconventional bond-dependent Kitaev interactions on the honeycomb lattice pro-
vided the first exactly solvable model with a quantum spin liquid ground state in two dimensions1. It is much 
highlighted since the Kitaev coupling was found to be realized in the honeycomb iridates which attracted consid-
erable attention because they were suggested as the promising candidate materials for the topological band insu-
lators2–4. Subsequently, the pure Kitaev model was generalized to a Kitaev-Heisenberg (KH) model with both the 
isotropic Heisenberg interaction and anisotropic Kitaev interaction on the nearest-neighboring sites, which was 
proposed to capture the magnetic interactions of honeycomb iridates5–7. However, a big challenge arose soon, that 
is, the magnetic orders observed in experiments were unexpected in the original KH model, such as the zigzag 
magnetic order experimentally observed in Na2IrO3

8–11, and the incommensurate spiral magnetic state exhibited 
in the experiments of Li2IrO3

12,13. While much effort was devoted to improve the original KH model to coincide 
with experimental results13–20, the exotic magnetic states existing in its various expanded forms have become 
another interesting topic. It is well-known that the frustration has long served as a relatively simple yet rich source 
of novel magnetic phases and exotic phenomena. In KH model, the unconventional Kitaev interaction breaks the 
spin rotational symmetry and provides an avenue for a new kind of frustration, namely the Kitaev frustration, 
which produces the unconventional zigzag and stripy states. As the geometrical frustration is introduced, new 
regions with puzzling magnetic states emerge on the phase diagram14,18, remaining unclear up to now. Recently 
Z2 vortex lattice excited by Kitaev-type anisotropic couplings in the triangular KH model was reported21,22, and it 
is expected that the similar topological state may exist in honeycomb KH model. Hitherto, to our knowledge, this 
interesting topic remains unsolved.

In the present paper, the expanded KH model on the honeycomb lattice is investigated by simulation. When 
the next-nearest-neighboring Heisenberg interaction is considered, the introduced geometrical frustration com-
peting with the frustration arising from the anisotropic Kitaev interaction produces a rich phase diagram with 
periodic behavior on a wide parameter range. Beside the double 120° ordered phase where both triangular sublat-
tices show 120° spin structure, a particular inhomogeneous phase with topological nontrivial modulation is sta-
bilized by the mixed frustration of two sources. Extensive analysis reveals that different from the single Z2-vortex 
lattice observed in the triangular KH model21,22, this novel phase demonstrates a lattice of triplet topological 
Z2-vortexes on the triangular sublattice, which corresponds to a hexagonal domain structure of vector chirality.

Results
Considering the Kitaev interaction JKn coupling different spin components (Sx, Sy, and Sz) on the 
nearest-neighboring bonds along the three lattice directions labeled by γ =  xx, yy and zz as presented in Fig. 1, 

Department of Physics, Southeast University, Nanjing 211189, China. Correspondence and requests for materials 
should be addressed to X.Y. (email: yaoxiaoyan@seu.edu.cn)

received: 11 December 2015

accepted: 27 April 2016

Published: 27 May 2016

OPEN

mailto:yaoxiaoyan@seu.edu.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:26750 | DOI: 10.1038/srep26750

together with the isotropic Heisenberg couplings JHn and JHnn between spins on the nearest-neighboring (< i, j> ) 
and the next-nearest-neighboring (≪ i, k≫ ) sites, the Hamiltonian takes the form of,

∑ ∑ ∑= ⋅ + ⋅ + ⋅γ γ

< > < > << >>γ

H J S S J S S J S S
(1)

Kn
i j
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i j
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where Si represents a classic spin with unit magnitude at the site i. JHnn takes positive value to introduce the 
geometrical frustration. The ratio of JHn to JKn is considered to its whole range by parameterizing JHn =  cosϕ and 
JKn =  sinϕ with ϕ: 0~2π. The simulation (see Methods) presents the phase diagram in the space of ϕ and JHnn as 
plotted in Fig. 2(a). Eight commensurate ordered phases can be detected by the standard values of correlations 
as listed in Table 1. The gray curves show the phase boundaries obtained by comparing the classic energies of 

Figure 1. A sketch of honeycomb lattice, which is composed of two triangular sublattices as represented by 
white and gray dots respectively. The solid, dashed and dotted black thick lines indicate three kinds of spin-
dependent nearest-neighboring bonds, where xx, yy and zz involve Sx, Sy, and Sz respectively. The gray thin lines 
present the links between the next nearest neighbors. Sites 1–4 specify the four sites for the spin rotations S →  S. 
The shading illustrates the upward-pointing elementary triangles of one triangular sublattice, on which the 
vector chirality (κ) is calculated. Dark shading denotes every third upward-pointing triangles, and the vorticity 
(v) is evaluated on right- and left-pointing triangular loops (green) connecting these darker triangles.

Figure 2. (a) The phase diagram, where the gray curves give the phase borders calculated from classic energy 
comparison. The solid circles filled with different colors show different phases identified by correlations 
obtained from simulation, and those empty circles represent the unidentified regions. The light gray regions 
schematically present the area of P phase. (b) The diagram of the fluctuation of local energy (FLE), where the 
shading of filled-circles refers to the value of FLE with white representing the minimum FLE =  0.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:26750 | DOI: 10.1038/srep26750

these ordered phases, while the solid circles filled with different colors show the phases identified by correlations 
obtained from simulation (see Methods), and those empty circles represent the unidentified regions. It is seen that 
the results from energy calculation and simulation coincide well with each other.

It is well known that the honeycomb model with only nonzero JHn is unfrustrated, presenting the ferromag-
netic (F) and Neel (N) orders as the ground states for JHn <  0 or JHn >  0. When JKn is switched on, the competition 
between JHn and JKn generates two nonconventional collinear orders: Stripy (S) and Zigzag (Z) phases. As dis-
played in Fig. 3(a–d), the spin structure factor on the honeycomb lattice (Shγ(k), see Methods) for these four 
collinear phases shows very typical peaks, consistent well with previous reports23,24. It should be mentioned that 
these collinear orders could chose any one of x, y and z orientations due to the symmetry of the model, and thus 
the peaks of Shγ(k) could show any one of three spin components with its locked bond direction. Moreover, it is 
noteworthy that F and N (S and Z) show the same spin structure for one triangular sublattice, and so the spin 
structure factor on one triangular sublattice (Stγ(k), see Methods) exhibits the same feature. When JHnn is switched 
on, four interesting noncollinear phases (A1, A2, B1 and B2) with the typical correlation values emerge from the 
Kitaev points of ϕ =  0.5π  and 1.5π . A1 and A2 phases locate around the vertical lines at ϕ =  0.5π  and 1.5π , spread-
ing with JHnn increasing. As plotted in Fig. 3(e,f), Shγ(k) presents the sharp peaks at the corners of the first 
Brillouin zone (K points) for both A1 and A2 phases. Although a detailed difference exists on Shγ(k), Stγ(k) exhib-
its the same feature for A1 and A2, which means the coplanar 120° spin order on each triangular sublattice where 
every two neighboring spins form an angle of 120°. Moreover, in such a double 120° phase, the 120° spin struc-
tures on two triangular sublattices are also coplanar and lie in one of the {111} planes14,20. Different from A1 and 
A2 phases, B1 and B2 exist only with weak JHnn. Although they show very different peaks of Shγ(k) as plotted in 
Fig. 3(g,h), their Stγ(k) gives the same feature with the peaks on the points along the Γ -K line (Γ  is the center of 
first Brillouin zone). It is interesting that B1 and B2 can be transformed into A1 and A2 respectively by a four-site 
transformation S →  S5,25,26, namely

= = − − = − − = − −   S S S S S S S S S S S S S S S S( , , ), ( , , ), ( , , ), ( , , ) (2)x y z x y z x y z x y z
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

where the four sites are labeled as Fig. 1. It should be mentioned that the four-site transformation of Eq. (2) 
implies the Klein duality22,27, which strictly holds for the nearest-neighboring KH model with the mapping rela-
tion: JHn to –JHn and JKn to 2JHn+ JKn. The duality could also exist in the model augmented with weak JHnn to some 
extent, but the original mapping relation of coupling parameters is complicated by JHnn. Since both Shγ(k) and 
Stγ(k) calculated on S of B1 and B2 show the same feature to A1 and A2 respectively, B1 and B2 can be regarded as 
the Klein dual phases of A1 and A2.

Between the commensurate phases mentioned above, there are unidentified regions about the phase bounda-
ries, which are puzzling and could be more attractive. The fluctuation of local energy (FLE, see Methods) just pre-
sents nonzero value around these intermediate regions as displayed in Fig. 2(b). It is noteworthy that FLE exhibits 

F N S Z A1 A2 B1 B2

Cn 3 − 3 − 1 1 0 0 − 2 2

Cnn 6 6 − 2 − 2 − 3 − 3 1 1

Cnnn 3 − 3 3 − 3 0 0 0 0

CK 1 − 1 − 1~1 − 1~1 − 1 1 − 1 1

Table 1.  The standard values of the correlations Cn, Cnn, Cnnn and CK for F, N, S, Z, A1, A2, B1 and B2 phases.

Figure 3. The typical spin structure factors for (a) N, (b) F, (c) Z, (d) S, (e) A1, (f) A2, (g) B1, (h) B2, (i,j) P 
phases. The main figure presents the spin structure factor on the honeycomb lattice (Shγ(k)) where the gray large 
hexagon represents the extended Brillouin zone and the inner black hexagon indicates the first Brillouin zone. 
The small inset in the top right corner of each figure shows the spin structure factor on one triangular sublattice 
(Stγ(k)). The solid (red), dashed (green) and dotted (blue) lines with arrows denote the signals from Sx, Sy and Sz 
respectively.
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a period of π  on ϕ, which corresponds to the periodic behavior of spin configuration on the triangular sublattice. 
As illustrated in Fig. 3, every two states with ϕ difference of π  have the same Stγ(k), indicating the same magnetic 
structure on the triangular sublattice. If the phase diagram is marked by the spin states on triangular sublattice, 
that is, FN includes F and N, SZ includes S and Z, A includes A1 and A2, B includes B1 and B2, the obtained phase 
diagram shows a perfect period of π . The ϕ difference of π  means the change of sign for both JHn and JKn, and 
then this periodic behavior on phase diagram just results from the energy symmetry of the bipartite honeycomb 
lattice28, which is well retained even with the geometrical frustration introduced by JHnn. To avoid repeat, only the 
range of ϕ: π ~2π  is discussed blow, which includes the region of JHn >  0 and JKn < 0 as originally proposed for 
the KH model relevant to iridates2,5. The nonzero FLE corresponds to the inhomogeneous magnetic structure, 
appearing around the double 120° (A) and its Klein dual (B) phases. Since B phase can be mapped onto A, we 
only focus on the areas beside A, which are wider and have higher FLE value than the narrow regions around B.

In the inhomogeneous region on the right of A, a particular ordered (P) phase is found to show Stγ(k) of sharp 
peaks separately for three spin components and Ei map with very clear pattern, implying a nontrivial modula-
tion on the magnetic structure. When ϕ is changed from A to SZ phase, the main peaks of Stγ(k) slide along the 
hexagon’s edges from K to M points (M is the midpoint of every edge)14, that is, if the wave vector of main peak is 
denoted by kp, its magnitude |kp| changes from 1.33333 (K point) to 1.15470 (M point). Fig. 4(a–c) displays three 
states in this phase with different |kp|, namely, (a) the state at JHnn =  0.55 and ϕ = 1.65625π  with |kp| =  1.25830, 
(b) the state at JHnn =  0.4 and ϕ = 1.625π  with |kp| =  1.22758, and (c) the state at JHnn =  0.55 and ϕ = 1.6875π  with 
|kp| =  1.20185. Here (b) state just shows the value of |kp| between those of (a) and (c). The modulation becomes 
denser with |kp| decreasing, which could be induced by increasing ϕ or reducing JHnn. P phase exists in the narrow 
region on the right of A phase along the boundary as illustrated in Fig. 2(a), spreading and moving to higher ϕ 
when JHnn is raised. In contrast, Stγ(k) in the region on the left of A shows the peaks with different spin compo-
nents mixed, and no obvious texture can be observed in the map of Ei (Fig. 4(d)).

Discussion
In order to understand this nontrivial modulation, the magnetic states in P phase are discussed in detail. The 
texture of Ei map may correspond to the defect on magnetic structure, which is hard to be observed directly on 
the spin configuration of honeycomb lattice. When one triangular sublattice is extracted, the slightly distorted 
120° spin structure can be found on most elementary triangles as displayed in Fig. 5(a). In this case, an elementary 
ordering unit consists of three spins on a triangle, which can be evaluated by the chirality vector (κ, see Methods). 
The averaged length of κ gives < |κ|>  =  0.897, 0.862 and 0.832 respectively for the states in Fig. 4(a–c), indicating 
that 120° structure is kept locally in this phase.

At the state with JHnn =  0.55 and ϕ =  1.65625π , the κ(r) configuration calculated on one triangular sublattice 
exhibits a very regular pattern composed of different κ domains as plotted in Fig. 5(b). In order to observe the ori-
entations of these κ domains, the main part of domains, namely the κ vectors with |κ| >  0.996 are extracted and 
plotted in one chart with their ends moved to zero. As plotted in Fig. 5(c), one triangular sublattice will choose 
four of eight < 111>  directions, which just point to the four corners of a tetrahedron. And the other triangular 
sublattice will choose the other four directions. Note that A phase has the perfect 120° structure lying in one of the 
{111} planes, namely its κ points to one of eight < 111>  directions. Actually P is a phase with the coexistence of κ 
domains in all these eight directions. If Fig. 5(b) is replotted by hiding the κ vectors with |κ| <  0.996, a beautiful 
pattern can be found (Fig. 5(d)), which clearly shows that the κ domains with four orientations constitute four 
honeycomb lattices intersecting with each other. The domain walls are constructed between these κ domains, 

Figure 4. The spin structure factor on the triangular sublattice (Stγ(k)) is shown on the left of each figure for the 
states (a–c) in P phase and (d) in the region on the left of A phase. The solid (red), dashed (green) and dotted 
(blue) lines with arrows denote the signals from Sx, Sy and Sz respectively. Correspondingly, the maps of Ei on 
the honeycomb lattice are given on the right. For visibility, only part of the lattice is shown here, and the shading 
refers to the value of Ei.
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which are clearer when the shading marks the magnitude of κ, i.e. |κ|. As displayed in Fig. 5(e), the domain walls 
with smaller |κ| form a regular lattice, surrounding the triangular domains of κ. It is interesting that on the inter-
section of six domain walls, there are always three points with the smallest |κ| as the “vortex cores”, constituting 
a downward pointing triangle. In contrast, on the other triangular sublattice, the similar three “vortex cores” are 
placed on an upward pointing triangle as presented in Fig. 5(f). This κ vortex structure is confirmed by the map 
of vorticity (v, see Methods) in Fig. 5(g), where triplet vortexes with v =  1 just locate at the same place. Since it is 
close to A phase and 120° structure is kept locally on the triangular sublattice, the vortex here is Z2 type due to the 
order parameter space SO(3)29. Comparing to the Ei map of one triangular sublattice as plotted in Fig. 5(h), the 
domain walls and the vortex-triplets just correspond to the texture observed on Ei map.

The increase of |kp| corresponds to a denser modulation, which can be seen on κ(r) configurations as displayed 
in Fig. 6(a,b). In the case of JHnn =  0.4 and ϕ =  1.625π , although κ domains shrink, they still exist and form a reg-
ular pattern, which can be seen clearly by hiding the κ vectors with |κ| <  0.98 (Fig. 6(c)). The orientations of these 
κ domains still keep to the four corners of one tetrahedron for one sublattice, and the other sublattice chooses the 
remaining four directions, as shown in Fig. 6(e). When JHnn =  0.55 and ϕ =  1.6875π , the modulation becomes too 
dense to distinguish different domains. Whatever, by hiding the κ vectors with |κ| <  0.92, the framework of κ(r) 
configuration can be found as displayed in Fig. 6(d). Different from the aforementioned two cases with longer 
|kp| where κ(r) configurations show similar structures on two triangular sublattices, in this case different patterns 
are found. Moreover, the orientations of these dominant κ on two triangular sublattices tend to fall to the four 
corners of one tetrahedron, as shown in Fig. 6(f). The maps of vorticity in Fig. 6(g,h) also demonstrate denser 
texture with shorter |kp|, but the vortex-triplets can still be discerned.

It is noteworthy that this phase with topological triple-vortex lattice results from the mixed frustration of 
geometrical and Kitaev sources. JKn, JHn and JHnn are all important to produce such a phase. If JHnn =  0, namely the 
geometrical frustration is switched off as the horizontal bottom, the Kitaev frustration produces only homoge-
nous states even at the spin liquid points. If JKn =  0, namely the Kitaev frustration is turned off as the upright lines 
at ϕ =  0 and π , the geometrical frustration only generates homogenous FN and spiral states30,31. If JHn =  0 as the 
upright lines at ϕ =  0.5π  and 1.5π , there is only A phase also with FLE =  0. Furthermore, although inhomogene-
ous states may exist in the region on the left of A phase, the same signs of JHn and JKn can not enable an effective 
Kitaev frustration, and thus the vortex lattice can not be observed.

In summary, the honeycomb KH model expanded by considering the next-nearest-neighboring Heisenberg 
interaction is investigated in a wide parameter space. The simulation shows a rich phase diagram with periodic 
behavior. Besides the well-known F, N, S and Z orders, the noncollinear A and B phases are identified as the 
double 120° and its Klein dual phases. On the right of A, an inhomogeneous phase with nontrivial modulation 
is uncovered, which is stabilized by the mixed frustration of geometrical and Kitaev sources, and persists at 
temperature T →  0. Further analysis reveals that this is a particular ordered phase corresponding to the hexag-
onal domain structure of vector chirality, and on the crossings of these domain walls the topological Z2-vortex 
triplets form a lattice. This novel magnetic phase is stable in a parameter region relevant to iridates, since 
further-neighboring interaction beyond the nearest-neighboring one has been strongly suggested to explain the 
experimental results10,18.

Figure 5. The state of JHnn = 0.55 and ϕ = 1.65625π. (a) Spin configuration on one triangular sublattice, 
where the arrows show the projections of spins onto x-y plane with the color denoting the value of Sz. (b) κ(r) 
configuration on one triangular sublattice, where the arrows present the projections of κ onto x-y plane and the 
color refers to κz. (c) Configuration of κ vectors with |κ| >  0.996 and their ends moved to zero. The black arrows 
represent κ from one triangular sublattice and the green arrows from another one. (d) κ(r) configuration on one 
triangular sublattice with |κ| >  0.996 and the color representing the value of κz. (e,f) κ(r) configurations on two 
triangular sublattices with the color referring to the value of |κ|. (g) Map of vorticity (v) with the color denoting 
the value of v. (h) Map of Ei on one triangular sublattice which is extracted from the Ei map in Fig. 4(a). For 
visibility, only part of the lattice is shown here.
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Methods
The simulation is performed on the Hamiltonian of Eq. 1. Fixing + =J J 1Hn Kn

2 2  as the energy scale, the ratio 
of JHn to JKn is considered to its whole range by parameterizing JHn =  cosϕ and JKn =  sinϕ with ϕ: 0~2π . The Monte 
Carlo simulation of the Metropolis algorithm combined with the over-relaxation method is performed on the 
honeycomb lattice of N =  9216 sites with periodic boundary conditions assumed32,33, and one unit Monte Carlo 
step (MCS) consists of ten over-relaxation sweeps and one Metropolis sweep. On every parameter point, the sys-
tem is fully relaxed and evolved by a gradual cooling procedure from a random initial state to a very low temper-
ature T =  0.0000002 (6000 MCSs at every one of 20 intermediate temperatures). Then the energy is further 
minimized by 50000 MCSs restricted at T =  0 (namely only the proposed update with the energy variation not 
higher than zero is accepted) to approach the limit of zero temperature. The final result is obtained by comparing 
more than 10 independent data sets evolving from different initial states.

The obtained states are robust at the corresponding parameter points, which exist stably at low tempera-
ture, and survive even with perturbation from disorder or anisotropy. Based on the state obtained, the cor-
relations on the nearest-neighboring spin pairs (Cn), on the next-nearest-neighboring pairs (Cnn), on the 
third-nearest-neighboring pairs (Cnnn) and on the nearest-neighboring Kitaev bonds are calculated by
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Eight commensurate ordered states can be identified by the standard values of correlations listed in Table 1 
with less than 15 percent deviation. To further confirm or distinguish the magnetic states, the spin structure fac-
tor on the honeycomb lattice (Shγ(k)) is calculated in the form of 23

∑= ⋅γ γ γ⋅ −Sh k e S S( )
(4)i j

ik r r
i j

,

( )j i

In addition, since the honeycomb lattice is composed of two triangular sublattices, the spin structure factor 
can also be calculated on one triangular sublattice (Stγ(k)), namely,

∑= ⋅γ γ γ⋅ −St k e S S( )
(5)i j

ik r r
i j sublattice,

( )j i

In both cases, the spin structure factors are calculated for three spin components (γ =  x, y and z) respectively 
to show the detailed spin structure induced by the anisotropic Kitaev interaction.

To locate the inhomogeneous states, the fluctuation of local energy (FLE) is evaluated on the whole honey-
comb lattice in the form of

Figure 6. The upper line (a,c,e,g) shows the state of JHnn =  0.4 and ϕ =  1.625π . The lower line (b,d,f,h) presents 
the state of JHnn =  0.55 and ϕ =  1.6875π . The first column (a,b) gives κ(r) configurations on one triangular 
sublattice. The second column presents κ(r) configurations (c) with |κ| >  0.98 on one triangular sublattice and 
(d) with |κ| >  0.92 on two triangular sublattices separated by a dashed line. The arrows show the projections of 
κ onto x-y plane with the color referring to the value of κz. The third column displays the configurations of κ 
vectors with their ends moved to zero in the case of (e) |κ| >  0.98 and (f) |κ| >  0.92. The black arrows represent κ 
from one triangular sublattice and the green arrows from another one. The fourth column (g,h) gives the maps 
of vorticity (v) with the color denoting the value of v. For visibility, only part of the lattice is shown here.
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= −FLE E E (6)i i
2 2

The site-dependent local energy (Ei) is calculated by

∑ ∑ ∑= ⋅ + +
γ

γ γE J S S J S S J S S
(7)

i Kn
j

i j Hn i
j

j Hnn i
k

k
,

where j denotes the nearest-neighboring bonds and k denotes the next-nearest-neighboring bonds. The map of 
Ei can be checked to detect the nontrivial modulation on magnetic structure. To further analyze the nontrivial 
spin modulation, the chirality vector (κ) is calculated on the spin configuration of one triangular sublattice in the 
form of29,34

κ = × + × + ×r S S S S S S( ) 2
3 3

( )
(8)1 2 2 3 3 1

where the corner sites 1, 2 and 3 are numbered clockwise for every upward pointing elementary triangle (Fig. 1). 
The orientation of κ is perpendicular to the plane on which the 120° spin structure lies approximately. The length 
of κ (|κ|) gives a measure of the rigidity of 120° structure, and it is normalized to give unity for a perfect 120° 
structure. If the spin configuration keeps 120° structure locally, the vorticity (v) can be calculated in the same 
manner as refs 21 and 29 by going around the right- and left-pointing triangular loops as illustrated in Fig. 1. v is 
rescaled to be 0 for no rotation and 1 for a rotation by 2π .
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