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Quantum state transfer via Bloch 
oscillations
Dario Tamascelli1,2, Stefano Olivares1,3, Stefano Rossotti1, Roberto Osellame4,5 & 
Matteo G. A. Paris1,3

The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, 
is a fundamental step in the construction of scalable quantum devices. In this paper we describe a 
transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed 
protocol makes it possible to carry a quantum state over different distances with a minimal engineering 
of the transmission medium and can be implemented and verified on current quantum technology 
hardware.

The possibility of transferring, or sharing, a quantum state between different parties of a quantum network is of 
fundamental importance in quantum computation and communications systems. In solid-state implementations 
of quantum devices, for example, several small units need to be connected in order to share information among 
them, much the same way current (classical) computers components are. The realization of reliable channels, 
able to the transfer of quantum information with high fidelity, is therefore a fundamental step in the construc-
tion of a scalable quantum computer1. The latter, in turn, hold the promise of speeding up the solution of certain 
problems perceived as difficult on a classical computer2 and of enabling controlled simulations of the behavior 
of complex quantum systems3,4. Different quantum state transfer (QST) schemes have been proposed in the last 
decade. The range of systems that can be engineered for the task is quite large5,6. However, on ground of physical 
implementability and scalability, protocols that: i) avoid interactions with the system except at initialization and 
read-out; ii) are time-independent Hamiltonian, are to be preferred6. A periodical switching of a control field can 
be also of interest in view of an almost dispersionless transport over long distances2,7. Recently, an experimental 
verification on waveguide lattices8 of the perfect-state transfer protocols proposed in9–11 and12,13 has been reported 
in14,15 and16.

Here we propose a protocol to exploit Bloch oscillations17 in order to achieve nearly optimal state transfer. We 
use the probability of transfer of an information carrier between two different regions of a transmission line as 
a figure of merit and study the trade-off between the amount of resources used to prepare the initial state of the 
carrier and the transfer probability.

Our protocol requires a minimal engineering of the channel, consisting in the introduction of an externally 
tunable temperature18 gradient, or an electric field19. It offers the remarkable possibility of changing the transmis-
sion distance without modifying the geometry of the device. This feature represents a major innovation compared 
to previous QST protocols. The existing QST schemes are static: a given device, or channel, is able to transfer 
information only between two fixed endpoints. Our proposal, though based on a time-independent Hamiltonian, 
opens instead the possibility of dynamically reconfiguring the “routing” of the transmitted quantum informa-
tion, a fundamental requirement in any quantum information processing device. This innovative scheme can be 
implemented and verified on current photonic lattices technology18–21 and can lead to the realization of the first 
reconfigurable QST device for photonic qubits. Moreover, it can find applications in all-optical switching of light 
in communication systems22.

Results
The model. The system we deal with is a 1D lattice. We indicate each site of the lattice by |n〉 , ∈n . The 
system Hamiltonian is given by (we set  =  1):
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where Δ  is the coupling between next neighbor sites. The same Hamiltonian also governs the dynamics of the 
Tight Binding Model (TBM)23 and of waveguide-array systems8. The corresponding Schrödinger equation is 
easily solved once we consider the representation in Bloch waves24,25, namely:
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where d is the distance between each site composing the chain, with the (quasi-)momentum κ confined to the 
Brillouin zone − π/d ≤  κ ≤  + π/d. These states are eigenstates for the Hamiltonian (1) with eigenvalues
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Equation (3) expresses the well-known momentum/energy dispersion relation in lattices.
The evolution of a generic state ξ = ∑ c n(0)n n0  is obtained by the propagator U(t) =  exp(− iH0t). In this 

simple setting we have 〈 | | ′〉 = − ′
′−

∆( )n U t n i J( ) n n
n n

t
2

, where Jn(x) is the n-th Bessel-J function of the first kind. In 
Fig. 1 we show the evolution of two different initial conditions: a (sharp) localized condition (upper left frame) 
and a Gaussian wavepacket (upper right frame), both centered in the site labelled by 0, namely:
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If our task is to transfer the excitation/electron/photon from the initial position nI =  0 to a final position, or 
target site, p (p =  40 in the examples shown in the figures), this simple setup is completely uneffective. When 
starting from the sharp initial condition (4) the probability of reaching the target site decreases polynomially 
with the distance |p|. Starting from (5) leads to a diffusive behavior, since the initial momentum has mean 0 and 
variance 2β24.

Bloch oscillations. We now add a linear potential to the Hamiltonian (1), mimicking the action of a “force” 
trying to pull the excitation in the desired direction. This could induce inter-band transitions26,27; however, since 
we are going to consider initial states with negligible transverse moment and small values of the force parame-
ter, transitions to higher bands can be safely neglected28. We can therefore introduce the following single-band 
Hamiltonian:

Figure 1. Evolution of the probability distribution |〈n|ψ(t)〉|2 (density plot) for Δ = 1, F = −1/40, β = 0.01 
and for different initial conditions and system Hamiltonians. (Top left): Sharp initial condition ξ δ0  (4), 
H =  H0 (1); (top right): Gaussian distribution ξ G

0  (5), H =  H0; (bottom left): Sharp condition ξ δ0 , H =  HB (6); 
(bottom right): Gaussian wavepacket .., H =  HB.
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The eigenvalues of HB are =E mdFB
m  and the corresponding eigenstates are the Wannier-Stark states ΨB

m , 
m =  0, ± 1, … , where
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and γ =  Δ /(2dF)24. The propagator, in the Bloch basis (2), is

κ κ δ κ κ′ = ′ − + .γ κ κ− ′ −U t e Ft( ) ( ) (8)i d d[ sin( ) sin( ) ]

The quasi-momentum κ is changed by the force as κ(t) =  κ(0) −  Ft. On the other side, the group velocity vg(κ) 
of the wave, is defined through the dispersion relation (3) by

κ
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it changes sign every time the quasi-momentum κ reaches the boundaries of the first Brillouin zone, leading 
to Bloch oscillations17. The evolution of the initial states (4) and (5) in the presence of a potential is illustrated 
in Fig. 1. The appearance of the breathing modes (see lower left panel) is a consequence of the flat momentum 
spectrum corresponding to the sharp initial condition (4). The components having absolute initial momen-
tum |κ| ≈  0(± π) travel the furthest along the chain, reaching a distance Δ /F. Their speed, initially close to  
dΔ /2 sin(0(± π)) =  0, increases in module until it reaches the maximum value dΔ /2 at t =  π/2dF. Then the velocity 
decreases in modulus until t =  π/dF when it changes sign (Bragg reflection). The initially fastest components of the 
wave packet, corresponding to |κ| ≈  π/2, get Bragg reflected sooner, and are confined in a region (− Δ /2F, Δ /2F).  
The presence evenly distributed initial positive and negative momenta, leads moreover to an even spreading of the 
wavepacket over both the positive and negative axes; this leads to a further halving of the probability of reaching 
a target site p.

On the other side, if we take a Gaussian initial condition of the form (5), with β  1, the distribution of the 
momentum can be peaked around κ =  0. The wavepacket will now travel in a definite direction, set by the sign of 
F and the shape of the starting Gaussian is preserved during the evolution. In fact, besides a phase factor 

ω− − Φe in t i t( )B 24 the coefficients distribution is the same as in (5) with the substitution: → −n n n t( ), where n t( ) is 
the mean of the position observable = ∑ =−∞

+∞n̂ n n nn . The second relevant point is that the center n t( ) of this 
Gaussian shape performs an oscillation with period TB =  2π/(Fd) within the coordinate space. So, as long as the 
initial shape is weakly localized in the coordinate space, we expect that the whole Gaussian shape - representing 
the probability distribution for each site - performs an oscillation with amplitude 2|γ|. We point out, moreover, 
that after a half period the coefficients cn(t) take the form:

= = − β γ− +c t T e( /2) ( 1) , (10)n B
n n( 2 )2

i.e. the wavefunction is the same as the initial one but shifted of − 2γ and with alternate phase factors. Then, in 
this toy model, we are able to transfer the excitation from a site to another arbitrarily just varying the force acting 
on the system.

Constraining the resources. We now want to understand under which conditions the dynamics on a finite 
chain approximates properly the one discussed so far. This issue is quite relevant since in any realistic setting the 
number of lattice sites or waveguides would be limited. Let p once more indicate the target site and suppose that 
the excitation is initially localized in a neighborhood of the site labelled by 0. We suppose to attach η1 sites before 
the site labelled by 0 and η2 after the one labelled by p, as shown in Fig. 2.

The total number of sites composing the chain is therefore c =  (p +  1) +  η1 +  η2. In order so simplify the nota-
tion we introduce the quantities: l ≡  − η1 and r ≡  p +  η2. Dealing with the finite case the Hamiltonian governing 
the system will be:

Figure 2. Finite chain representation. 
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Of course, the Gaussian superposition in (5) cannot be extended to an infinite number of sites, but at most to 
the ones composing the chain. Moreover the state |p〉  must not appear in the Gaussian superposition: if it were 
the case, we would have a non-vanishing initial probability of finding the spin-excitation in the target site. It is 
clear then the necessity of taking the Gaussian superposition truncated in certain interval on the chain, so that it 
involves only a restricted number of sites. In particular we considered a Gaussian superposition symmetrically 
truncated with respect to its center. Chosen a truncation parameter δ <  η1 we set the initial state to be:
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where A is a normalization factor, and investigate how the truncation affects the transport property. As a figure of 
merit we employ the probability of finding the excitation in a neighborhood of the final site p. Upon denoting by

ξ= δP n t n t( , ) ( ) (13)G
2

the probability of finding the spin excitation in the n-th site, we define the success probability as:
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Our main aim is to maximize such probability. The parameters we can control are the force intensity F, the 
truncation parameter δ and the Gaussian superposition width β. The value F is automatically set once we decide 
how far the excitation has to travel. Notice that, if δ is taken too close to 1 the Gaussian superposition becomes 
very similar to the sharp condition, leading to the unproductive breathing modes shown in the lower left panel of 
Fig. 1. As already discussed above, moreover, we need β  1 in order to have a momentum distribution peaked 
at 0. In our numerical simulations we set η1 =  η2 =  2δ to avoid dangerous edge effects on the evolution of the trun-
cated Gaussian superposition. As an example we plotted the values of success probability for Δ /F =  − 60 in Fig. 3 
at the optimal time t =  TB/2 (which does not depend on β or δ).

We notice that the mutual dependence of β and δ is clearly visible in all the region plotted. The behavior of 
the success probability at the vary of δ is clearly expected. In fact, as δ increases the region on which we collect 
the squared amplitudes cn(TB/2) covers an always wider part of the whole lattice. Obviously in the extreme case 
in which the region covered is the whole lattice the success probability is exactly 1. It is clear that exists a value 
for β for which the success probability is almost independent on δ and very close to 1. The value we find is about 
β =  0.01. For δ =  5 the success probability is already around 0.9 and reaches the value 1 for δ =  16. As we deal 
with a finite chain, it makes sense to take the lowest value of δ that makes the success probability larger than an 
assigned threshold value.

Discussion
Now that we know in good approximation the dynamics of an excitation on a finite chain we can use the results 
obtained to perform an information transfer. The Hamiltonian (1), with n =  1, 2, , … , N is equivalent to the 
one governing the propagation of the light in an array of N evanescently coupled optical waveguides8. The 

Figure 3. The success probability  δ≡ ≡p t T( , 2, )40 /B  as a function of β and δ for Δ/F = −60.
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introduction of a linear potential will lead to solutions of the form (7), i.e. the Wannier-Stark states19,24. The 
external force acting on the lattice would be implemented by a linear gradient in the effective refractive index of 
the waveguides. This could be realized statically, but also dynamically, e.g. imposing a temperature gradient in 
the substrate and exploiting the thermo-optic effect18. In Fig. 4(a) we show the scheme of a possible implemen-
tation and the simulation of the propagating signals. We plot in Fig. 4(b) the mean position of the wavepackets 
simulated in (a) during the propagation through the waveguide array together with the intensity profiles P(n, L),  
defined as in (13), at the output: it is evident that the output states are well distinguishable and only slightly 
deformed with respect to the input [the grey profile in Fig. 4(b)]. In both figures the time parameter t has been 
replaced by the length L of the waveguide array.

In this setting, we have also an additional degree of freedom, namely the polarization of the light propagating 
in the array. This additional two-level degree of freedom does not interfere with the motion of the light in the 
lattice, as long as the coupling between the guides is polarization independent. We can then suppose that the light 
propagating through the lattice preserves its polarization. Light is thus carrying a qubit of information, encoded 
in its polarization state, from an initial region of the lattice to the target one. By modulating the external force the 
qubit could be displaced and dynamically redirected in different regions of the lattice.

The polarization state is analogous to a spin-1/2 state, characterized by the eigenstates |↓ p〉  and |↑ p〉 , with 
respect to the Pauli operator σz

e. The necessary Hilbert space for such a degree of freedom is  = |↓ 〉 |↑ 〉span{ , }P
p p . 

The overall Hilbert space needed for the complete description of the system is:   ≡ ⊗e C P. As the initial 
wavefuction we use ξ δG  defined above with the addition of the polarization state, i.e.

ν ξ| 〉 ≡ | 〉 ⊗ | 〉δ s (15)G p

where | 〉 ∈sp
P  is the polarization state. Since in non-birefringent media the polarization of the light is not 

affected during the propagation, the Hamiltonian governing the motion of the electron through the lattice is 
= ⊗H He f P, where P is the identity operator on the Hilbert space P . Under the influence of this Hamiltonian 

the light particle can carry quantum information under the form of its polarization from a site to another follow-
ing the dynamics discussed above.

Waveguide arrays supporting such a dynamics could be fabricated by femtosecond laser writing29. This 
technique allows to directly inscribe high quality waveguides in glass substrates, exploiting the non-linear 
absorption of ultrashort laser pulses. This technology has widely proved its capabilities in producing complex 
three-dimensional waveguide arrays, able to reliably implement or simulate diverse quantum dynamics30,31 and, 
in particular, the Bloch oscillations of light32–34. Furthermore, it has been recently shown that femtosecond laser 
written circuits are specially suitable for the manipulation of polarization-encoded qubits, thanks to the relatively 
low birefringence that characterizes the waveguides fabricated with this technique20 and the possibility of fabri-
cating polarization insensitive devices35.

Glass substrates are insensitive to external dc-generated fields19. To establish the required linear potential 
a stationary temperature gradient can be applied. In this case, the thermal gradient should stabilize before the 
state transfer begins. The response time is in the order of seconds, depending on the temperature gradient to be 
established, and it limits the switching rate that can be achieved. Finding a substrate that allows a much shorter 
reconfiguration time represents a technological challenge issued by the proposed protocol: it should have negligi-
ble birefringence and be sensitive to dc (or ac) fields at the same time.

A truncated Gaussian input state can be experimentally implemented in free space by using hard apertures 
together with a cylindrical telescope and a microscope objective to launch light in the array36. Although this 
method may be extremely effective to characterize the device and to demonstrate the quantum transfer effect, 

Figure 4. (a) A possible scheme of the experimental implementation with a simulation of the propagating 
signals from left to right. We set the coupling constant J =  1 and the initial condition is a truncated Gaussian 
with β =  0.01, δ =  10 centered at n =  0. The colors correspond to different values of F, determined by the 
temperature gradient between T1 and T2: F =  1/80 (blue), F =  1/60 (red), F =  1/50 (magenta), and F =  1/40 
(green). (b) The left plot shows the mean position of the wavepackets simulated in the scheme (a) as a function 
of the distance from the input point; n refers to the number of the waveguide. On the right we show the 
intensity profiles P(n, L) of the wavepackets at the output of the waveguide array, as obtained through numerical 
simulations. The grey profile in the left plot refers to the the intensity profile of input truncated Gaussian where 
we used the same scale as for P(n, L) (not shown for the sake of clarity).
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it may not be the best choice when this device will be used in an integrated environment, e.g. inside a quan-
tum computer. In that case, it would be more appropriate to exploit engineered photonic lattices to transform 
the single mode of an incoming waveguide into a truncated Gaussian state that will constitute the input state 
of the quantum transfer device. In particular, the engineered photonic lattice could consist in a linear array of 
waveguides implementing a discrete fractional Fourier transform, as recently demonstrated by femtosecond 
laser waveguide writing in glass37. In such waveguide array, single waveguide excitation can produce a Gaussian 
output distribution. By connecting only a truncated set of such waveguides to the quantum transfer chip one 
would achieve the desired input state. The collection of the output state after the quantum transfer chip can be 
performed in two ways. The first one considers the case where just detection of the photons is required; in this 
case an array of multimode fibers, connected to the detectors, can be butt-coupled to the chip, where the core of 
each multimode fiber is large enough and of sufficiently high numerical aperture to collect the whole Gaussian 
distribution, as represented in Fig. 4(a). The second collection scheme considers instead the case when further 
processing of the signal is foreseen; in this case a coherent reduction of the Gaussian wavepacket to a single wave-
guide should be achieved. This task could be accomplished by using again a waveguide array that implements 
the discrete fractional Fourier transform and by taking into account the phases acquired in the transfer process. 
As described in (10), alternating phases will be present in the different output modes; such phases are however 
constant and fully predictable and can therefore be statically compensated by a suitable geometrical deformation 
of the waveguides38 before applying the Fourier transform module.

While Bloch oscillations are well known since the early stages of quantum mechanics, here we propose a way 
to take advantage of them for the task of quantum state transmission. We showed that the constraints imposed 
by the finiteness of the resources available for the preparation of the initial state induce a minor lowering of the 
protocol efficiency. The minimal amount of engineering required to implement the system Hamiltonian, and 
to prepare the initial state, make the realization of the protocol feasible with current quantum technology. Our 
results pave the way for further investigations concerning the system, such as the effects of noise39,40 and imper-
fections41 on the transmission probability.
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