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Velocity-dependent quantum 
phase slips in 1D atomic superfluids
Luca Tanzi1,*, Simona Scaffidi Abbate1,*, Federica Cataldini1, Lorenzo Gori1, Eleonora Lucioni1, 
Massimo Inguscio1,2, Giovanni Modugno1,2 & Chiara D’Errico1,2

Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors 
at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. 
We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized 
with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a 
regime of temperature-dependent dissipation at small velocity and interaction and a second regime of 
velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the 
predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

Phase slips, i.e. phase fluctuations of the superfluid order parameter, are the dominant excitations of one- 
dimensional (1D) superfluids and superconductors in the presence of an obstacle for the superflow. Remarkably, 
phase slips may occur even at zero temperature, due to quantum tunneling events1. This mechanism, known as 
quantum phase slips (QPS), controls the dissipation of nominally frictionless systems and has been observed in 
quasi-1D superconducting nanowires2–7 and in Josephson junctions chains8. There is currently a large interest 
in QPS as the fundamental process for the realization of topologically protected qubits9,10 or for the implemen-
tation of a quantum standard for the electrical current8,11. QPS have not yet been clearly identified in superflu-
ids based on ultracold quantum gases. Although several studies have shown the presence of strong dissipation 
for superfluids moving in optical lattices12–15, the closest indication of QPS is just the onset of a regime of 
temperature-independent dissipation at low temperature14. In this work we study for the first time how the dissi-
pation depends on the superfluid velocity, in addition to other key parameters such as temperature and strength 
of the interparticle interaction. We observe a clear crossover between a temperature-dependent regime and a 
velocity dependent regime, in general agreement with theoretical predictions for the crossover from thermal to 
quantum phase slips16–19. This indicates that QPS can be observed and controlled also in ultracold quantum gases.

Let us start by introducing the mechanisms for the generation of phase slips. A 1D superfluid can be described 
by a complex order parameter Ψ (x) =  |Ψ (x)|eiφ(x). The superfluid metastable state corresponds to a local minimum 
of the Ginzburg-Landau free energy potential F20. A phase slip event is a local fluctuation in Ψ (x) corresponding 
to the suppression of its modulus and a simultaneous phase jump of 2π. When a phase slip occurs, the state with 
superfluid velocity v ∝  ∇ φ(x) decays into a state with lower velocity, since the phase has locally unwound21. As 
shown in Fig. 1, three different processes may activate a phase slip, depending on the temperature regime. When 
the temperature is much higher than the free-energy barrier between two metastable states, T  ≫   δF/kB, the order 
parameter may overcome the barrier via thermal fluctuations, causing the formation of thermally activated phase 
slips (TAPS) with a nucleation rate following the Arrhenius law Γ ∝ δ−e F k T/ B 22,23. When  δT F k/ B, the probability 
of TAPS becomes small, and phase slips occur mainly via quantum tunnelling through the free-energy barrier. 
Following quantum mechanical arguments one can find a characteristic temperature T∗ below which the QPS 
nucleation rate is temperature-independent1,24, while in an intermediate temperature range,  δ⁎T T F k/ B, QPS 
are thermally assisted (TAQPS)25.

The analytical form of δF and T∗ depends on the specific type of obstacle experienced by the superflow, e.g. 
disorder, isolated defects or periodic potentials16,18,26. For a superfluid moving along a periodic potential the rele-
vant energy scale is the Josephson plasma energy Ej

18,19, which sets the free-energy barrier δ F E j and deter-
mines also the crossover temperature, ×

⁎T E k v v/ /j B c, between the QPS and TAQPS regimes. Here v and vc 
are the superfluid velocity and the critical velocity for the dynamical instability27–29, respectively. Theoretical 
studies in the Bose-Hubbard limit show that the phase-slip nucleation rate should have a characteristic depend-
ence on velocity, temperature and interaction strength that is quite different for TAQPS and QPS: Γ  ~ vT2K−3 for 
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the TAQPS regime and Γ  ~ v2K−2 for the QPS regime, where the Luttinger parameter K is related to the interaction 
strength18,19,30. These results apply for small velocities, far from the critical velocity vc, where instead TAPS tend to 
dominate17.

Experiments with ultracold gases in optical lattices have revealed a strong dissipation that may be associated to 
phase slip proliferation12–15, as confirmed by the observation of vortices14. Most of the experiments have been per-
formed for large velocity or large interaction, close to the dynamical instability13,15 or to the superfluid-insulator 
transition12,13,15. Characterizing the phase slips is challenging in such limit, since the nucleation rates tend to 
diverge17. At lower velocities, a weaker dissipation that depends on the interaction has been observed14,15, as well 
as the onset of a regime of temperature-independent dissipation14. The latter in particular is a strong indication 
of the onset of QPS, although it has not been possible to find a quantitative agreement with the theory. So far, it 
has not been possible to study the velocity dependence of the dissipation rate predicted for the TAQPS and QPS 
regimes.

In this work we demonstrate that it is possible to measure also the velocity dependence, by employing 
1D superfluids with tunable interaction and weak periodic potentials. The idea is that a weak lattice in the 
Sine-Gordon limit shifts the critical velocity towards the band edge, thus enlarging the range of accessible v. The 
tunable interaction adds instead an independent way of controlling the Josephson energy. By tuning both velocity 
and interaction we indeed observe a clear change of behavior of the phase-slip nucleation rate that resembles that 
of the theory and suggests a crossover between the TAQPS and QPS regimes.

Experimental Observables
In the experiment we employ an array of 1D superfluids in an optical lattice. In order to study the dissipation rate, 
we excite oscillations of the superfluids by suddenly displacing the center of an harmonic trap that confines the 
atoms, as shown in Fig. 2a. By changing the displacement Δ z we can excite oscillations with different amplitudes. 
After a variable oscillation time, we suddenly switch off all the confining potentials and we let the atoms free to 
expand to record the momentum distribution ρ(p) (Fig. 2b). Since the expansion mixes all subsystems, our meas-
urements give information on their mean properties. By fitting ρ(p) with a Lorentzian function, we measure the 
quasi-momentum p and the half-width at half maximum, δp. Since the lattice dispersion is linear in the whole 
velocity range we have studied, we can safely identify p with the center-of-mass momentum. From the momen-
tum width at t =  0, δp0, we can estimate the temperature31,32, which in our measurements ranges from 20 to 40 nK. 
The measurements are performed for a wide range of interaction strength; in terms of the Lieb-Liniger parameter 
γ, this ranges from 0.13 to 1.22. The Josephson plasma energy Ej depends on the interaction strength via the 
sound velocity [see Methods]. Moving from weak to strong interactions, Ej/kb varies from 20 to 35 nK. Figure 3 
shows a typical observation for the time evolution of p and δp at a given interaction (γ =  1.22) and at two different 
trap displacements, which correspond to two different velocities. In accordance to the theory, we label each data-
set with the maximum velocity v reached during the first oscillation19. We fit the evolution of p using an oscillator 
model with a friction term: ω ϕ= − ′ +

⁎p t m v Gt t( ) exp( ) sin( ), where ω ω′ = −⁎m m G/z
2 2, m∗ is the effective 

mass in the lattice, ωz is the frequency of the harmonic potential, v and ϕ are fitting parameters [see Methods]. 
The growth of δp is fitted with an inverted exponential with time constant τ. We observe that the damping rate G 
is directly related to τ, via τ  G2 1/  (within 0.6 standard deviations), as the mechanical energy dissipated in the 
oscillation is converted into momentum spread.

Results
By measuring the time evolution of p we have direct access to G, the damping rate of the oscillation. The theory 
predicts a direct relation between the measured damping rate G and the phase slip nucleation rate Γ , i.e. G ∝  Γ /v19, 
[see Methods]. Therefore, in the QPS regime the damping rate G depends on v but not on T, G ~ v2K−3. Conversely, 
in the TAQPS regime G depends on T but not on v, G ~ T2K−3.

Figure 1. Scheme of the different phase-slips activating mechanisms as a function of temperature. Phase-
slips are activated (a) via quantum tunneling events (QPS) for  ⁎T T , (b) via quantum tunnelling events assisted 
by the temperature (TAQPS) for   δ⁎T T F k/ B and (c) via thermal fluctuations (TAPS) for T  ≫   δF/kB. In a 
lattice ×

⁎T E k v v/ /j B c and δ F E j, see text.
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As shown in the example in Fig. 3 for γ =  1.22, a small velocity v typically leads to a very weakly damped oscil-
lation. A larger v with the same interaction strength leads instead to a larger damping, suggesting the presence of 
phase slips with a nucleation rate that depends on the velocity. We have repeated this type of measurement for a 
wide range of velocities and interaction strengths. A summary of the evolution of G with velocity and interaction 
for approximately constant temperature is shown in Fig. 4. Each data set corresponds to a different γ and is res-
caled to the corresponding critical velocity vc for the occurrence of the dynamical instability. At weak interaction 
(black), G is essentially independent of v. At stronger interactions (orange, blue), we observe instead a clear cross-
over from a regime of constant G to a regime where G grows with the velocity. A fit of the data with a piece-wise 
linear function is used to determine the crossover velocity v∗, that is the minimum velocity required to enter the 
regime of dependence on v. The crossover velocity apparently decreases for increasing interaction.

A similar behavior is observed also at different temperatures. For example in Fig. 5 we compare two data-
sets with approximately constant γ but different T. In the v-independent regime the damping rate G is strongly 
affected by temperature, with a monotonic increase of G with T (inset in Fig. 5), while the dependence on inter-
action (Fig. 4) is weaker. Instead, in the v-dependent regime interaction effects are apparently dominant (Fig. 4) 
and we cannot measure a clear dependence on T (Fig. 5). The combination of these effects leads to an increase of 
the crossover velocity for increasing temperature.

Discussion
These observations suggest that our system is at the crossover between the TAQPS and QPS regimes. As we will 
show, the crossover is not controlled by changing the temperature T, but rather by varying the crossover tempera-
ture T∗ ∝  Ej/kB ×  v/vc through a change in velocity and interaction strength18. For T∗ <  T, i.e. at small velocity and 
small interaction, the system is apparently in the TAQPS regime, since G does not show any substantial depend-
ence on v, but only on T. For T∗ >  T, i.e. at large velocity and large interaction, the system enters a regime where 
G is temperature independent and is approximately linearly dependent on the velocity. This suggests that the 

Figure 2. Scheme of the experimental sequence. Not to scale. (a) By displacing the harmonic trap center 
at t =  0 (blue), we excite an oscillation of the 1D system in the shifted potential (cyan). Δ z is the diplacement 
between the equilibrium positions (dashed lines) of the two potentials. (b) Cartoon of momentum distributions 
at t =  0 (blue) and at a variable evolution time (cyan). p is measured as the shift of the distributions’ centers 
(dash-dotted lines). δp0 and δp are the momentum distribution widths at t =  0 and t ≠  0, respectively.

Figure 3. Damped oscillation of the array of 1D superfluids in the optical lattice. (a) Time evolution of the 
quasi-momentum p and (b) of the momentum distribution width δp for the interaction strength γ =  1.22, the 
temperature T =  22 (4) nK and two maximum velocities: v =  1.4(4) mm/s (blue filled circles) and v =  2.2(4) 
mm/s (red open circles), respectively corresponding to trap displacements Δ z =  1.5 μm and Δ z =  4 μm. The 
lines in panel (a) are fits to measure the damping rate, which is G =  28(9) Hz and G =  84(6) Hz for the blue and 
red data, respectively. The lines in panel (b) are fits to measure the time constant τ, which is τ =  10(7) ms and 
τ =  7(1) ms for the blue and red data, respectively.
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system is in a regime of QPS. A further indication of the observation of the TAQPS-QPS crossover comes from 
the dependence of v∗ on temperature and interaction strength. In Fig. 6 we report the measured crossover velocity 
normalized to the critical velocity, v∗/vc, versus the temperature normalized to the Josephson energy, kBT/Ej. The 
data show a clear linear scaling, which is consistent with the theoretical prediction kBT∗/Ej ∝  v/vc. From a fit we 
get kBT∗ =  4.9(14) Ejv/vc −  0.4(4) Ej.

The v-dependent regime shows also the characteristics features already observed in previous experiments: a 
weak T dependence14 and a strong interaction dependence14,15. This suggest that the QPS regime has already been 
reached in previous experiments on ultracold quantum gases.

We note that it is not possible to reach a quantitative agreement with the theory for G(v) in the regime we 
attribute to QPS. On the theory side, the power-law behavior we showed above is valid only for very low velocities 
(p <  hk/10), while in the experimental range (hk/10 <  p <  hk/2) a different, exponential behavior has been pre-
dicted18,19. Furthermore, the theory is done in the Bose-Hubbard limit, and it is not clear if it can be immediately 
extended to the Sine-Gordon limit. On the experimental side, the limited range of accessible velocities, which 
is limited by the finite T on the low-v side, does not allow us to distinguish a power law from an exponential. If 
we fit our data with a power law, we get exponents of G of the order unity, ranging between 0.8 and 2, which are 
essentially interaction independent. Further work in theory and experiment is clearly needed to try reaching a 
quantitative agreement.

Figure 4. Velocity dependence of the damping rate for various interaction strengths. The damping rate G 
is plotted vs the maximum velocity v normalized to the critical velocity vc, for three interaction strengths and 
constant temperature: γ =  0.13 and T =  37(7) nK (black circles), γ =  0.19 and T =  39(7) nK (orange triangles) 
and γ =  0.64 and T =  34(5) nK (blue squares). The lines are piece-wise linear fits to determine the crossover 
velocity v∗ (see text). The error bars represent the statistical uncertainties.

Figure 5. Effect of temperature on the damping rate. G is plotted vs v/vc for two different temperatures and 
approximately constant interaction energy: T =  34(5) nK and γ =  0.64 (blue squares) and T =  43(5) nK and 
γ =  0.70 (red stars). The lines are piece-wise linear fits to determine the crossover velocity v∗ (see text). Inset: 
Temperature dependence of the damping rate at small velocities (v <  v∗). The error bars represent the statistical 
uncertainties.
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We finally note that our measurements are incompatible with dissipation of the Landau type28,29,33,34, which 
may appear for velocities larger than the sound velocity vs. Indeed, not only we typically have v <  vs, but addition-
ally vs increases with the interaction strength, so that one should observe a decrease of G with increasing γ at a 
fixed velocity, and not the increase shown for example in Fig. 4.

Conclusion
In conclusion, our measurements reveal a crossover behavior of the dissipation in atomic superfluids that repro-
duces closely the crossover between TAQPS and QPS predicted by the theory. One important feature of our setup 
is that the QPS regime can be reached at constant temperature, by tuning the velocity or the interaction. This 
offers the possibility to control the QPS nucleation rate and opens new perspectives for the study of QPS-related 
phenomena in ultracold quantum gases. In the future it might be possible to directly observe individual QPS 
events by interferometric means35,36 or by single atom detection37,38, allowing to study in depth the nucleation 
mechanisms of quantum and thermal phase slips. Furthermore, methods analogous to those reported in this work 
could be used to study fundamental aspects of the QPS nucleation by individual defects or controlled disorder16,26.

Methods
In the experiment we employ 39K atoms, for which we can accurately tune the interaction thanks to a broad 
Feshbach resonance39. The 1D superfluids are realized by splitting a 3D Bose-Einstein condensate into about 1000 
subsystems, using a deep 2D lattice in the horizontal plane15. Each subsystem contains on average 30 atoms. The 
transverse trapping energy ω⊥ =  h ×  40 kHz is much larger than all other energy scales, realizing effectively 
one-dimensional systems. The weak optical lattice with depth V =  1.0(1) ER is then added along the longitudinal 
direction z. The lattice spacing is d =  532 nm and ER =  2k2/2m is the recoil energy, with k =  π/d the lattice 
wavevector. Along z it is also present an harmonic potential with frequency ωz =  2π ×  150 Hz.

To tune the interparticle interaction we vary the 1D scattering length = − .⊥ ⊥a a a a a(1 1 03 / )/2D1
2 , where 

ω=⊥ ⊥a m/  is fixed by the 2D lattice whereas the 3D scattering length a can be adjusted at a Feshbach reso-
nance39 by using a magnetic field. By varing the 1D scattering length, we tune both the Josephson energy EJ and the 
Lieb-Liniger parameter γ. The Josephson energy is defined as =E v d/ 2j s , where  ρ= ⁎v d a m/ /s D

2
1  is the 

sound velocity, m∗ =  1.05 m is the effective mass in the lattice and ρ is the density. The Lieb-Liniger is defined as 
γ =  1/(ρ0a1D), with ρ0 being the tube peak density. In the limit of no lattice potential (V =  0) and for small interac-
tions (γ  ≤ 10) γ can be related to the Luttinger parameter as π γ γ π≈ −K / /(2 )3/2 40. In our inhomogeneous 
system both EJ and γ are calculated averaging over all tubes41, resulting in EJ ≈  0.3 γ1/4. Also the mean filling n 
changes with the interaction and it is found to scale as n ≈  γ−1/4. In our range of γ, when moving from weak to 
strong interactions, n changes from about 2 to 1.

Another derivation of the relation between Γ  and G is the following: The deceleration at the first maximum in 
the oscillations is dv/dt =  − Gv. In terms of individual phase slips this can be written as δv/δt, where δv =  − h/mL 
is the deceleration following a phase slip of 2π in a chain of length L and δt−1 =  Γ .

In the range of parameters we have studied, our system is always in the underdamped regime, G <  ωz, indicat-
ing that phase slips are generated on timescales longer than the oscillation period. In this regime it is meaningful 
to study the dependence of G on the maximum velocity v reached during the first oscillation. v corresponds to 
a trap displacement Δ z that can be suitably changed by varying a magnetic field gradient which partially com-
pansates for gravity.

Figure 6. Evolution of the crossover velocity in the velocity-temperature plane. The individual datapoints 
have been taken for different temperatures and interaction energies: (a) γ =  1.22 and T =  22(2) nK, (b) γ =  0.64 
and T =  34(5) nK, (c) γ =  0.37 and T =  30(5) nK, (d) γ =  0.70 and T =  43(5) nK, (e) γ =  0.19 and T =  39(7) nK. 
The dashed line is the linear fit described in the text, which separates the v-dependent and the T-dependent 
regimes. The error bars represent the statistical uncertainties.
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The critical velocity vc is measured according to the technique introduced in ref. 15. As the interaction is 
increased, we find that vc decreases as expected, varying from 7.1(3) to 5.4(6) mm/s. Due to the system inhomo-
geneity γ, n, Ej, vs and vc represent mean values.

From the momentum width at t =  0 and the mean atom number per site, we are able to estimate the tempera-
ture T via kBT =  nδp0/0.64m*d31,32, where the effective mass takes into account the presence of the shallow lat-
tice. Since in our measurements T is below the 1D degeneracy temperature T 50c  nK, the system is in the 
quasicondensate regime42.

All the error bars and uncertainties reported in the manuscript are statistical errors. A 30% systematic uncer-
tainty on the calibration of the atom number leads to additional systematic errors of 12% on γ, 6% on Ej, 12% on 
T and 6% on T/Ej.
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