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Deterministically Entangling Two 
Remote Atomic Ensembles via 
Light-Atom Mixed Entanglement 
Swapping
Yanhong Liu1, Zhihui Yan1,2, Xiaojun Jia1,2 & Changde Xie1,2

Entanglement of two distant macroscopic objects is a key element for implementing large-scale 
quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping 
can entangle two spatially separated quantum systems without direct interaction. Here we propose 
a scheme of deterministically entangling two remote atomic ensembles via continuous-variable 
entanglement swapping between two independent quantum systems involving light and atoms. Each 
of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared 
to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is 
unconditionally implemented between the two prepared quantum systems by means of the balanced 
homodyne detection of light and the feedback of the measured results. Finally, the established 
entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of 
correlation variances between two anti-Stokes optical beams respectively coming from the two atomic 
ensembles.

It is crucial to establish entanglement between remote nodes with stationary quantum systems in a quantum 
network1. The discrete-variable (DV) entanglement of single photons and the continuous-variable (CV) entan-
glement of optical modes have been deeply studied2,3 and applied in a variety of quantum information protocols, 
such as quantum teleportation, quantum entanglement swapping, quantum secret sharing, quantum computing, 
and so on4–12. Entanglement swapping can entangle two quantum systems that have never directly interacted with 
each other, and thus is a significant protocol in quantum communication6–8. With the development of quantum 
information, quantum network consisting of quantum channels and quantum nodes have attracted more and 
more attentions. Light is the best quantum information carrier and is used as quantum channels in quantum net-
works, usually. Meanwhile atomic ensembles are one of the promising candidates for quantum nodes to process 
and memory quantum information1. The entanglement of light and atoms is utilized to transfer quantum infor-
mation between different quantum systems. Besides cavity quantum electromagnetic dynamics system in which 
the interaction of light and atoms is enhanced by optical cavity, atomic ensembles are the proper quantum nodes 
as a result of high optical density13,14. The Spontaneous Raman Scattering (SRS) process has been used to generate 
DV entanglement between single photons and atoms15–17. The CV entanglement of light and atomic ensembles 
has also been obtained by means of quantum non-demolition (QND) interaction18,19. The schemes of producing 
CV entanglement between light and atoms via three-wave or four-wave mixing have been proposed20,21. With 
the help of entanglement of light and atoms, the teleportation from photonic quantum bits and optical quantum 
modes to atomic spin wave states have been experimentally achieved, respectively18,22. The information transfer 
from one atomic node to another node has been realized as well19,23.

In practical applications of quantum information, the inevitable transmission loss limits the communi-
cation distance. Briegel H. J. et al.24 have introduced the concept of quantum repeater to overcome this prob-
lem24. Quantum nodes play the role of quantum repeater, and the entanglement among different nodes has to 
be required for constructing large-scale quantum networks and transferring quantum states. In DV regime 
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atom-atom entanglement has been realized by mapping entangled photons into two sets of trapped atomic 
ensembles25. Another approach of generating atom-atom entanglement is DLCZ (Duan, Lukin, Cirac and Zoller) 
scheme, which is based on entanglement between light and atoms as well as single photon probabilistic count-
ing26,27. The atom-atom CV entanglement has been generated by means of QND interaction and dissipative mech-
anism28,29, respectively. However, all above-mentioned schemes of generating CV entanglement between atomic 
ensembles are realized in a local space and would not be suitable to build the entanglement between two remote 
nodes in quantum networks.

In this paper we propose a scheme to produce the deterministic entanglement between two remote atomic 
ensembles based on applying CV entanglement swapping between two mixed entangled systems of light and 
atoms. At first, two CV entangled states of light and atomic ensemble are respectively prepared via the SRS pro-
cess. When a write pulse is applied on an atomic ensemble, the scattering Stokes light will be entangled with the 
atomic ensemble20. Second, two Stokes optical pulses respectively entangled with the two atomic ensembles are 
combined on an optical beam splitter and then detected by the balanced homodyne detector (BHD). Third, the 
detected correlation variances of amplitude and phase quadratures between the two Stokes optical beams are fed-
back to the spin wave state of one of the two atomic ensembles. In the case, the entanglement between two atomic 
ensembles is built by the quantum entanglement swapping. The theoretical analysis point out that the maximum 
entanglement can be obtained if the optimal gain factor is chosen. Finally, the entanglement between atomic 
ensembles is confirmed by mapping atomic spin wave states into the anti-Stokes optical states and measuring the 
correlation variances between two anti-Stokes optical states.

Results
Schematic of entanglement generation system. The schematic of the deterministic CV entanglement 
generation system between two remote atomic ensembles is shown in Fig. 1. The system involves two independent 
atomic ensembles A (B), a beam splitter (BS) and a pair of balanced homodyne detectors (BHD1, and BHD2). 
BHD1 (BHD2) composes of a beam splitter, a pair of photodiode detectors and a negative power combiner. BS, 
BHD1, and BHD2 are placed in a middle node C. Atomic ensemble A is put in the center of a radio frequency coil. 
Two Stokes optical pulses (âout

1  and âout
2 ) respectively produced by atomic ensembles A and B via SRS process are 

interfered on BS. The amplitude and phase quadratures of the output beams â3 and â4 from BS are detected by 
BHD1 and BHD2, respectively. The interference of âout

1  and âout
2  transfers the quantum information of the atomic 

ensembles A (B) to B (A) due to the existence of quantum entanglement between ̂aout
1  (âout

2 ) and atomic ensemble 
A (B). The signal detected by BHD1 and BHD2 are fed back to the atomic ensemble A via a classical channel, i.e. 
a radio frequency coil, to finally accomplish entanglement swapping and establish the entanglement between two 
atomic ensembles A and B18,19. The atomic spin state is related to magnetic fields generated by the feedback RF 
signal, with finite response time of the RF coil.

Generation of the entanglement between light and atoms. In quantum optical theory, optical fields 
are described by annihilation and creative operators â and †â , as well as the amplitude X̂a and the phase Ŷ a quad-
ratures of light corresponding to the real and imaginary part of the annihilation operators â, that is = + +ˆ ˆ ˆX a aa , 
= −+ˆ ˆ ˆY i a a( )a . The collective atomic spin state Ŝ is described by the Stokes vector on Bloch sphere, which can be 

Figure 1. Schematic of atom-atom entanglement generation system. BS: beam splitter; BHD1 (2): balanced 
homodyne detector; RF Coil: radio frequency coil.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:25715 | DOI: 10.1038/srep25715

viewed as approximately satisfying the Bosonic field commutation relation =ˆ ˆ†
S S[ , ] 121. Similarly the amplitude 

X̂ S and the phase Ŷ S quadratures of atoms correspond to the real and imaginary part of the atomic spin wave 
operators Ŝ, that is =ˆ
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. When the atomic spin wave is coupled with the optical signal and the 

pump fields via SRS process, the entanglement between light and atoms will be built20. The energy levels of atom 
asked for preparing the entangled state are shown in Fig. 2, which should have a ground state |g〉 , a meta-stable 
state |s〉 , and two excited states |e〉  and |e’〉 . A lot of trapped atoms have such energy configuration, for example, 
87Rb atoms. The Stokes optical field â and the collective atomic spin wave Ŝ are simultaneously generated under 
the controlled interaction of the write pulse âW. The effective interaction Hamiltonian of the system in the inter-
action picture is written as:

η η= −ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † ⁎ †H i a a S i a aS, (1)I W W 

where the interaction constant of light and atoms η κ κ= ∆⁎ N /eg es a , κeg, κes are the coupling coefficients between 
light and atoms, Na is the number of atoms, and Δ  is the detuning of write (read) light âW  (âR) and Stokes 
(anti-Stokes) light âS (âAS). Here, we have supposed that all detuning is the same without the loss of generality.

At first, the atoms are prepared in ground state |g〉  by an optical pump field. When a strong write pulse is 
applied onto the atoms, the SRS process happens and the interaction Hamiltonian is similar to that of an optical 
parametric down conversion process20, i.e.

η η= −ˆ ˆ ˆ ˆ ˆ† † ⁎ ⁎H i A a S i A aS, (2)I W W 

where the strong write pulse has been treated as a classical light and its normalized amplitude AW is proportional 
to the Rabi frequency ΩW of the write optical field.

According to the Heisenberg motion equation  =ˆ ˆ ˆi O t O t H( ) [ ( ), ]d
dt i i I , we can get the dynamic equation of 

above-mentioned operators. By solving the Heisenberg equations of the light and atomic spin wave, we obtain the 
solutions of time-dependent operators:
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here i =  1 and 2 correspond to the light-atom entanglement produced in atomic ensembles A and B, respectively. 
According to the basis of operator linearization, in which operators can be taken into account the sum of the 
mean value x (y) and the fluctuations δ X̂ (δŶ), δ= +ˆ ˆX x X, δ= +ˆ ˆY y Y . The input optical fields âi

in are consid-
ered as a vacuum state, and the fluctuations of them are normalized: δ δ δ δ= = = =ˆ ˆ ˆ ˆX Y X Y 1s

in
s
in

a
in

a
in2 2 2 2 . The 

inseparability criterion proposed by Duan and Simon is the sufficient condition of entanglement between two 
optical beams, which has been extended to verify the entanglement between the light and atoms30,31. If the sum of 
correlation variances between light (X̂ai, Ŷ ai) and atoms (X̂si, Ŷ si) quadratures is less than 4, the entanglement of 
light and atoms exists. The correlation variance V of the light and atoms equals to:

Figure 2. Atomic energy levels for the SRS. The atoms with a ground state |g〉 , a meta-stable state |s〉 , and two 
excited states |e〉  and |e’〉 .
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τ is the time of interaction between light and atoms. It is obviously that the correlation degree of light and 
atoms depends on the correlation parameter:

η τ κ κ τ= = ∆⁎r A N A / , (5)W eg es a W

where r stands for the correlation parameter. The larger the r is, the lower the quantum correlation is. As r =  0, 
V =  4 corresponds to that of a coherent state which is defined as the quantum noise limit (QNL). When r >  0, the 
correlation variance V will be less than QNL, which means that the entanglement between light and atoms exists. 
When r →  ∞ , we have V →  0 and the perfect correlation is obtained.

Entangling two atomic ensembles via entanglement swapping. In the following we consider how 
to obtain the entanglement of atomic ensembles A and B. Two Stokes optical fields âout

1  and âout
2  respectively gen-

erated by atomic ensembles A and B via SRS process are coupled on a 50/50 optical beam splitter with a phase 
difference of 0 at node C, and the output interference optical fields â3 and â4 are written as:

= + − + + −

= + − − − −
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where t1 (t2) is the imperfect transmission efficiency of âout
1  (âout

2 ), and νâ 1 ( νâ 2) is the vacuum noise caused by the 
transmission losses.

Then the interference signals â3 and â4 are detected by BHD1 and BHD2, respectively. When the phase differ-
ence between â3 (â4) and the local oscillator âL1 (âL2) is locked on π/2 (0), the quantum fluctuation of the phase 
(amplitude) quadrature of â3 (â4) will be measured32. The fluctuation δŶ 3 of the phase quadrature of the optical 
field â3 and the fluctuation δ X̂ 4 of the amplitude quadrature of optical field â4 are expressed by:

δ δ δ δ

δ δ δ δ
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where δŶ
out
1(2) and δ X̂

out
1(2) are the quantum fluctuations of the phase and the amplitude quadrature measured by 

BHD1 (BHD2), respectively, as well as δ νX̂ 1 (δ νX̂ 2) and δ νŶ 1 (δ νŶ 2) are quadrature quantum fluctuations of the 
above vacuum noise.

Finally, the measured signals δŶ 3 and δ X̂ 4 are fed back to the collective atomic spin field Ŝ
out
1  of the atomic 

ensemble A through a classical channel composed of a radio frequency coil with tunable normalized classical gain 
factors g1 and g2 for the fed-back signals of the amplitude and phase quadratures, respectively33. The atomic state 
of atomic ensemble A will involve the quantum information of δŶ 3 and δ X̂ 4, that is:

δ δ= − +ˆ ˆ ˆ ˆS t S t g X i g Y( ) ( ) 2 2 , (8)
final out

1 1 1 4 2 3

where Ŝ t( )
out
1  is the resultant collective atomic spin field of the atomic ensemble A after the interference of âout1  and 

âout2 , and Ŝ t( )
final

1  is the final collective atomic spin field after receiving the fedback signals. By choosing proper 
classical gain factors, the optimal correlation of atomic ensembles can be achieved. Usually and without the loss 
of generality, we take g1 =  g2 =  g, and t1 =  t2 =  t0.

From equation (3) and equation (8) the correlation variance V' of the two atomic ensembles is obtained:

′ = + + − − .V g t h r g g gt t h r4((1 )cos (2 ) ( 2 sin (2 ))) (9)2
0 0 0

The transmission losses for light is unavoidable in practical systems, which influence the entanglement swap-
ping quality.

The entanglement swapping quality is also limited by the atomic coherence lifetime. The time to maintain the 
entanglement is determined by the atomic coherence lifetime28. The atomic coherence lifetime, which dominates 
the decay process of entanglement, is usually more than 5 ms in hot atomic ensembles26, and can be up to 40 ms29. 
The period of the real-time measurement and feedback for swapping operation is much shorter than the atomic 
coherence lifetime, and therefore the coherence lifetime is long enough to build the entanglement of two atomic 
ensembles.

By calculating the minimal value of equation (9) versus g, we get7:

=
+ −
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t h r

t h r t
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When the optimal gain factor is chosen, the best entanglement will be obtained. The optimal gain factor 
depends on the correlation parameter r.

Characterizing atom-atom entanglement. For verifying and characterizing the entanglement of two 
atomic ensembles, we respectively apply read optical pulses âR1 and âR2 onto ensembles A and B at the same time, 
to convert the atomic quantum state into quantum state of the anti-Stokes light via SRS process, as shown in 
Fig. 3. The correlation variances of two anti-Stokes optical beams respectively coming from the two ensembles 
will characterize the entanglement between the two atomic ensembles.

We analyze the dependence of the correlation variances on the correlation parameter r in Fig. 4. Trace (i) and 
trace (ii) correspond to g =  1 and =g gswap

opt , respectively, and trace (iii) is QNL. It can be seen that when the cor-
relation parameter r increases, the interaction between light and atoms is strengthened, thus the correlation var-
iance V′  reduce. When V′  <  4 (QNL), the two atomic ensembles are entangled. For g =  1, when r is less than 0.35, 
the atom-atom entanglement exists. However, if the optimal gain is used, the atom-atom entanglement will always 
be created for any nonzero r values. For smaller r values the optimal gain plays a significant role to produce the 
entanglement. When r >  0.8 two curves overlap and the values of the gain factor are no longer important. In pres-
ent experimental systems the correlation parameter r is smaller than 0.834–36, therefore the optimal gain factor 
should be applied to obtain better atom-atom entanglement.

The function of the correlation variances versus the detuning Δ  is illustrated in Fig. 5, when =g gswap
opt  is taken. 

The trace (i) to (iii) correspond to the Rabi frequency ΩW =  5 MHz, 6 MHz and 7 MHz, respectively, and trace (iv) 
is QNL. For a given detuning Δ , the correlation variances decrease when the Rabi frequency of the write optical 
pulse ΩW increase. From Fig. 5, we can see that the atom-atom entanglement reaches the best value for zero 
detuning in ideal condition. However, in the real experiment the harmful extra noise increased, which will reduce 

Figure 3. Schematic for verifying atom-atom entanglement. BHD3 (4): balanced homodyne detector; RF 
Coil: radio frequency coil; + /− : positive/negative power combiner; OSC: oscilloscope.

Figure 4. Dependence of the correlation variances on the correlation parameter r. Trace (i): the correlation 
variance with g =  1; trace (ii): the correlation variance with =g g ;swap

opt  and trace (iii): QNL.
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the entanglement, if the detuning is too small, and thus the scheme has to work at a certain detuning34,37. The 
numerical calculation show that − 4.3 dB entanglement between two atomic ensembles is obtained in a 700 MHz 
detuning via light-atom mixed entanglement swapping, which is better than the result of the optical entanglement 
swapping7. To avoid the huge extra noise at the atomic resonance the detuning has been applied in many experi-
mental systems of quantum optics, such as, Appel J. et al.34 illustrate that 630 MHz is the optimal detuning for 
quantum memory of squeezed light in Rb atomic ensemble by means of EIT approach34; Qin Z.Z.  
et al.37 demonstrate that 800 MHz detuning is the best choice, and − 7 dB intensity-difference squeezing in Rb 
atomic ensemble based on four-wave mixing is experimentally generated37. Thus in the systems of light-atom 
interaction we have to take an appropriate compromising between high efficiency and large noise by using a cer-
tain detuning.

Discussion
We have proposed a scheme to deterministically establish the CV entanglement between two distant macroscopic 
atomic ensembles via light-atom mixed entanglement swapping. The entanglement of light and atoms is generated 
by means of the SRS process. The entanglement of two distant atomic ensembles is achieved by the interference of 
two optical beams coming from two atomic ensembles respectively and the feedback of the measured resultants. 
The dependence of the atom-atom entanglement on the parameters of the system is numerically calculated. The 
proposed scheme of building atom-atom entanglement has potential applications in future quantum information 
networks for realizing the entanglement among remote nodes.

References
1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
2. Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
3. Braunstein, S. L. & Loock, P. van. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).
4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).
5. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).
6. Pan, J. W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never 

interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).
7. Jia, X. J. et al. Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 

250503 (2004).
8. Takeda, S., Fuwa, M., Loock, P. & van Furusawa, A. Entanglement swapping between discrete and continuous variables. Phys. Rev. 

Lett. 114, 100501 (2015).
9. Chen, Y. A. et al. Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95, 200502 (2005).

10. Lance, A. M., Symul, T., Bowen, W. P., Sanders, B. C. & Lam, P. K. Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 
(2004).

11. Cai, X. D. et al. Entanglement-based quantum machine learning. Phys. Rev. Lett. 114, 110504 (2015).
12. Su, X. L. et al. Gate sequence for continuous variable one-way quantum computation. Nat. Commun. 4, 2828 (2013).
13. Xu, Z. X. et al. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy. Phys. 

Rev. Lett. 111, 240503 (2013).
14. Tian, L., Li, S. J., Zhang, Z. Y. & Wang, H. Suppressing decoherence of spin waves in a warm atomic vapor by applying a guiding 

magnetic field. J. Phys. B: At. Mol. Opt. Phys. 48, 035506 (2015).
15. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 

(2005).
16. Matsukevich, D. N. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005).
17. Chen, S. et al. Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99, 180505 

(2007).
18. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).
19. Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nature Phys. 9, 400–404 (2013).
20. Ou, Z. Y. Efficient conversion between photons and between photon and atom by stimulated emission. Phys. Rev. A 78, 023819 

(2008).

Figure 5. Functions of the correlation variances on the detuning of light and atoms interaction. Trace 
(i), (ii) and (iii) correspond the correlation variances on the detuning of light and atoms interaction when 
ΩW =  5 MHz, 6 MHz and 7 MHz, respectively. Trace (iv) represents QNL.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:25715 | DOI: 10.1038/srep25715

21. Yang, X. H., Zhou, Y. Y. & Xiao, M. Entangler via electromagnetically induced transparency with an atomic ensemble. Sci. Rep. 3, 
3479 (2013).

22. Chen, Y. A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).
23. Bao, X. H. et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl. Acad. Sci. 109, 

20347–20351 (2012).
24. Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. 

Phys. Rev. Lett. 81, 5932–5935 (1998).
25. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 

67–71 (2008).
26. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. 

Nature 414, 413–418 (2001).
27. Yuan, Z. S. et al. Experimental demonstration of a BDCZ quantum repeater nodes. Nature 454, 1098–1101 (2008).
28. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 

(2001).
29. Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 

107, 080503 (2011).
30. Duan, L. M., Giedke, G., Cirac, J. I. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 

2722–2725 (2000).
31. Simon, R. Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000).
32. Zhou, Y. Y., Jia, X. J., Li, F., Xie, C. D. & Peng, K. C. Experimental generation of 8.4 dB entangled state with an optical cavity involving 

a wedged type-II nonlinear crystal. Opt. Express 23, 4953–4959 (2015).
33. Takei, N., Yonezawa, H., Aoki, T. & Furusawa, A. High-fidelity teleportation beyond the no-cloning limit and entanglement 

swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005).
34. Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 

(2008).
35. Honda, K. et al. Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008).
36. Reim, K. F. et al. Toward high-speed optical quantum memories. Nature Photon. 4, 218–221 (2010).
37. Qin, Z. Z. et al. Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor. Opt. Lett. 

37, 3141 (2012).

Acknowledgements
This research was supported by the Natural Science Foundation of China (Grants Nos 11322440, 11474190, 
11304190), FOK YING TUNG Education Foundation, Natural Science Foundation of Shanxi Province (Grant 
No. 2014021001).

Author Contributions
Z.Y., X.J. and C.X. conceived the original idea. Y.L. and Z.Y. accomplished theoretical calculation and the data 
analysis. Z.Y., X.J. and C.X. wrote the paper. All the authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Liu, Y. et al. Deterministically Entangling Two Remote Atomic Ensembles via Light-
Atom Mixed Entanglement Swapping. Sci. Rep. 6, 25715; doi: 10.1038/srep25715 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping
	Introduction
	Results
	Schematic of entanglement generation system
	Generation of the entanglement between light and atoms
	Entangling two atomic ensembles via entanglement swapping
	Characterizing atom-atom entanglement

	Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping
            
         
          
             
                srep ,  (2016). doi:10.1038/srep25715
            
         
          
             
                Yanhong Liu
                Zhihui Yan
                Xiaojun Jia
                Changde Xie
            
         
          doi:10.1038/srep25715
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep25715
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep25715
            
         
      
       
          
          
          
             
                doi:10.1038/srep25715
            
         
          
             
                srep ,  (2016). doi:10.1038/srep25715
            
         
          
          
      
       
       
          True
      
   




