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Bottom-up synthesis of ordered 
metal/oxide/metal nanodots on 
substrates for nanoscale resistive 
switching memory
Un-Bin Han & Jang-Sik Lee

The bottom-up approach using self-assembled materials/processes is thought to be a promising 
solution for next-generation device fabrication, but it is often found to be not feasible for use in real 
device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale 
memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/
metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness 
defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of 
each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by 
conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has 
great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down 
device fabrication processes.

Resistive switching random-access memory (ReRAM) with metal-insulator-metal (MIM) structure has advan-
tages of fast switching speed, low operation voltage, and good scalability, and has therefore been widely investi-
gated for future memory applications1–5. Metal-oxide-based ReRAM is considered as one of the most promising 
candidates for next-generation high-density nonvolatile memory devices6–10. Resistive switching is a change in 
electrical resistance between high-resistance state (HRS) and low-resistance state (LRS), and the physical phe-
nomenon of memory operation; therefore, stable and reliable resistance changes in metal oxide materials are 
very important in ReRAM device applications. Resistive switching behavior has been observed in various oxides, 
such as NiO11–13, CuOx

14–19, HfO2
7,20–22, and Ta2O3

23–25. These oxides are reported to be good candidates for use as 
the resistive switching layer in ReRAM devices. Among the various metal oxides, CuOx is an attractive switching 
material because it can be synthesized at low cost and is non-toxic. In addition, CuOx-based memory devices 
show good reliability. Consequently, many researchers have studied application of CuOx as a candidate for use in 
next-generation memory devices16,17,26.

Next-generation memory device applications demand devices with very high density that exceeds the current 
lithographic length scale limit. The bottom-up approach using self-assembled nanostructures is a promising solu-
tion for scaling down the memory devices.

To fabricate nanoscale ReRAM devices, self-assembled nanoporous templates have been used27–35. Among 
the various nanoporous templates, anodized aluminum oxide (AAO) has advantages such as thermal/mechanical 
stability and ease of controlling a wide range of pore diameters, inter-pore distances, and depth of pores36–40. 
However, it is very difficult to grow nanoscale materials/structures inside the nanoporous templates directly since 
the pore size is typically less than 100 nm and the aspect ratio (pore depth-to-diameter ratio) is high. To grow 
the nanoscale materials inside the pores electrochemical deposition (ECD) is used. ECD into AAO templates is 
a very versatile and facile way to deposit nanoscale nanodots with controlled diameter and thickness. The ECD 
enables control of the composition of deposited films by adjusting the current density (J), pH, and temperature 
of the solution (Tsol)16,41. Therefore, the ECD of metals, semiconductors, and insulators has been used in many 
industrial applications41–44.
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In this study, we used self-assembled AAO nanotemplates as masks for fabrication of uniform nanoscale Cu/
CuOx/Cu ReRAM devices. Using well-ordered AAO templates, ECD enables successful growth of Cu-based nan-
odots with high density on Au-coated Si substrates. The advantage of this process is growth of metal/oxide/
metal layer by sequential deposition of each layer with solution processes. In addition, there is no need to use 
vacuum deposition/lithography systems and etching/annealing processes for fabrication of nanoscale memory 
devices. The surface morphologies of AAO templates and nanoscale ReRAM devices were investigated using 
field-emission scanning electron microscopy (FE-SEM). The microstructure and crystal structure of the devices 
were analyzed using high-resolution transmission electron microscopy (HR-TEM) and x-ray diffraction (XRD). 
The topography of the Cu/CuOx/Cu nanodot memory devices was investigated using atomic force microscopy 
(AFM) and the resistive switching behavior of the CuOx-based memory devices was directly examined using 
conductive AFM. This work demonstrates that ECD with bottom-up growth has great potential to fabricate 
high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes.

Results and Discussion
Bottom-up self-assembly approaches were used to fabricate the nanoscale resistive switching memory devices. 
AAO was used as the template to obtain ordered nanoscale devices by the bottom-up approach12,45,46. The AAO 
is a self-assembled, nano-porous structure in which pore sizes, pore densities, and thicknesses can easily be con-
trolled by adjusting the process parameters. In addition, pore diameters ranging from several-nanometers to 
several hundred-nanometers can be obtained. During growth of Cu and CuOx onto the self-assembled AAO 
template, the metal ion reacts at surface of the electrode used for the substrate. Then the atoms are self-arranged 
from the bottom of the AAO template; they form a nanostructure from bottom-up self-assembly. Therefore, 
during the ECD of Cu, Cu nanodots can be formed by the reduction of Cu2+ ion in the solution starting from 
the bottom of AAO templates. Thicknesses can be controlled with the ECD time of Cu into the AAO template 
(Supporting Information, Fig. S1a–d). The thickness of Cu nanodots increased linearly with the deposition time 
because during ECD the amount of deposited material is proportional to the current, the deposition time, or both 
(Supporting Information, Fig. S1e). The Cu/CuOx/Cu nanodot arrays were fabricated as follows (Fig. 1). First, the 
AAO template with average pore diameter of 85 nm was transferred to the conductive substrates (Au/Ti/SiO2/Si). 
Cu bottom electrode/CuOx resistive switching layer/Cu top electrode were sequentially deposited by ECD using 
AAO nanotemplates. After ECD, the AAO templates were removed by NaOH solution and finally highly-ordered, 
high-density nanoscale resistive switching memory devices were fabricated by bottom-up self-assembly. The 
AAO template was well placed on the Au-coated substrate (Fig. 2a), and the template pores were found to be 
well-aligned vertically. High-density arrays (Fig. 2b–d) of Cu/CuOx/Cu nanodots were obtained by ECD with an 
AAO template mask (~300 nm-thick, average pore diameter =  85 nm). The nanodots were well formed within the 
pores of the AAO template. There is some fluctuation in shapes and thickness of Cu/CuOx/Cu nanodots shown 

Figure 1. Schematic illustration of nanoscale resistive swtiching memory fabrication by bottom-up direct 
growth. (a) AAO nanotemplate transferred on conductive substrate. (b) Cu bottom electrode deposition by 
electrochemical deposition (ECD) through AAO nanotemplate mask. (c) CuOx deposition by ECD. (d) Cu 
deposition by ECD. Cu/CuOx/Cu tri-layer was formed by bottom-up direct growth. (e) Final structure of 
nanoscale resistive switching memory composed of Cu/CuOx/Cu after removal of AAO template.
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in Fig. 2(d). This may be due to the non-uniform cutting during the preparation of samples for cross-sectional 
SEM images.

The final structure after removing the templates has almost uniform thickness shown in Figs 3 and 4. The 
total thickness of Cu/CuOx/Cu nanodots was ~180 nm. ECD provides the bottom-up growth of Cu/CuOx/Cu 
nanostructures from Au bottom electrodes to form ReRAM device structures as schematically shown in insets of 
Fig. 2. During ECD, the movement of the metal ions onto the AAO template was uniformly made by stirring the 
solution; this process increased metal ion mobility by eliminating air bubbles caused by the gas that originated 
from anions on the AAO template. Uniform deposition of nanodots is very important in this work, so solution 
was stirred at 200 rpm to prevent clogging of the AAO during metal deposition.

The formation of CuOx and Cu nanodots in the AAO template can be explained by the charge transfer reac-
tions and diffusion processes47–49. The formation of Cu and CuOx is affected by pH, J, and Tsol

49–51. Temperature is 
one of the most important parameters to determine the overall reactions. In case of Cu, it can be deposited at high 
current density either at low or high temperatures. To form Cu metal as the bottom electrode, low temperature 
of 5 °C was selected since the deposition rate of Cu is very high at elevated temperatures. In case of CuOx, lower 

Figure 2. Bottom-up self-assembly and fabrication of nanoscale ReRAM devices by electrochemical 
deposition. Cross-sectional SEM images of Cu/CuOx/Cu nanodots electrodeposited on Au-coated Si substrate 
(Au/SiO2/Si). (a) AAO template transferred on the substrate. (b) Electrochemical deposition of Cu bottom 
electrode. (c) Electrochemical deposition of CuOx on Cu/Au/SiO2/Si. (d) Electrochemical deposition of Cu on 
CuOx/Cu/Au/SiO2/Si.

Figure 3. High-density nanoscale resistive switching memory devices by bottom-up direct growth.  
(a) Schematic illustration of the nanodot memory devices; plan and cross-sectional view SEM images of Cu/
CuOx/Cu nanodots after removal of the AAO template. (b) Two and three-dimensional AFM images of Cu/
CuOx/Cu nanodots.
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current density is required for proper synthesis of oxide layer. The deposition temperature (45 °C) is selected 
based on the growth rate of CuOx layer.

In this study, CuOx and Cu nanodots were deposited at a range of J at pH =  9. High J accelerated faster dis-
solution kinetics of Cu, so the concentration of Cu2+ ions increased and restricted the diffusion or migration of 
OH– in the diffusion layer. Consequently, a metallic Cu layer is easily formed on the Au substrate:

+ →+ −Cu 2e Cu, (1)2

On the other hand, at low J, the OH− ion shows higher diffusivity than that of Cu ions in bulk solution, result-
ing in easy combination of Cu+ with OH− ions to form Cu2O:

+ + → + .+ − −2Cu 2e 2OH Cu O H O (2)2
2 2

The surface morphologies of the Cu/CuOx/Cu nanodot memory devices (Fig. 3a) were investigated using 
FE-SEM. The SEM images of an array of Cu/CuOx/Cu nanodots were obtained after removal AAO nanotem-
plates. The bottom-up growth using the AAO nanotemplate mask produced uniform and well-ordered Cu/CuOx/
Cu nanodots. Two- and three-dimensional AFM images (Fig. 3b) confirm that the array of Cu/CuOx/Cu nano-
dots was successfully synthesized with uniform dot size and thickness. Therefore, the bottom-up self-assembly 
processes using AAO templates successfully fabricated high-density nanoscale memory devices without using 
any lithography tools.

Further investigation on the morphology and crystal structure of the nanodots was conducted using 
cross-sectional TEM images of Cu/CuOx/Cu nanodot structure (Fig. 4a). Cu/CuOx/Cu tri-layer was confirmed 
from the magnified TEM image (Fig. 4b). The thickness of each layer is about 30 nm/20 nm/130 nm for Cu (bot-
tom electrode)/CuOx/Cu (top electrode) measured using TEM image (Fig. 4b). Energy-dispersive X-ray spectros-
copy (EDS) analysis was done to investigate the composition of each layer. It is clearly seen that Cu and CuOx layer 
are distinguishable (Supporting Information Fig. S2). XRD results also revealed that Cu and CuOx films could 
be well synthesized by controlling the current densities during ECD process (Supporting Information, Fig. S3). 
It is confirmed that Cu and CuOx films fabricated by ECD were polycrystalline with (111) and (200) orientations 
due to the surface energy of face-centered cubic structure19. Cu film deposited on bare wafer with Au electrode 
showed reddish-brown, whereas CuOx film showed dark blue (insets of Supporting Information, Fig. S3). In 
conjunction with TEM, XRD, and EDS analyses it is believed that Cu/CuOx/Cu structure was synthesized well by 
using bottom-up filling of each layer. It is very important to know the exact composition of each element in CuOx 
resistive switching layer. Further analysis will be done to characterize the composition of copper and oxygen in 
CuOx layer.

Electrical properties of nanoscale ReRAM devices were investigated by measuring current-voltage (I–V) char-
acteristics of CuOx-based nanodots at room temperature using conductive AFM and a Pt-coated cantilever as a 
probe tip (Fig. 5a). The top electrode was grounded, and the electrical bias was applied to the bottom electrode. To 
achieve the first filament formation (e.g. forming operation), positive bias was applied to the bottom electrode up 
to 2.5 V in DC sweep mode. The current was abruptly jumped to the compliance current level at 1.5 V, as shown 
in Fig. 5b (black line). In this transition process, the resistance state of the device is changed from high resist-
ance state (HRS) to the low resistance state (LRS) with a conductive filament formation. By contrast, the device 
is changed from LRS to HRS by filament rupture when the negative bias is applied to the bottom electrode. The 
fabricated devices showed typical bipolar resistive switching behavior (Fig. 5b). Thus we can program and erase 
the device by applying positive set bias and negative reset bias, respectively. The set operations occurred at about 
1.3 V, and reset operations occurred at about − 0.75 V. 

Figure 4. Microstructures of nanoscale ReRAM. (a) Cross-sectional high angle annular dark field (HAADF) 
TEM images of Cu/CuOx/Cu nanodots structure. (b) Detailed Cu/CuOx/Cu nanodots structure.
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To explain the resistive switching operations of the device (i.e. forming process, set, and reset), we consid-
ered Cu-ion migration in the device (Fig. 6a). The density and distribution of defects such as Cu+ ions in the 
switching layer are the important parameters for resistive switching operation. In Cu/CuOx/Cu nanodot memory 
devices, CuOx used as the resistive switching layer has the high binding energy between Cu and oxygen ions, 
while Cu used as the electrode has a low ionization energy23,52. Thus metallic Cu in the bottom electrode is more 
easliy ionized to Cu+ ions and electrons (e−) than in the CuOx switching layer when the positive bias is applied 
to the bottom electrode. Cu ions have high diffusivity and solubility in the CuOx. They are diffused from the 
bottom Cu electrode through the Cu vacancies of the CuOx switching layer, and they are accumulated from the 
top electrode to the bottom electrode with electrons injected from the top electrode. That is, the Cu ion-based 
filament can grow from the top to the bottom in the resistive switching layer during applying a positive bias. This 
soft-breakdown of the device is called forming operation which is the first set operation (Fig. 6b). The operation 
polarity of the device is dependent on the initial forming operation. Strong one-directional electric field is applied 
to a device during the forming operation. This process induces asymmetric Cu+  ion distribution in the switching 
layer between the bottom and top electrodes because migration direction of Cu+  ions is determined by the initial 
forming bias polarity, resulting in an asymmetric electrical property of the device. Once the filament is formed in 
the switching layer by forming process, the conductive filament gradually dissolves during applying the opposite 
bias (Fig. 6c). This filament dissolution occur at the bottom region which has a relatively weak filament than that 

Figure 5. Schematic device measurement setup and programmable memory characteristics of nanoscale 
ReRAM. (a) Schematic measurement setup for electrical characterization of nanodot memory devices using 
conductive atomic force microscopy. (b) Resistive switching memory characteristics of nanoscale Cu/CuOx/Cu 
memory devices.

Figure 6. Resistive switching mechanism of nanoscale Cu/CuOx/Cu ReRAM. (a) Initial, (b) set, and (c) reset 
states.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:25537 | DOI: 10.1038/srep25537

of the top region. Consequently, the repeated set and reset operations occur by filament formation and rupture 
at weak filament region. The conductive filament can be easily formed and ruptured by electrical bias due to Cu+ 
ion migration in the switching layer.

On/off ratio of the resistance states directly affects the sensing margin of memory devices. High on/off ratio 
is required for multilevel data storage and reliable reading operation. Our device shows on/off ratio of ~103. 
Therefore, it is thought that the memory device fabricated by bottom-up processes can be used as the nonvolatile 
memory element in high-density memory applications.

To check the validity of using the AFM probe as the conductive probe tip, we measured the current of samples 
attached directly to the bottom electrode of the AFM probe (short circuit) and of samples that did not contact the 
top electrode (open circuit) (Supporting Information, Fig. S4). The current increased immediately to the compli-
ance level (1 μ A); this result confirms that the AFM probe operated well as the conductive probe. Moreover, in the 
open circuit the current was very low (~picoamperes). These measurements confirm that the resistive switching 
phenomenon originated from the fabricated nanoscale memory devices.

In this work, the individual memory device was measured by using the conductive AFM. We can program/
erase/read the individual memory elements by proper location of AFM tip since every device is separated by 
each other. In this study the main purpose is to demonstrate the possibility of fabrication of resistive switching 
memory devices in situ by ECD. The resistive switching properties are related to dimensions of nanodots. The 
layer thickness is related to set/reset voltages and the size of devices can determine the reset current. The device 
size is dependent on the pore diameter of templates and it is possible to change the diameter of templates by 
changing the AAO synthesis method. In addition, the oxide layer thickness can be controlled by deposition time. 
Comparative study is being done to change the dimensions of nanodevices by changing the pore diameters of 
AAO templates and by controlling the ECD processes.

In conclusion, we fabricated copper oxide-based ReRAM device using AAO as the template layer. Nanoscale 
memory devices were fabricated using bottom-up direct growth. ECD was used to synthesize Cu/CuOx/Cu nan-
odots on self-assembled nanoporous AAO templates. The ordered array of MIM-structured memory devices 
(Cu/CuOx/Cu) was successfully synthesized with uniform dot size and thickness. The fabricated memory devices 
showed reliable and reproducible resistive switching memory characteristics with the application of electrical 
biases. This method overcomes the scaling limits of currently-used nano device-fabrication methods.

Methods
Fabrication of self-assembled nano-templates. To fabricate nanoporous AAO templates, aluminum 
(Al) foil (99.999% purity, 0.50-mm thickness, Goodfellow) was used. AAO nanotemplates were fabricated using a 
two-step anodization process after electro-polishing to flatten the surface as described previously40. The first and 
second anodizations were performed in 0.3 M oxalic acid with a carbon cathode at 7 °C and 40 V for 24 h. After 
the second anodization, the widening process was performed in a 0.1 M H3PO4 solution at 30 °C. To remove the 
remaining Al layer, the AAO pores were filled with polystyrene (1.7 wt % PS/CHCl3 solution), then the substrate 
was washed in a saturated solution of HgCl2 with deionized water to separate the Al layer from AAO. The AAO/
Polystyrene (PS) film was immersed in 0.1 M H3PO4 solution at 30 °C for 30 min to remove the barrier layer from 
the oxide/metal interface, then was transferred onto the substrate. Finally, the PS film on the AAO templates was 
removed by immersing it in CHCl3.

Fabrication of nano-scale resistive switching memory devices. The Si substrate with a 100-nm SiO2 
layer was used as the substrate for device fabrication. A 20-nm-thick Ti adhesion layer and a 50-nm-thick Au 
layer were deposited on the SiO2 layer by E-beam evaporation. The AAO template with 300-nm thickness was 
carefully transferred to the Au-coated Si substrate and dried at 80 °C for 20 min. Au is used as the seed layer for 
subsequent ECD. In addition, Au is used as the bottom contact for electrical measurement. Many kinds of met-
als can be used as the seed layer and the bottom contact, so other metals can be used for this purpose. ECD was 
used to deposit the Cu/CuOx/Cu nanodots sequentially on the substrate with the AAO template as the mask. 
The nanodots were synthesized from 0.6 M CuSO4·5H2O aqueous solution amended with 3 M lactic acid (Sigma 
Aldrich) to stabilize Cu (II) ions. The aqueous solution was adjusted to a pH of 9 by adding 2 M NaOH (Sigma 
Aldrich) then stirred overnight using a magnetic stirrer53,54. ECD of the nanodots into the AAO template was 
conducted in a two-electrode system using a carbon counter-electrode. ECD was performed using a DC power 
supply. ECD exploits electrically-driven redox reactions in the solution. On the basis of this mechanism, Cu 
nanodots as the bottom and top electrodes were deposited at J =  5 mA/cm2 at 5 °C for 30 s, then CuOx nanodots 
as the resistive switching layer were deposited with J =  1 mA/cm2 at 45 °C for 30 s. By this processes Cu and CuOx 
can be deposited by bottom-up growth on the substrates with AAO as the template. After deposition of Cu/CuOx/
Cu nanodots, the substrate was immersed in 1 M NaOH solution for 30 min to remove the AAO template, then 
rinsed with deionized water to remove the remaining NaOH40.

Characterization. The morphologies of the Cu/CuOx/Cu nanodots were observed using a field emission 
scanning electron microscope (FE-SEM; JSM 7401F, JEOL). The microstructure and crystal structure of nan-
odots were investigated using a high-resolution transmission electron microscope (HR-(S)TEM-I; JEM 2100F 
with a Cs corrector on STEM, JEOL) and by x-ray diffraction (XRD, D/MAX-2500/PC, RIGAKU) using Cu 
Kα  radiation (λ  =  1.54178 Å). Before the TEM investigations, the samples were prepared using a focused ion 
beam (FIB; Helios, FEI).The surface morphologies of Cu/CuOx/Cu were examined using AFM (Dimension 
3100 +  Nanoscope V, VEECO) in non-contact mode and the electrical properties were measured using conduc-
tive AFM (XE-100, Park systems) in contact mode; the scan rate was 1 Hz, the scan configuration was 256 ×  256 
pixels, and the scan size was 500 nm ×  500 nm. The AFM measurements were performed at room temperature 
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and atmospheric pressure. Micro- cantilevers (length : 225 μ m, Park Systems) with frequency of 75 kHz, a spring 
constant of ~2.8 N m−1 and a radius of curvature of ~25 nm were used.
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