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Fructose, but not glucose, impairs 
insulin signaling in the three major 
insulin-sensitive tissues
Miguel Baena1,2,*, Gemma Sangüesa1,2,*, Alberto Dávalos3, María-Jesús Latasa3, Aleix Sala-Vila4,5, 
Rosa María Sánchez1,2,4, Núria Roglans1,2,4, Juan Carlos Laguna1,2,4 & Marta Alegret1,2,4

Human studies support the relationship between high intake of fructose-sweetened beverages and type 
2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to 
an excessive caloric intake. Here we investigate the effects of 2 months’ supplementation to female 
rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose 
supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this 
fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did 
not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed 
an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine 
thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. 
In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired 
but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only 
in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without 
inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive 
tissues independently from the increase in energy intake.

The incidence of type 2 diabetes and insulin resistance is increasing worldwide, a trend that is largely attributable 
to lifestyle choices1. Unhealthy nutritional patterns such as high consumption of simple carbohydrates are related 
to these metabolic disorders. The use of fructose as a sweetener in beverages and processed foods (either as high 
fructose corn syrup or sucrose) contributes to an excessive dietary carbohydrate consumption. Studies in humans 
show that top consumers ingest over 100 g/day of fructose as added sweetener, which based on a 2000 kcal/day 
diet means that they derive more than 20% of their calories from fructose2. Due to its particular metabolic fate, 
fructose exerts specific effects on lipid and carbohydrate metabolism3,4; moreover, fructose in liquid form may 
be more harmful than in solid form, as the excess energy is not fully compensated by a decrease in food intake5. 
Several studies in humans support the relationship between high intake of fructose and hyperglycaemia, insulin 
resistance and type 2 diabetes3,6,7. However, it has been suggested that fructose is no worse than glucose in causing 
adverse cardiometabolic effects, even under equicaloric conditions8, and that the metabolic alterations observed 
should be attributed to the excess of energy intake and to changes in body weight9.

The rat is a good model to study the effects of fructose on carbohydrate metabolism in humans4. Unlike other 
species, rats and humans lack the intestinal enzyme that converts a substantial part of ingested fructose into glu-
cose, and the administration of fructose-enriched diets to rats induces metabolic alterations that closely resemble 
the human metabolic syndrome. Thus, although caution is needed when extending results of animal studies to 
humans, rats are useful models to understand the molecular mechanisms underlying the metabolic derangements 
caused by high-fructose diets. We have previously shown that the administration of a 10% w/v fructose solu-
tion to female rats caused hyperinsulinaemia, glucose intolerance, reduced insulin receptor substrate-2 (IRS-2) 
hepatic expression, and hepatic steatosis, which we attributed to the induction of carbohydrate response element 
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binding protein (ChREBP)10,11. In these studies, fructose was administered for 14 days, which is a short treatment 
period given that fructose consumption patterns in humans extend over many years.

Therefore, we studied the effects on insulin signaling in target tissues of a 2-month period of fructose sup-
plementation, comparable to 6 human years of daily fructose consumption12. We investigated whether there is 
a dissociation between fatty liver and insulin resistance and inflammation, as reported in mice with ChREBP 
overexpression13. In addition, to distinguish between effects related to increased caloric intake and the specific 
effects of fructose, we performed a second set of experiments including a group supplemented with liquid glucose 
under equicaloric conditions.

Methods
Animals and diets. Female Sprague-Dawley rats obtained from Charles River (Barcelona, Spain) were used 
for all experiments. Rats were maintained under conditions of constant humidity (40–60%) and temperature 
(20–24°) with a light/dark cycle of 12 hours. Procedures were conducted following the ‘Principles of laboratory 
animal care’ (NIH publication no. 85–23, revised 1985) and in accordance with the guidelines established by 
the University of Barcelona’s Bioethics Committee (Autonomous Government of Catalonia Act 5/1995, July 
21). All the experimental procedures involving animals were approved by the Ethical Committee of Animal 
Experimentation of the University of Barcelona (approval n° 5448).

Experiment 1. 20 rats aged 8 weeks were randomly assigned either to a control group (no supplementary sugar, 
n =  8) or a fructose-supplemented (10% w/v in drinking water) group (n =  12) for 2 months14. At the end of 
intervention, after a 2-h fast, the animals were anaesthetised with isoflurane and blood taken from the hepatic 
portal vein was collected in endotoxin-free tubes. Then, rats were euthanized by exanguination and liver samples 
were collected and stored as described15. The gastrocnemius muscle of both legs, and visceral white adipose tissue 
(vWAT, including retroperitoneal, perirenal and perigonadal adipose tissue) was collected, immediately frozen in 
liquid nitrogen, and stored at − 80 °C until needed.

Experiment 2. Another cohort of rats was used to perform a glucose tolerance test (GTT) and to examine their 
response to the administration of a bolus of insulin. Study duration was the same as above, but the experimental 
design also included a group supplemented with a glucose solution (n =  10 animals/group). Liquid and food 
intake were measured every day, caloric consumption was calculated, and the concentration of the glucose solu-
tion to be prepared for the next day was calculated in order to match the amount of calories ingested by the 
fructose group.

The GTT was performed as described10, with some modifications. Briefly, after a 6-h fast, the rats were anes-
thetized, and following the collection of an unchallenged sample (time 0), a glucose solution of 2 g/kg body weight 
was administered into the peritoneal cavity. During the test, blood was collected from the tail vein at 15, 30, 60, 90 
and 120 min after glucose administration. Glucose measurements were performed using a hand-held glucometer. 
Plasma insulin levels were measured at baseline, 15 and 120 min post glucose administration by using a rat insulin 
ELISA kit (Millipore, Billerica, MA). The area under the curve (AUC) values for glucose and insulin concentra-
tions were calculated by the trapezoidal method, using 0 as the baseline.

One week after the GTT 12-h fasted animals were anaesthetised with ketamine:xylazine (90:10 mg/kg body 
weight) and intraperitoneally injected with 0.15 units of insulin/g body weight (Humulina®  Regular, Lilly, 
Madrid, Spain)16. 15 minutes later, blood was obtained from the hepatic portal vein, and samples from liver, gas-
trocnemius muscle and vWAT were collected as described for experiment 1.

Blood/plasma lipids and insulin analysis. Blood triglycerides were measured using an Accutrend®  Plus 
System glucometer (Cobas, Roche Farma, Barcelona, Spain). Plasma cholesterol was determined by Cholesterol 
CHOD-POD colorimetric test N° 1001091 (Spinreact, Girona, Spain). Non-esterified fatty acids (NEFA) were 
determined using a plate-based colorimetric enzymatic assay (5620-01) from Bioo Scientific (Austin, TX, 
USA). Concentrations of insulin in plasma were determined using an enzyme-linked immunosorbent assay kit 
(Millipore, Billerica, MA).

Quantitative determination of alanine aminotransferase (ALT). To determine ALT activity in 
plasma samples we used the ALT/GPT Spinreact kit from Spinreact (Girona, Spain), based on the determination 
of the rate of decrease in NADH concentration, measured photometrically.

Lipidomic analysis of liver triglyceride fatty acid composition. Liver lipids were extracted and ana-
lysed as described previously17. For fatty acid determination, internal standard of C15:0 triglyceride was added 
to samples of liver homogenates followed by extraction of the total lipid material with chloroform/methanol 
(2:1 v/v). Triglycerides were isolated by solid-phase extraction as described in Burdge et al.18. Fatty acid methyl 
esters were prepared by incubation with acidified methanol and were separated by gas chromatography with 
an Agilent 7890 Gas Chromatograph HP 6890 equipped with a 30 m ×  0.25 μ m ×  0.25 mm SupraWAX-280 cap-
illary column (Teknokroma, Barcelona, Spain), an autosampler, and flame ionisation detection. Stearoyl-CoA 
desacturase (SCD1) activity was calculated as the ratio of palmitoleic to palmitic acid concentrations in hepatic 
triglycerides (C16:1 n-7/C16:0), as this index reflects hepatic SCD1 expression more closely than the ratio oleic 
to stearic acid19.

Endotoxin assay. Blood samples from the hepatic portal vein collected in endotoxin-free tubes were heated 
at 70 °C for 5 minutes. Endotoxin plasma levels were measured using a limulus amoebocyte lysate assay with a 
concentration range of 0.015–1.2 EU/mL (Charles River, L’Arbresle, France).



www.nature.com/scientificreports/

3Scientific RepoRts | 6:26149 | DOI: 10.1038/srep26149

Histological studies. Necrosis and fibrosis were analyzed in liver sections stained with haematoxylin-eosin 
and trichromic acid, respectively. Images, acquired with an Olympus BX43 microscope, were interpreted at 
BioBanc (Banc de tumors-IDIBAPS, Barcelona Spain).

RNA preparation and analysis. Total RNA was isolated by using the TrizolR reagent (Invitrogen, 
Carlsbad, CA, USA), in accordance with the manufacturer’s instructions. RNA concentration and purity were 
measured spectrophotometrically using the NanoDrop®  ND-1000 Spectrophotometer (Thermo Scientific). The 
ratio of absorbances at 260/230 and at 260/280 were used as indicators for RNA purity. RNA integrity was deter-
mined by running samples on 1% agarose gels stained with ethidium bromide. RNA quality was checked by the 
presence of sharp 28S and 18S rRNA bands at a ratio 2:1. Specific mRNAs were assessed by real-time reverse 
transcription polymerase chain reaction (RT-PCR) using SYBR green PCR Master Mix, specific primers and the 
Applied Biosystems One-Step Plus sequence detection system (Applied Biosystems, Foster City, CA, USA). As 
internal control, TATA box binding protein (tbp) was used. Primer sequences and PCR product length are listed 
in Supplementary Table 1.

Analysis of microRNA. Total RNA, including small RNAs, was isolated using the miRNeasy minikit 
(Qiagen). For microRNA (miRNA) expression quantification, miRNAs were reverse-transcribed using the miS-
cript II reverse transcription kit (Qiagen). Specific primers were used for each miRNA (Qiagen), and real-time 
PCR was performed using the miScript SYBR Green PCR kit (Qiagen) on a 7900 HT Fast Real-Time PCR System 
(Applied Biosystems). Relative expression was calculated by the 2−ΔΔCt method using RNU6 for normalisation. 
Only miRNAs validated for the target genes were analysed. Selection of validated miRNAs was assessed using the 
MirWalk 320 and miRTarbase 421 databases.

Preparation of protein extracts. Total and nuclear protein extracts from liver and muscle were obtained 
by the Helenius method22. Adipose tissue samples were micronized through freezing with liquid nitrogen and 
grinding with a mortar. For total protein extraction, lysis buffer with proteases, phosphatases and acetylase inhib-
itors (50 mM Tris–HCl pH =  8, 150 mM NaCl, 1% Igepal, 10 mM NaF, 1 mM EDTA, 1 mM EGTA, 2 mM Nappi, 
1 mM PMSF, 2 μ g/mL leupeptin, 2 μ g/mL aprotinin, 1 mM Na3VO4, 10 mM NaM, 1 μ M TSA) were added to 
micronized tissue and homogenized for 1.5 h at 4 °C. Then, samples were centrifuged at 15,000 ×  g for 15 min at 
4 °C and supernatant was collected. Protein concentrations were determined by the Bradford method23. To detect 
GLUT4 protein translocation to the plasma membrane, a subcellular fraction enriched with plasma membrane 
proteins was prepared from rat muscle samples by sequential centrifugation24.

Western blot analysis. 30 μ g of different protein fractions from rat tissues was subjected to SDS- 
polyacrylamide gel electrophoresis. Proteins were then transferred to Immobilon polyvinylidene difluoride 
transfer membranes (Millipore, Billerica, MA, USA), blocked for 1 h at room temperature with 5% non-fat 
milk solution in 0.1% Tween-20-Tris-buffered saline (TBS), and incubated as described previously15. Detection 
was performed using the ECL chemiluminescence kit for HRP (Amersham GE Healthcare Europe GmbH, 
Barcelona, Spain). To confirm the uniformity of protein loading, blots were incubated with β -tubulin or β -actin 
antibodies (Sigma-Aldrich, St. Louis, MO, USA) as a control. Primary antibodies for phospho-and total AKT, 
phospho- and total AS160, phospho-ERK, GLUT4, phospho-PKA and phospho-TSC-2 were supplied by Cell 
Signaling (Danvers, MA, USA), those for 14-3-3, ChREBP, phospho-and total FoxO1, IRS-1, IRS-2, MKP-3 
and phospho-SGK-1 were obtained from Santa Cruz Biotechnologies (Dallas, TX, USA), and antibody against 
phospho-mTOR was from Millipore (Billerica, MA, USA).

Statistical analysis. The results are expressed as the mean of n values ±  standard deviation. Plasma sam-
ples were assayed in duplicate. Gaussian distribution of the data was verified using the Kolmogorov-Smirnov 
normality test, and significant differences were established by two-tailed unpaired t-test, ANOVA test, or a 
non-parametric test, as appropriate (GraphPad Prism Software V5). The level of statistical significance was set at 
p ≤  0.05.

Results
Fructose induces hepatic steatosis and modifies liver lipid composition through ChREBP induction.  
Initially we used liver samples from a previous study14 to assess the effects of 2 months’ 10% (w/v) fructose 
supplementation on the fatty acid profile of hepatic triglycerides. Fructose supplementation (experiment 1) did 
not modify plasma cholesterol concentration, but caused hypertriglyceridaemia and hepatic steatosis (Table 1, 
previous study14). Total monounsaturated fatty acids (MUFA) in the hepatic triglyceride fraction were signifi-
cantly increased (x2.8-fold, p <  0.05, Fig. 1a), as a result of significant increases in both palmitoleic acid (C16:1 
n-7) (x4.1-fold, p <  0.01) and oleic acid (C18:1 n-9) (x2.7-fold, p <  0.05) (Fig. 1b). Consistently, SCD1 activity 
estimated by the ratio of product to substrate (C16:1 n-7/C16:0) was increased x2.5-fold (p <  0.001) (Fig. 1c). In 
contrast, both n-3 and n-6 polyunsaturated fatty acids (PUFA) were decreased x0.4 and x0.5-fold, respectively 
(p <  0.05, both) (Fig. 1a). The latter was mostly explained by a x0.3-fold reduction (p <  0.001) in arachidonic acid 
(C20:4 n-6) (Fig. 1b). The amount of ChREBP in nuclear extracts was increased x6.5-fold (p <  0.001) compared 
with control rats (Fig. 1d).

Fructose reduces hepatic expression of IRS-2. Fructose supplementation led to a drastic decrease in the 
amount of hepatic IRS-2 (x0.35-fold, p <  0.001) which was not accompanied by a compensatory increase in IRS-1 
(Fig. 2a,b). To gain an insight into the mechanisms by which fructose administration leads to reduced IRS-2,  
we analysed some miRNAs which control the expression of proteins involved in insulin signaling. As shown in 
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Fig. 2c, miR-33-3p expression was increased (x1.4-fold, p <  0.05), whereas the expression of miR-145-3p and 7-1-
5p was reduced (x0.65-0.68-fold, p <  0.0001).

Hepatic steatosis in fructose-supplemented rats is dissociated from inflammation and oxidative  
stress in liver and vWAT. The livers of fructose-supplemented rats showed a reduced mRNA level 
(x0.45-fold, p =  0.05) of nuclear factor-E2-related factor-2 (nrf2), a cellular sensor for oxidative stress (Table 2). 
Expression of the antioxidant genes glutathione peroxidase 1 (gpx1) and superoxide dismutase 2 (sod2) was not 
significantly altered (Table 2).

Endotoxin levels in portal vein blood samples, and hepatic mRNA expression of toll-like receptor-4 (tlr4) 
and its downstream myeloid differentiation factor 88 (myd88), were unaffected by fructose supplementation. 
Accordingly, there was no activation of nuclear factor κ B (NFκ B), exemplified by unchanged expression of Iκ B  
and p65 proteins in nuclear extracts (Table 2). Other markers of liver tissue inflammation remained unaltered, 
mRNA levels of metallothionein-1 and -2 (mt-1 and mt-2) were even reduced, and plasma ALT levels were 
decreased as well in fructose-supplemented versus control rats, confirming the lack of hepatic inflammation 

Control Fructose

Kcal ingested from solid (2 rats x 2 months)a 5604 ±  44 3296 ±  138***

Kcal ingested from líquid (2 rats x 2 months)a 0 5825 ±  594

Total ingested kcal (2 rats x 2 months)a 5604 ±  44 9121 ±  683***

Plasma insulin (ng/ml) 0.22 ±  0.04 0.42 ±  0.13*

Plasma glucose (mg/dl) 107 ±  14 110 ±  12

Plasma cholesterol (mg/dl) 160 ±  3 164 ±  8

Hepatic triglycerides (mg/mg of protein) 0.011 ±  0.001 0.018 ±  0.005*

Table 1. Ingested kilocalories, plasma analytes and liver triglycerides of female rats supplemented or not 
with 10% w/v liquid fructose for 2 months. AUC: Area Under the Curve. Values are expressed as mean ±  SD of 
5 controls and 8 fructose-supplemented rats, except for valuesa, which were obtained from 4–6 cages containing 
2 rats each. *p <  0.05; ***p <  0.001 (unpaired t test).

Figure 1. Triglyceride fatty acid content (chemical groups (a), selected species (b), and SCD1 activity index 
estimated by the ratio 16:1/16:0 (c), and western-blot analysis of ChREBP in nuclear extracts (d) in hepatic 
samples from control and fructose-supplemented rats from experiment 1. Bars represent the mean ±  sd 
of values obtained from n =  6 (control) and n =  8 (fructose-fed) animals. A representative western blot 
corresponding to 3 different control and fructose-fed rats is shown.*p <  0.05; **p <  0.01; ***p <  0.001 (unpaired 
t test).



www.nature.com/scientificreports/

5Scientific RepoRts | 6:26149 | DOI: 10.1038/srep26149

(Table 2). In addition, we did not detect any histological signs of hepatic necrosis or fibrosis (Fig. 3) and mRNA 
expression of collagenase-1 (collα1), a gene involved in liver fibrogenesis, was not significantly altered (Table 2). 
Similarly, markers of inflammation and fibrosis in vWAT from fructose-supplemented rats were not modified 
(Table 2).

Fructose but not glucose supplementation causes an abnormal GTT. We used a second cohort 
of rats to perform a GTT, where we included an additional group of animals supplemented with a glucose solu-
tion adjusted to match the amount of calories provided by fructose (experiment 2). As shown in Table 3, both 
glucose- and fructose-supplemented groups behaved similarly regarding food and drink consumption: they 
drank approximately x4-fold more than control rats (p <  0.001), and reduced their solid food consumption 
x0.6-fold (p <  0.0001). Consequently, the total caloric intake in both groups was almost identical and x1.6-fold 
higher (p <  0.001) than in control rats. Despite this, body weight and vWAT weight at the end of treatment were 
not significantly different in the three groups. Plasma triglyceride concentrations were significantly increased 
(p <  0.01) in sugar-supplemented rats. Plasma insulin levels were also increased (p <  0.05 for fructose-fed rats), 
whereas glucose concentrations were not changed.

The results of the GTT showed that only fructose-supplemented rats displayed increased blood glucose excur-
sions at all time-points after the glucose challenge (Fig. 4a); consequently, the integrated glucose concentration 
calculated as the area under the curve (AUC) was increased x1.3-fold in fructose- (p <  0.05 vs control) but not in 
glucose-supplemented rats (Fig. 4b). However, glucose-stimulated insulin levels were significantly increased in 
both fructose- and glucose-supplemented rats (Fig. 4c,d).

Figure 2. Expression of proteins and microRNAs involved in hepatic insulin signaling. IRS-2 (a) and IRS-1 
(b) protein levels determined by western blot. (c) RT-PCR analysis of miR-33-3p, miR-33-5p, miR-145-3p and 
miR-7-1-5p. Bars represent the mean ±  sd of values obtained from n =  6 (control) and n =  8 (fructose-fed) 
animals from experiment 1. Representative western blots corresponding to 3 different control and fructose-fed 
rats are shown.*p <  0.05; ***p <  0.001 (unpaired t test).



www.nature.com/scientificreports/

6Scientific RepoRts | 6:26149 | DOI: 10.1038/srep26149

Increased phosphorylation of forkhead box protein O1 (FoxO1) impairs gluconeogenic 
gene induction even though insulin-induced Akt phosphorylation is hampered in the liver 
of fructose-supplemented rats. Fructose-, but not glucose-supplemented rats, exhibited reduced 
levels of hepatic IRS-2 (x0.59-fold, p <  0.05) (Fig. 5a), whereas IRS-1 expression was not significantly modi-
fied by sugar supplementation (Fig. 5b). The abnormal GTT and reduced IRS-2 expression in the liver of 
fructose-supplemented rats pointed to an impairment in hepatic insulin signaling. Despite the hyperinsulinae-
mia present in both carbohydrate-supplemented groups (Table 3), phosphorylation of Akt in the liver was not 
modified (Fig. 5c). However, there was a marked increase in the phosphorylated form of FoxO1 in the livers of 
fructose- (x2.3-fold, p <  0.05) and glucose-supplemented (x2.7-fold, p <  0.05) rats (Fig. 5d). The expression of 
major gluconeogenic genes was either unchanged (phosphoenolpyruvate carboxykinase, pepck; Fig. 5e) or even 
reduced (glucose-6-phosphatase, g6pc; Fig. 5f).

Possible explanations for increased levels of p-FoxO1 independently from Akt phosphorylation status could 
include changes in the expression or activity of other kinases or phosphatases, but none of them were significantly 
affected by carbohydrate supplementation (Fig. 6a–d). Recently, it has been described that FoxO1 phosphoryla-
tion is controlled by the mammalian target of rapamycin (mTOR) in rat hypothalamus25 and in human smooth 
muscle cells26. As shown in Fig. 6e,f, hepatic samples from both fructose- and glucose-supplemented rats showed 
an increase in Ser-2481 mTOR and in Thr-1462 tuberous sclerosis complex 2 (TSC2) phosphorylation, indicative 
of mTOR activation.

To further explore hepatic insulin sensitivity, Akt activation was measured in the liver of control and 
carbohydrate-supplemented rats 15 minutes after a single injection of saline or insulin (0.15 units/g body weight). 
Akt phosphorylation was increased x2.3-fold and x1.7-fold (p <  0.05) in the liver of insulin-treated rats from con-
trol and glucose groups compared with saline-treated animals, but not in fructose-supplemented rats (Fig. 7a).

Fructose but not glucose supplementation impairs insulin signaling in vWAT. Under basal con-
ditions the expression of key enzymes involved in triglyceride synthesis was only significantly increased in vWAT 
of glucose-supplemented rats (Fig. 8a–c), even though insulin promotes lipogenesis in adipose tissue and both 
carbohydrate-supplemented groups showed hyperinsulinaemia. On the other hand, sugar supplementation did 
not promote inflammation in vWAT, as shown by no significant changes in mRNA levels of mcp-1 and tnfα 
(Fig. 8d,e). When we compared Akt phosphorylation in vWAT after administration of the insulin bolus (Fig. 7b), 
we observed a striking increase in control rats (x8.9-fold, p <  0.05), a significant but less marked increase in 
glucose-supplemented rats (x1.9-fold, p <  0.05) and no change in fructose-supplemented rats. As the main effect 
of insulin on adipose tissue is lipolysis inhibition, we determined plasma NEFA levels after insulin administration. 

Control Fructose

Oxidative stress Liver mRNA nrf2 100 ±  39 55 ±  28*

gpx1 100 ±  3 93 ±  11

sod2 100 ±  10 108 ±  9

Inflammation Liver mRNA tlr4 100 ±  14 84 ±  11

myd88 100 ±  7 84 ±  8

tnfα 100 ±  57 115 ±  59

nlrp3 100 ±  55 108 ±  54

mcp-1 100 ±  17 106 ±  19

pai-I 100 ±  10 95 ±  19

mt-1 100 ±  19 40 ±  21***

mt-2 100 ±  40 32 ±  17*

protein Iκ Bα 1.00 ±  0.07 0.96 ±  0.06

p65 1.00 ±  0.09 0.97 ±  0.18

VWAT mRNA tlr4 100 ±  51 100 ±  41

myd88 100 ±  49 96 ±  21

tnfα 100 ±  88 92 ±  74

mcp-1 100 ±  38 131 ±  68

Plasma Endotoxin (EU/ml) 29.1 ±  28.5 20.1 ±  12.8

ALT (U/l) 25.7 ±  7.5 18.1 ±  4.2*

Fibrosis Liver mRNA collα1 100 ±  64 119 ±  74

vWAT mRNA collα1 100 ±  51 68 ±  76

Table 2.  Effects of 10% w/v fructose supplementation for 2 months on markers of oxidative stress, 
inflammation and fibrosis. Values are expressed as mean ±  SD of 5 controls and 8 fructose-supplemented rats. 
Collα1: collagenase 1, gpx1: glutathione peroxidase 1, Iκ Bα : nuclear factor κ -B inhibitor α , mcp-1: monocyte 
chemoattractant protein- 1, mt: metallothionein, myd88: myeloid differentiation factor 88, nlrp3: pyrin domain 
containing 3 gene, nrf2: nuclear factor-E2-related factor-2, pai-I: plasminogen activator inhibitor-I, tlr: toll-like 
receptor, sod2: superoxide dismutase 2, tnfα: tumor necrosis factor α . EU: endotoxin units. U: international 
units *p <  0.05; ***p <  0.001 (unpaired t test).
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NEFA were reduced in the three experimental groups, although the reduction was of a greater magnitude in con-
trol and glucose-supplemented rats (Fig. 8f).

Fructose, but not glucose supplementation reduces GLUT4 levels in plasma membrane.  
Exogenous insulin administration similarly increased Akt phosphorylation in skeletal muscle from control, 
glucose- and fructose-supplemented animals (Fig. 7c). AS160 phosphorylation in insulin-treated rats was sig-
nificantly increased in both fructose and glucose groups (x1.7- and x1.5-fold, respectively, p <  0.05), whereas the 
total amount of AS160 was not significantly modified (Fig. 9a). The amount of the phosphoprotein-binding pro-
tein 14-3-3 was not affected by sugar supplementation (Fig. 9b). However, the expression of GLUT4 in a plasma 
membrane-enriched fraction was reduced in fructose-supplemented rats and increased in the glucose group 
(Fig. 9c). To further characterize the process of GLUT4 translocation, we assessed the expression of proteins 
involved in the fusion of GLUT4 containing vesicles to the plasma membrane, but none of them was significantly 
modified by sugar supplementation (Fig. 9d).

Figure 3. Histological study of liver sections from control and fructose-supplemented rats stained with H&E 
(a) and Masson’s trichrome (b). Images are representative from n =  4/group, experiment 1 (magnification 20X).

Control Fructose Glucose

AUC solid food intake (g/[2 rats x 2 months])a 1553 ±  79 930 ±  124*** 904 ±  100***

AUC liquid intake (ml/[2 rats x 2 months])a 2893 ±  711 11448 ±  2713*** 12163 ±  701***

Kcal ingested from solid (2 rats x 2 months)a 4502 ±  229 2698 ±  359*** 2624 ±  289***

Kcal ingested from liquid (2 rats x 2 months)a 0 4579 ±  1085 4850 ±  280

Total ingested kcal (2 rats x 2 months)a 4502 ±  229 7277 ±  735*** 7489 ±  354***

Final body weight (g) 253.2 ±  14.9 261.8 ±  12.3 265.3 ±  16.1

AUC weight (g/[2 rats x 2 months])a 13188 ±  721 13479 ±  534 13594 ±  645

vWAT veight (g) 5.6 ±  1.4 6.5 ±  1.7 6.8 ±  1.8

Plasma insulin (ng/ml) 0.54 ±  0.02 1.26 ±  0.46* 1.13 ±   ±  0.35

Plasma glucose (mg/dl) 118 ±  25 100 ±  17 104 ±  17

Plasma triglycerides (mg/dl) 128 ±  17 177 ±  40** 159 ±  18**

Table 3. Zoometric parameters and plasma analytes of female rats supplemented or not with 10% w/v 
liquid fructose or glucose for 2 months. AUC: Area Under the Curve. Values are expressed as mean ±  SD of 
10 controls, 10 glucose and 10 fructose-supplemented rats, except for valuesa, which were obtained from 5 cages 
containing 2 rats each. *p <  0.05; **p <  0.01; ***p <  0.001 (one-way ANOVA and Bonferroni post-test).
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Discussion
Here we show that supplementation with 10% w/v liquid fructose for 2 months to female rats causes liver dep-
osition of triglycerides enriched in MUFA with no signs of liver and vWAT inflammation and oxidative stress. 
Nevertheless, fructose-supplemented rats display an abnormal GTT and an impairment of insulin signaling in the 
three major insulin-responsive tissues: in vWAT and liver, where fructose inhibits insulin-induced Akt phospho-
rylation, and in skeletal muscle, where Akt is correctly activated by insulin but GLUT4 expression in the plasma 
membrane is reduced. These effects are specific to fructose, and not related to the amount of calories ingested, as 
equicaloric glucose supplementation does not affect tissue-insulin signaling and does not alter the GTT, although 
at the expense of high plasma insulin levels.

We and others have previously reported fructose-related stimulation of de novo lipogenesis and fatty liver in 
animal models15,27–30 and in humans31–33. In this complex process, the microsomal enzyme SCD1 is rate-limiting 
in the hepatic synthesis of palmitoleic and oleic acids, the main species contained in liver lipid droplets. However, 
there is debate on whether expression of SCD1 causally contributes to the disease or is a mere consequence, i.e., 
to prevent liver damage by partitioning more lipotoxic intermediate products such as free fatty acids, ceramides 
and diacylglycerols34,35. In line with the latter, a recent study in mice overexpressing ChREBP showed that SCD1 
induction increases the content of hepatic MUFA while protecting the liver from insulin resistance and hepatic 
inflammation13. Fructose supplementation induces a similar effect in our study: ChREBP is activated (Fig. 1D), 
SCD1 expression14 and activity (Fig. 1C) are increased, and there is a change in the pattern of hepatic triglyceride 
fatty acids consisting in an increase in MUFA (palmitoleic and oleic) and a decrease in n-6 and n-3 polyunsatu-
rated fatty acids (PUFA) (Fig. 1A), but no inflammation is ensued (Table 2). The last finding is consistent with a 
trial in healthy humans, reporting that very-high-fructose or glucose intake for 4 weeks does not cause inflam-
mation36. The decrease in PUFA could also explain the lack of oxidative stress in fructose-supplemented rats, as 
PUFA are more prone to oxidation than MUFA, and n-3 PUFA promote lipid oxidation37. In addition, inflamma-
tion in fructose-supplemented mice has been shown to result from alterations in the intestinal barrier permeabil-
ity and increased flux of endotoxins to the liver38,39. We did not find increased plasma endotoxin levels or changes 

Figure 4. Results of the glucose tolerance test in rats from experiment 2. Blood glucose (a) and plasma 
insulin (c) values at different times after intraperitoneal administration of a glucose solution (2 g/kg body 
weight). Area under the curve (AUC) values for glucose (b) and insulin (d) concentrations shown in Fig. 1a,c, 
respectively. Results are the mean ±  sd of values from 10 animals/group. *p <  0.05; **p <  0.01; ***p <  0.001 
(one-way ANOVA and Bonferroni post test).
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in the expression of related receptors and downstream factors in rats, suggesting that this is a species-specific 
response of mice to fructose supplementation.

Despite the lack of an inflammatory or oxidative response, we nevertheless observe reduced levels of the 
main hepatic insulin transducer, IRS-2, in the liver of fructose-supplemented rats, thus suggesting liver insulin 
resistance. Reduced hepatic IRS-2 was also found in our previous 2-week fructose supplementation study, and 
we attributed this effect to increased mTOR activity11. Besides observing that same increment in mTOR activity 
within this study, we show an increase in miR-33-3p as a new mechanism contributing to fructose reduction of 
hepatic IRS2 expression40. To our knowledge, this is the first report on the modulation of miRNA-33 by fructose 

Figure 5. Insulin signaling in hepatic samples. Protein expression of (a) IRS-2, (b) IRS-1, (c) phosphorylated 
and total AKT, and (d) phosphorylated and total FoxO1, and mRNA levels of pepck (e) and g6pc (f). Bars 
represent the mean ±  sd of values obtained from n =  4 rats from experiment 2/group. Representative western 
blots corresponding to 3 different rats for each condition are shown in Fig. a–c. *p <  0.05 (one-way ANOVA and 
Bonferroni post test).
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ingestion, although dietary glycaemic load, and specifically diet supplementation with liquid fructose, can alter 
the miRNA liver expression profile41,42.

Under equicaloric conditions (see Table 3), we show that fructose but not glucose supplementation induces 
glucose intolerance. Both glucose- and fructose-supplemented groups responded to the glucose challenge by 
increasing plasma insulin levels; however, this hyperinsulinaemia only maintained blood glucose concentrations 
within the normal range in glucose-supplemented animals, whereas glucose levels throughout the GTT were 
increased by 30% in fructose-supplemented rats (Fig. 4). This difference between the two carbohydrates prompted 
us to examine whether insulin signaling is also specifically impaired by fructose in target tissues.

In adipose tissue, insulin signals through Akt to reduce lipolysis and NEFA release to the bloodstream43,44. 
Our results demonstrate that fructose impairs insulin signaling in vWAT: after administration of an insulin bolus, 
Akt phosphorylation in vWAT is only blunted in fructose-supplemented rats (Fig. 7b). Crescenzo et al. reported 
reduced p-Akt related to plasma insulin in WAT, and impairment in the capacity of insulin to inhibit lipolysis 
in cultured adipocytes from male rats fed a fructose-rich solid diet45. Although we did not directly measure  
in vitro lipolytic activity, plasma NEFA after insulin administration were more efficiently reduced in control and 
glucose-fed animals than in the fructose group (Fig. 8f).

In the liver, only fructose supplementation reduces IRS-2 protein expression and insulin-induced Akt phos-
phorylation (Figs 5a and 7a). Nevertheless, this state of fructose-induced insulin resistance is atypical, as FoxO1 
phosphorylation is increased (Fig. 5d) and therefore the expression of gluconeogenic genes is not induced 
(Fig. 5d,e). It should be noted that FoxO1 phosphorylation is increased in both fructose and glucose groups, 
suggesting that this effect is independent from Akt and related to the high calorie intake of these animals. 
Nutrient-rich conditions activate mTOR46, and we have previously demonstrated that fructose supplementation 
activates mTOR through increased phosphorylation14. We show here that mTOR is activated to the same extent in 
both carbohydrate-supplemented groups (Fig. 6e), which is attributable to an almost identical excess in nutrient 
intake (Table 3). As it has recently been shown that activated mTOR inhibits the activity of FoxO1by increasing 
its phosphorylation25,26, we can conclude that the increase in calorie intake in both carbohydrate-supplemented 
groups leads to mTOR activation, resulting in similar increases in FoxO1 phosphorylation.

One consequence of this atypical hepatic insulin resistance is that the higher glucose levels observed dur-
ing the GTT in fructose-supplemented rats cannot be explained by an increase in hepatic glucose production. 
Reduced glucose uptake by skeletal muscle may be an alternative explanation, as this is the main tissue responsible 
for glucose disposal47. Here, we show that after exogenous insulin administration, Akt is phosphorylated to a sim-
ilar extent in the three experimental groups, but the translocation of the glucose transporter GLUT4 to the plasma 
membrane is specifically inhibited in fructose-supplemented rats (Fig. 9c). The mechanism for insulin-induced 
GLUT4 translocation involves the binding of phosphorylated AS160 to 14-3-3, which promotes the movement of 
GLUT4 storage vesicles to fuse with the plasma membrane48. Our results do not allow to establish the molecular 
mechanism by which GLUT4 translocation to the plasma membrane of skeletal muscle is altered by sugar supple-
mentation, as AS160 phosphorylation is similarly increased in both glucose- and fructose-supplemented rats and 
neither the amount of 14-3-3 nor the mRNA expression of proteins involved in the fusion of GLUT4 vesicles to 
the membrane are modified (Fig. 9a,c,d). However, the reduction of GLUT4 expression in the plasma membrane 

Figure 6. Expression of phosphatases and kinases related to FoxO1 phosphorylation in hepatic samples. 
Western blot of MKP-3 (a), phospho-SGK-1 (b), phospho-ERK1/2 (c) phospho-PKA (d), phospho-mTOR (e), 
and phospho-TSC2 (f). Bars represent the mean ±  sd of values obtained from n =  4 animals from experiment 2.  
Representative bands corresponding to 3 different rats per treatment group are shown. ERK: extracellular 
signal-regulated kinase; MKP-3: MAP kinase phosphatase 3; PKA: protein kinase A; SGK-1: serum- and 
glucocorticoid- inducible kinase 1. *p <  0.05 (one-way ANOVA and Bonferroni post test).
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Figure 7. Insulin signaling in target tissues from rats of experiment 2. Protein expression of total and 
phosphorylated-AKT in the liver (a), vWAT (b) and skeletal muscle (c) of control, glucose- and fructose-
supplemented rats injected with saline (n =  4/group) or insulin (n =  6/group). Bars represent the mean ±  sd, 
and representative western blots corresponding to 3 different rats for each condition are shown. *p <  0.05; 
**p <  0.01; ***p <  0.001 (one-way ANOVA and Bonferroni post test).
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of skeletal muscle suggests that the high plasma glucose levels observed in the GTT in fructose-fed rats are a con-
sequence of reduced glucose uptake in this tissue and not of increased hepatic glucose production. Similar results 
were observed in male Wistar rats fed a solid diet with 60% fructose for 6 weeks49.

Few human intervention studies have determined muscle insulin sensitivity after high fructose consumption, 
and the most of these did not detect any effect32,50–52. However, these studies have generally been small, performed 
on young healthy individuals, and short (1–4 weeks), whereas consumption of fructose-rich diets in the general 
population may span many years and include people with genetic backgrounds prone to metabolic diseases, such 
as obesity. In this sense, a longer intervention study (10 weeks) has demonstrated reduced insulin sensitivity in 
overweight/obese subjects consuming fructose but not glucose at the same % of energy requirements3.

We can conclude that with the exception of mTOR activation, molecular changes in liver, vWAT and skeletal 
muscle are related to fructose-induced insulin resistance, and rather than being directly related to the amount of 
calories ingested, are produced by fructose itself. The reduction of hepatic IRS-2 in fructose-supplemented rats 
can be interpreted as the combined effect of mTOR activation (induced by the excess of sugar-related calories 
consumed) and miRNA induction, an effect that is probably particular to fructose.

One of the strengths of our study is the inclusion of glucose-supplemented rats whose calorie consumption 
was matched to that of fructose-supplemented animals, allowing us to demonstrate that the effects of fructose 
on insulin sensitivity are specific and independent from the amount of calories provided by its consumption. 
Moreover, we want to highlight that in our study we simultaneously assessed the response to insulin and the 
mechanisms involved in the three target tissues (adipose, liver and skeletal muscle), thus obtaining a complete 
picture of whole-body insulin sensitivity.

However, our study also presents some limitations, besides the difficulties entailed in directly extrapolating 
results obtained in experimental animals to humans. These are: 1. We used female rats, and we cannot be sure 
that the same effects would be observed in male rats; 2. high consumption of sugar-sweetened beverages often 
cluster with other bad dietary habits in a Western-type diet, high in calories and saturated fats and poor in com-
plex carbohydrates and micronutrients; 3. We used simple sugar solutions with concentrations (10% w/v) very 
close to those of sugar-sweetened beverages consumed by humans; however, to obtain meaningful results within 
a reasonable timeframe, rats were given ad libitum access to these solutions. As a consequence, around 60% of 
their total daily energy ingestion came from fructose or glucose, whereas heavy consumers in human populations 
obtain a maximum of 20–25% of their daily energy intake from simple sugars. In future research projects, we will 

Figure 8. mRNA levels of key enzymes involved in triglyceride synthesis and inflammation in vWAT:  
(a) dgat2, (b) fas, (c) scd1, (d) mcp-1 and (e) tnfα. Bars represent the mean ±  sd of values obtained from rats 
from experiment 2 injected with saline (n =  4/group). (f) Concentration of NEFA in plasma samples. Bars 
represent the mean ±  sd of values obtained from rats from experiment 2 injected with saline (n =  4/group) or 
insulin (n =  6/group).*p <  0.05; **p <  0.01 (one-way ANOVA and Bonferroni post test).
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attempt to address these questions by restricting the amount of total calories obtained from sweetened beverages, 
while increasing the length of treatments and the type of solid chow consumed.
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