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Modeling and fitting protein-
protein complexes to predict 
change of binding energy
Daniel F.A.R. Dourado & Samuel Coulbourn Flores

It is possible to accurately and economically predict change in protein-protein interaction energy upon 
mutation (ΔΔG), when a high-resolution structure of the complex is available. This is of growing 
usefulness for design of high-affinity or otherwise modified binding proteins for therapeutic, diagnostic, 
industrial, and basic science applications. Recently the field has begun to pursue ΔΔG prediction for 
homology modeled complexes, but so far this has worked mostly for cases of high sequence identity. 
If the interacting proteins have been crystallized in free (uncomplexed) form, in a majority of cases 
it is possible to find a structurally similar complex which can be used as the basis for template-based 
modeling. We describe how to use MMB to create such models, and then use them to predict ΔΔG, 
using a dataset consisting of free target structures, co-crystallized template complexes with sequence 
identify with respect to the targets as low as 44%, and experimental ΔΔG measurements. We obtain 
similar results by fitting to a low-resolution Cryo-EM density map. Results suggest that other structural 
constraints may lead to a similar outcome, making the method even more broadly applicable.

Modeling Protein-Protein Interactions (PPIs)1 is fundamentally important in biology as it probes normal as well 
as diseased protein function. For example, such models explain the role of Parkinson’s-disease associated muta-
tions in Parkin1–3. PPIs are also important in the development of therapeutic and diagnostic biologics (monoclo-
nal antibodies, or mAbs, and alternative scaffolds)4.

Biologics have a growing and economically substantial field of application. However raising antibodies or 
finding an alternative scaffold to bind a given target is difficult and time consuming. Even when starting with 
a scaffold that binds reasonably, affinity maturation requires a substantial experimental effort, and maintaining 
specificity can be a challenge5. Likewise protein engineering often creates many simultaneous mutations, with 
possible immunogenicity and solubility issues, and no insight as to which substitutions are responsible for the 
main effect6. Thus there is demand for an economical computational method which will suggest a relatively small 
number of substitutions which have high likelihood of improving binding.

Computational methods have made significant progress for cases where a crystallographic complex is avail-
able of the potential biologic bound to its target (we will refer to these as bound structures). Some are Molecular 
Dynamics (MD) based methods7–10, which typically are associated with a high computational cost. So, the appli-
cability of such methods to large complexes or to a substantial number of mutations, which is required the case 
for protein-protein affinity maturation protocols, can be quite limited. On the other hand, Knowledge Based (KB) 
methods, which empirically combine several energetic terms including implicit solvent11–16, are fast but most 
perform little or no structural optimization and cannot model the backbone rearrangements induced by muta-
tion. KB methods have also been combined with sequence analysis17, and interface structure alignments18 but 
this requires evolutionary information which is not available for all complexes (e.g. many biologics), and further 
has only been demonstrated for homology models based on high sequence identity (only 4% of their dataset had 
sequence identity below 50%)17. Recently, we described Zone Equilibration of Mutants (ZEMu)1, validated with 
1254 mutants (1–15 simultaneous mutations) of 65 different complexes, which offers both accuracy and economy. 
ZEMu is implemented in MacroMoleculeBuilder (MMB)19,20, a multiscale internal-coordinate modeling code 
in which flexibility and an all-atom force field can be limited to regions of interest1,21. The method significantly 
improves the existing FoldX potential13, and arguably shows promise to improve others17,18 which perform lim-
ited structural minimization.
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There are limited options for computing Δ Δ G for the case in which the interacting proteins have only been 
crystallized in the free form. For many such structures, low resolution density maps of their complex are availa-
ble22. The recent explosion in Cryo Electron Microscopy, brought about by the direct electron detector23, promises 
a rich source of new structural data, notably of complexes which are hard to crystallize. In addition, solution 
scattering produces many low-resolution density maps24, and Free-Electron Lasers promise to eventually reach 
comparable single-molecule resolution25.

Alternatively, for most structures available in the free form (referred to as targets)26, it is possible to find a 
structurally related template which can be used to build a template-based model of the complex27. Template mod-
eling uses a structural alignment, which can be done accurately even at low sequence identity27,28.

This realization has led to considerable interest in template-based docking29. Specific cases in which the 
free structure is related to one of the proteins in the template complex include antibody-bound IGF-I (complex 
exists of the related IGF-II bound to an antibody)30, human Chorionic Somatomammotropin (hCS)31 vs. human 
Growth Hormone (GH) Receptor (complex exists of GH vs. GH Receptor), Fcγ RI vs. IgG1 (complexes have long 
existed of Fcγ RII and Fcγ RIII vs. IgG, while for Fcγ RI vs. IgG1 a mutated complex was recently solved)32–34. 
In this study we implement a fast and simple to use internal-coordinate template-based docking protocol in 
MMB19,20, that works even in the range of ~40% sequence identity for homologous proteins (quite near the twi-
light zone)27,35 and extend ZEMu1 to predict Δ Δ G for thus-modeled and fitted complexes.

Results
The template-based docking protocol introduced here results in good Δ Δ G precision for homologous templates, 
those which (in this work) have sequence identities (vs. the targets) in the range of 44% to 51%. It is naturally 
more precise for self-templates, meaning those which have high sequence identity ( > 93%) to their targets. In this 
work when we provide RMSD (Root Mean Square Deviation) we refer in all cases to the discrepancy in backbone 
3D atomic structure of modeled vs. template complexes. When we provide RMSE (Root Mean Square Error) and 
correlation, we are comparing experimental to computed Δ Δ G.

Double-free models are made by docking two targets onto the template complex, while single-free models are 
made by docking one target onto the template (see Methods). For the double-free models based on self-templates 
the Root Mean Square Deviations (RMSDs) range from 0.71 to 3.42 Å (Table 1). The exception is the TGF-β Type 
II Receptor/TGF-β 3 complex for which the RMSD is 22.84 Å (Table 1). If we analyze the structures of the model 
and template in detail (Fig. S1) we can observe that distal region of the co-crystal chain A (TGF-β  3) is poorly 
resolved. In fact, if we omit template chain A residues 40 to 80 the RMSD decreases from 21.7826 Å to just 
0.8819 Å, which is in line with RMSD found for the other complexes (Table 1). Since these poorly resolved res-
idues are placed on a distal region of chain A, far from the interface, the Δ Δ G prediction precision with this 
model is in line with that of the rest of the dataset. We describe this complex in more detail later. For the single- 
and double-free models based on homologous templates the RMSD ranges from 2.76 to 4.86 Å. As expected the 
RMSDs of this sub-group are higher than the ones observed for the double-free models based on self-templates. 
However the differences are relatively small, which is in line with idea that structure is more conserved than 
sequence27. We discuss this point in more detail below.

Based on the validation dataset described in Table 1, we compared the performance of ZEMu to FoldX-only 
(meaning FoldX with no prior MMB equilibration) in predicting Δ Δ G. For the entire dataset the correlation  
between FoldX-only and experimental Δ Δ G (Δ Δ GFoldX-only and Δ Δ Gexp, respectively) is 0.12, while the Root 
Mean Square Error (RMSE) is 1.83 kcal/mol. To our knowledge this is the first time FoldX is evaluated with 
modeled complexes; this also serves as an external (non-ZEMu) validation of our modeling protocol. For ZEMu 
the correlation improves to 0.34 (p-value <  0.00001); the RMSE also improves, to 1.54 kcal/mol (Table 2, Fig. 1, 
Tables S1 and S2).

The improvement over FoldX-only is reflected in the complete dataset as well as in the single and multi-
ple mutant sub-groups (Table 2). For the single mutants, FoldX-only shows an RMSE of 1.89 kcal/mol and 
correlation of 0.06, while for ZEMu we obtain an RMSE of just 1.54 kcal/mol and a higher correlation of 0.24 
(p-value =  0.00004) (Table 2, Fig. 1, Tables S1 and S2). In the case of the multiple mutants FoldX-only achieves 
an RMSE of 1.79 kcal/mol and correlation of 0.15, and ZEMu an RMSE of 1.54 kcal/mol and a correlation of 0.37 
(p-value <  0.00001) (Table 2, Fig. 1, Tables S1 and S2).

From the main dataset we also created a sub-group comprising mutants for which self-template structures 
are available (Table 3). Based on this sub-group we compared the performance of ZEMu for modeled vs. crys-
tallographic complexes. As expected, performance was better for crystallographic than for modelled complexes, 
but only moderately (RMSE of 1.58 vs. 1.76, Correlation of 0.61 vs. 0.38, respectively). This further highlights the 
quality of the modeling protocol. In the particular case of the TGF-β Type II Receptor / TGF-β 3 complex model, 
the RMSD vs. its self-template is 22.84 Å, when computed based on all resolved residues. As explained above the 
huge RMSD value found is due to poorly resolved residues in a distal region of chain A co-crystal (Table 1, Fig. S1)  
and so does not affect the quality and performance of the model at the interface. The RMSEs are 1.68 kcal/mol 
and 1.19 kcal/mol, and the correlations are is 0.28 and 0.83, for the model and co-crystal, respectively. The perfor-
mance is thus in line with the other models.

We then tested a ZEMu variant with an additional flexibility radius (0–14 Å) (Fig. 2) centered on the mutation 
site, which can include residues from the binding partner. When a radius of 4 Å is used an RMSE very slightly 
higher than that of regular ZEMu is obtained, also an added computational cost is incurred, so there is no reason 
to use the added flexibility. Nonetheless, ZEMu variants with an extra flexibility radius of 4 to 10 Å still show 
better performance than FoldX-only.

The application to the Fcγ RI/IgG1 complex illustrates some of the advantages of ZEMu. We created single-free 
and double-free template models, and a fitted model, of this complex (Table 4, Table S2), based on an Fcγ RIII/
IgG1 template (sequence identity of Fcγ RI with Fcγ RIII is 45%)33. When we performed this work no Fcγ RI/
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IgG1 co-crystal was available, but one was reported more recently34. With the Fcγ RI/IgG1 single-free template 
model, FoldX-only yields an RMSE of 2.33 and a correlation of 0.12 while ZEMu RMSE is just 0.92 and correla-
tion is 0.42. The difference in performance between the two protocols is overwhelmingly due to three mutations 
involving N-terminus residue G236. When the three mutants are left out, FoldX-only RMSE drops substantially 

Protein 1 (PDB) Protein 2 (PDB) Complex MODEL Sequence identity
Model vs template 

RMSD (Å)
Number of mutants 

(subtitutions)

IgG1-K D44.1 
FAB (1MLB)

Hen egg-white 
lysozyme (1DPX) 1MLC IgG1-K D44.1 FAB/Hen 

egg-white lysozyme
1MLC:A,B/1MLB:A= 100% 

1MLC:E/1DPX:A= 100%

global =  0.98  
chain A =  0.96 
chain B =  1.10 
chain E =  0.75

16(26)

IgG1-K D1.3 FV 
(1VFA)

Hen egg-white 
lysozyme (1DPX) 1VFB IGG1-KAPPA D1.3 FV/

Hen egg-white lysozyme
1VFB:A/1VFA:A= 100% 
1VFB:C/1DPX:A= 100%

global =  0.80  
chain A =  0.33 
chain B =  0.68 
chain C =  1.19

42(56)

HyHEL-63 FAB 
(1DQM)

Hen egg-white 
lysozyme (1DPX) 1DQJ HyHEL-63 FAB/Hen egg-

white lysozyme
1DQJ:A/1DQM:A= 100% 
1DQJ:C/1DPX:A= 100%

global =  0.80  
chain A =  0.69 
chain B =  0.91 
chain C =  0.78

34(47)

TGF-β  Type 
II Receptor 
(1M9Z)

TGF-β  3 (1TGJ) 1KTZ TGF-β  Type II Receptor/
TGF-β  3

1KTZ:A/1TGJ:A= 100% 
1KTZ:A/1M9Z:A= 98.2%

global =  22.84 
global (without 
40–80) =  0.88 

chain A =  21.79 
chain A(without 

40–80) =  1.21 
chain B =  0.63

27(27)

β -lactamase in-
hibitor protein-I 
(3GMU)

TEM-1 β -lactamase 
(1ZG4) 1JTG

β -lactamase inhibi-
tor protein-I/TEM-1 
β -lactamase

1JTG:A/:3GMU:A= 100% 
1JTG:B/1ZG4:A= 98.2%

global =  3.42  
chain A =  1.94 
chain B =  0.64

143(307)

IgG1 (4DZ8) Fragment B of 
 protein A (2JWD) 1FC2 IgG1/Fragment B of 

protein A
1FC2:C/2JWD:A= 93.1% 
1FC2:D/4DZ8:A= 96.4%

global =  1.67  
chain C =  0.27 
chain D =  1.35

9(9)

Iso-1-cy-
tochrome C 
(1NMI)

Cytochrome C 
 peroxidase (3R99) 2PCC

Iso-1-Cytochrome C/ 
Cytochrome C 

 peroxidase
2PCC:A/3R99:A= 99.3% 
2PCC:B/1NMI:A= 99.1%

global =  1.21  
chain A =  0.40 
chain B =  2.18

12(18)

IgG1 (3DNK) Fcγ R II (3RY4) 3RY6 IgG1/Fcγ R II 3RY6:C/3RY4:A= 97.1% 
3RY6:A/3DNK:A= 98.8%

global =  2.72  
chain A =  1.90 
chain B =  3.62 
chain C =  2.22

65(138)

IgG1 (3DNK) Fcγ R III (1E4J) 1E4K IgG1/Fcγ R III 1E4K:C/1E4J:A = 100% 
1E4K:A/3DNK:A= 97.2%

global =  1.99  
chain A =  1.59 
chain B =  2.55 
chain C =  1.59

95(155)

IgG1 (3DNK) Fcγ R N (4N0F) 4N0U IgG1/Fcγ R N 4N0U:A/4N0F:A= 100% 
4N0U:A/3DNK:A= 97.1%

global =  0.71  
chain A =  0.31 
chain E =  1.01

53(53)

IgG1 (1E4K) Fcγ R I (3RJD) 1E4K(IgG1/
Fcγ R III) IgG1/Fcγ R I 1E4K:C/3RJD:A= 45.2%

global =  2.76  
chain A =  2.80 
chain B =  2.34 
chain C =  2.80

66(146)

IgG1 (3DNK) Fcγ R II (3RY4) 1E4K(IgG1/
Fcγ R III) Ig1/Fcγ R II 1E4K:C/3RY4:A= 44.0% 

1E4K:A/3DNK:A= 97.2%

global =  3.61  
chain A =  3.10 
chain B =  4.23 
chain C =  3.36

65(138)

IgG1 (3DNK) Fcγ R III (1E4J) 3RY6(IgG1/
Fcγ R II) IgG1/Fcγ R III 3RY6:C/1E4J:A= 50.9% 

3RY6:A/3DNK:A= 98.8%

global =  4.86  
chain A =  4.79 
chain B =  4.61 
chain C =  4.88

95(155)

IgG1 (3DNK) Fcγ R I (3RJD) 1E4K(IgG1/
Fcγ R III) IgG1/Fcγ R I 1E4K:C/3RJD:A= 45.2% 

1E4K:A/3DNK:A= 97.2%

global =  3.68  
chain A =  3.03 
chain B =  2.52 
chain C =  4.80

62(128)

IgG1 (3DNK) Fcγ R I (3RJD) Density map 
from 1E4K IgG1/Fcγ R I 1E4K:C/3RJD:A= 45.2% 

1E4K:A/3DNK:A= 97.2%

global =  3.37  
chain A =  2.71 
chain B =  2.56 
chain C =  4.30

62(128)

 TOTAL 846(1531)

Table 1. Validation dataset. The dataset is divided in two groups. The first is composed of double-free template 
models, based on self-templates. The second group (bottom of table, separated by a blank row) includes : 1) a 
single-free template model of IgG1/Fcγ R I, based on IgG1/Fcγ R III crystal, where the structure of IgG1 from 
the crystallographic complex is kept rather than being replaced; 2) double-free template models of IgG1/Fcγ R I, 
IgG1/Fcγ R II and IgG1/Fcγ R III, which were modeled from based on homologous templates; 3) A model of  
IgG1/Fcγ R I built by fitting to a low-resolution density map synthesized from an IgG1/Fcγ R III crystallographic 
complex21 Sequence identity and backbone RMSD of targets vs. templates are shown.
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to 0.32 and the correlation increases to 0.32. Though this is a small sample, it illustrates even more strikingly that 
FoldX’s rigid backbone is particularly unsuitable for modeling the terminal region, which has characteristically 
high mobility.

For the double-free and fitted Fcγ RI/IgG1 models the three mutations involving N-terminus residue G236 are 
immediately adjacent to unresolved residues. The free IgG1 structure (3DNK) was missing several residues from 
the N-terminus (residues 229 to 235, part of the lower hinge connecting Fc to Fab in a full-length IgG1), which 
were resolved in the template complex (1E4K). These three mutants plus one mutation in the missing region 
therefore could not be modeled in the double-free and fitted models. ZEMu still outperforms FoldX-only but by 
a smaller margin (Table 4). Directly comparing against the double-free and fitted models, we can conclude that 
for both FoldX-only and ZEMu the best performance was obtained for the fitted model (Table 4). If we analyze 
the RMSD of both models with respect to the co-crystal structure we can observe that the fitted model has a 
lower RMSD by ~0.32 Å. In the fitted model the hinges between the D1 and D2 domains on Fcγ RI, and between 
the CH2 and CH3 domains on Fc, were made flexible, to allow domain motions, explaining the better RMSD of 
chains A and C. This highlights the efficacy of the fitting protocol.

ZEMu and MMB performance for models of Fcγ RIII/IgG1 and Fcγ RII/IgG1 based on homologous templates 
further demonstrates the efficacy of the protocol in cases where the self-template is not available. For instance, 
for the Fcγ RIII/IgG1 model based on its self-template the RMSE is 0.85 kcal/mol and the RMSD is 1.98 Å. In 
the case of the Fcγ RIII/IgG1 model based on the Fcγ RII/IgG1 template (PDB:3RY6)32 (sequence identity of 
Fcγ RIII with Fcγ RII is 51%) the RMSE increases to 1.17 kcal/mol (0.32 kcal/mol higher). The RMSD (vs. the 

Dataset
Number of 

mutants

Models

FoldX-only ZEMu

RMSE 
(kcal/mol) Correlation

RMSE 
(kcal/mol) Correlation

All mutants 846 1.83 0.12 1.54 0.34

Multiple mutants 584 1.79 0.15 1.54 0.37

Single mutants 262 1.89 0.06 1.54 0.24

Table 2. Comparison between Foldx-only and ZEMu performance.

Figure 1. ZEMu versus experimental ΔΔG over the full dataset (846 mutants) .

Number of 
mutants

Double-free Models Co-crystals

FoldX-only ZEMu ZEMu

RMSE 
(kcal/mol) Correlation

RMSE 
(kcal/mol) Correlation

RMSE 
(kcal/mol) Correlation

558 2.00 0.17 1.76 0.38 1.58 0.61

Table 3. Comparing the performance of ZEMu on modeled vs. crystallographic complexes. Note that ZEMu 
performance decreased only moderately (1.76 vs. 1.58 RMSE) for modeled vs. crystallographic complexes.
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self-template) is 4.86 Å, which is low but still 2.4 fold higher than the RMSD found for the double-free model 
based on a self-template. Similarly, for the Fcγ RII/IgG1 model based on a self-template the RMSE is 0.90 kcal/mol  
while the RMSD (vs. the self-template) is 2.72 Å. For the Fcγ RII/IgG1 model based on Fcγ RIII/IgG1 template 
(PDB:1E4K)33 (sequence identity of Fcγ RII with Fcγ RIII is 44%) the RMSE increases to just 1.13 kcal/mol, possi-
bly because the RMSD increases only 1.3-fold to 3.61 Å. For these two complexes together (150 mutants, includ-
ing some with single and some with multiple substitutions) the RMSE increased by 0.22 kcal/mol when lower 
sequence identity (44–51%) homologous templates were used in the modeling instead of high sequence identity 
(> 93%) self-templates.

Positive Predictive Value (PPV) is defined as TP/(TP+ FP) (see supporting information). In order to compute 
statistical quantities like this we would need a random sample of possible mutations. However many of the avail-
able experimental Δ Δ G’s are the result of alanine scanning mutagenesis experiments and although 36% of the 
dataset have experimental Δ Δ G <  0 kcal/mol, only 5% have experimental Δ Δ G <  − 0.5 kcal/mol. Also given the 
interest in affinity maturation36 it is likely that there are more affinity-improving mutations in the peer-reviewed 
literature and in SKEMPI than would occur through random mutagenesis. It is thus doubtful that SKEMPI, 
or our dataset, contains a representative sample of substituted residue types or a representative ratio of affinity 
increasing vs. affinity reducing mutations. We nonetheless computed the PPV which gives the odds of obtaining 
Δ Δ Gexp ≤  cexp for cexp =  0, − 0.5 and − 1.0 kcal/mol, given Δ Δ GZEMu ≤  cZEMu , for several cZEMu’s. Considering the 
entire dataset, for Δ Δ GZEMu ≤  − 0.5 kcal/mol, the probability of satisfying Δ Δ Gexp ≤  − 0.5 kcal/mol is 0.43. We 
emphasize strongly that this PPV is not applicable to the case that Δ Δ GZEMu is computed for all possible point 
mutations at an interface, as would be done in a likely practical application.

Figure 2. Results of flexibilizing a spatial neighbourhood of the mutation sites for a dataset composed of 
687 mutants (not includes the template models of FcγRIII/IgG1 and FcγRII/IgG1 based on a homologous 
co-crystal complex). Ordinary ZEMu has only five flexible residues about each mutation site flexibilized. 
Here we also flexibilize all residues within a radius (0–14 Å) of the mutation sites. Radius of 0 Å corresponds to 
ordinary ZEMu.

MODEL
Number of 

mutants

FoldX-only ZEMu

RMSE 
(kcal/mol) Correlation

RMSE 
(kcal/mol) Correlation

Single-free template-based model 66 2.33 0.12 0.92 0.42

Double-free template-based model 62 0.64 0.41 0.57 0.49

Fitted model 62 0.49 0.47 0.47 0.50

Table 4. Comparison between Foldx-only and ZEMu performance for FcγRI/IgG1 single-free and double-
free template-based and fitted models.
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Discussion
In prior work1 we described a means to predict Δ Δ G in crystallographically observed PPIs. A key goal in 
Structural Bioinformatics is the ability to compute Δ Δ G even for the very common case of proteins whose 
structure is known crystallographically only in the free form. In many cases evolutionary information17 does not 
exist or is not applicable. We formed template models based on an available cocrystallized complex (which in 
principle could be e.g. isoforms or homologous of the free structures), with a new template modelling protocol 
that we describe. We here demonstrate that the protocol does not require a high sequence identity for building 
significant template models based on a homologous template (recall, sequence identity for homologous proteins 
ranged between 44% and 51%), whereas existing methods work only with high sequence identity templates17,18. 
For low sequence identity, our method is only moderately less precise, again related to the idea that structure is 
more conserved than sequence27. We also assembled protein complexes by flexibly fitting to a 10 Å resolution 
density map of an isoform protein21.

We emphasize that all results labelled “FoldX-only” were obtained on complexes modelled by us (albeit with-
out subsequent ZEMu processing of the mutation sites), providing independent (non-ZEMu) validation of our 
template-docking protocol.

Globally, our success using template-docked and fitted models suggests that other means of docking under 
constraints, e.g. using biochemical or bioinformatical data, may lead to comparable results. We further suggest 
that if experimental Δ Δ G data is available, ZEMu could be used to validate and/or refine the docked, modeled, 
or fitted structures. This could significantly improve docking results37 but is important even for template-based 
modeling or fitting when the constraints come from an isoform or homolog, since the binding mode may not be 
conserved.

Our main validation dataset consists of template modeled complexes. We used several variations of ZEMu on 
these complexes and evaluated the accuracy of Δ Δ G prediction. More-sophisticated variants of ZEMu, which 
flexibilized various spatial regions, had very similar results on the main dataset when compared to the published 
method1, indicating that it is best to limit the flexibility to the immediate sequence neighborhood of the mutated 
residues. This validates the perturbative assumption underlying ZEMu, namely that the substitution mutations 
have the largest effect in the near neighborhood of the mutation site, and less effect farther from that position. 
Anecdotal observations suggest MD potentials introduce structural artifacts, so leaving as much as possible of the 
crystallographic structure unmodified may be key to ZEMu’s success. We introduce an MMB modeling protocol 
and show that it leads to a versatile method to predict Δ Δ G on modeled and fitted protein-protein complexes.

Methods
We built models of protein-protein complexes using MMB template modeling to align the free protein structures 
to relevant protein crystal complexes and also by fitting to a low-resolution density maps using ICFF21 (described 
below). We then used ZEMu1 to predict Δ Δ G upon mutation and compared to the results of using FoldX-only13. 
Note that in all cases FoldX-only analysis was conducted with the MMB modeled or fitted structures. ZEMu was 
mostly used as described in1–3. Though we also tested the effect of flexibilizing additional residues in the spatial 
neighborhood (up to 14 Å) of the mutation sites.

Dataset. The validation dataset comprises 846 mutants (each with 1-6 simultaneous substitutions) of 11 dif-
ferent protein-protein complexes models for which Δ Δ Gexp is available (Table 1)36,38–60. The dataset consists 
mostly of double-free template models (two targets). In some cases the templates were the same proteins as the 
targets (self-templates, Table S1); such systems are useful for benchmarking purposes. In other cases we used 
homologous templates (Fig. 3A; Table S2). We also created a single-free template model, for which only one of the 
two targets comes from a free structure, while the other is retained from the template (Fig. 3B; Table S2). Finally, 
we also generated a model of the biomedically important Fcγ RI /IgG161 by fitting to a low-resolution synthetic 
density map of Fcγ RIII/IgG133 using ICFF21.

Template modeling in MMB. Several good template-based modeling methods exist62–64. Our procedure 
starts with a sequence alignment65 between unbound (target) and bound (template) target and template residues, 
followed by structural alignment. We then resolve any steric clashes, after which the model is ready to be used for 
Δ Δ G prediction with ZEMu or potentially other purposes. The procedure (described in detail below) is straight-
forward and convenient to do in MMB.

Structural alignment based on gapped sequence alignment. We have previously described mor-
phing21,66 and homology modeling of RNA20 and ribonucleoprotein complexes19, using springs which connect 
residues in a rigid molecule of known structure, with corresponding residues in a flexible molecule of unknown 
structure. The mentioned correspondence is determined by a simple SeqAn65 gapped sequence alignment now 
available in MMB, with a mismatch and gap opening penalty of − 1. In contrast with our homology modeling 
work (in which a fully-flexible unstructured target chain is aligned with a rigid template)19, or our morphing work 
(in which a partially-flexible structured target is aligned with a rigid template)21,66, here those springs align one 
or more unbound targets (or their binding domains) onto corresponding domains in the template, (Fig. 3) with 
both the targets and the template remaining fully rigid during the process. The template is then deleted, leaving 
the modeled targets in their place (Fig. 3A,B).

Declashing. The thus-modeled complex typically has a small number of clashing residues, as the binding 
interface of the target was previously exposed to solvent allowing greater freedom to the side chains and to some 
extent the backbone. These clashes must be removed for accurate Δ Δ G calculation (Fig. 3A,B). The problem 
of side chains that clash due to modeling is not unlike that of side chains that clash due to in silico mutagenesis, 
the problem that is addressed by ZEMu. Therefore we use a ZEMu-like method1 to declash. We flexibilize only 
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Figure 3. Creating complexes with MMB template modeling and ICFF. As an example, we create an Fcγ RI-
IgG1 model based on the experimentally observed Fcγ RIII-IgG1 complex. (A) A double-free template model is 
created as follows. We rigidify all chains. The two chains comprising the IgG1 Fc are constrained to each other, 
for the free (from PDB ID: 3DNK) structure. For the template (1E4K), all chains are constrained to ground. 
Springs connect the binding domain (D2) of the free Fcγ RI (3RJD) to the D2 domain of the template Fcγ RIII 
(1E4K). The springs connect residues which correspond based on a gapped sequence alignment. Similarly, 
springs connect the two CH2 domains of the free to the CH2 domains of the template IgG1. Once the free 
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the clashing residue or, if needed, a 5-residue zone centered on the main clashing residue, and equilibrate under 
PARM9967 interactions with near neighbors. We then minimize the structure under the FoldX potential13.

Flexible fitting to low-resolution density maps. In addition to the template models described above, 
we also flexibly fitted free Fcγ RI and IgG1 structures into a synthetic 10 Å-resolution density map (based on PDB 
ID 1E4K) of the Fcγ RIII-IgG1 complex. We previously described Internal Coordinate Flexible Fitting (ICFF). 
In ICFF, each atom in the molecule (or relevant fragment thereof) perceives a force which is proportional to the 
electronic density gradient at the nuclear position21. The molecule in question can have hinge and interface flex-
ibility, and MD forces can be applied about such points of flexibility. Hinges between the D1 and D2 domains on 
Fcγ RI, and between the CH2 and CH3 domains on Fc, were made flexible, to allow domain motions. Interface 
residues 1236 and 1298 (on Fc) and 148 (on Fcγ RI) were granted side-chain flexibility, to relieve clashes which 
would otherwise occur as the two subunits come into contact to form the complex (Fig. 3C).

Evaluating ΔΔG for the modeled complexes. ZEMu involves first specifying a flexibility zone com-
prising five residues consecutive in sequence, centered on the mutation site. The flexibility zone is treated in tor-
sion space, leaving the remainder of the protein rigid and fixed. Also, a physics zone of 12 Å around each flexible 
residue is defined, inside of which electrostatic and van der Waals forces are active. The system is then minimized 
by dynamics1.

The interaction energy of the equilibrated complex is evaluated with the Knowledge Based (KB) potential 
FoldX13. We conduct the calculation for the MMB-equilibrated wild type and mutant complexes to obtain Δ Gwild type  
and Δ Gmutant, respectively. An estimate of Δ Δ Gexp is obtained as follows68:
Δ Δ GZEMu ≡ Δ Gmutant – Δ Gwild type ≈  Δ Δ Gexp

ZEMu+ additional flexibility radius. We also tested a variation of ZEMu which grants flexibility to res-
idues in the spatial neighborhood of the mutation sites. This was defined as all residues within a certain radius 
of the mutation site, potentially including residues of the adjacent protein. We evaluated radii ranging from 0 
(equivalent to ordinary ZEMu) to 14 Å. After equilibration we evaluated Δ Δ G with FoldX13 as before.
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