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Improved metagenome assemblies 
and taxonomic binning using long-
read circular consensus sequence 
data
J. A. Frank1, Y. Pan2, A. Tooming-Klunderud3, V. G. H. Eijsink1, A. C. McHardy2, 
A. J. Nederbragt3 & P. B. Pope1

DNA assembly is a core methodological step in metagenomic pipelines used to study the structure and 
function within microbial communities. Here we investigate the utility of Pacific Biosciences long and 
high accuracy circular consensus sequencing (CCS) reads for metagenomic projects. We compared the 
application and performance of both PacBio CCS and Illumina HiSeq data with assembly and taxonomic 
binning algorithms using metagenomic samples representing a complex microbial community. Eight 
SMRT cells produced approximately 94 Mb of CCS reads from a biogas reactor microbiome sample 
that averaged 1319 nt in length and 99.7% accuracy. CCS data assembly generated a comparative 
number of large contigs greater than 1 kb, to those assembled from a ~190x larger HiSeq dataset 
(~18 Gb) produced from the same sample (i.e approximately 62% of total contigs). Hybrid assemblies 
using PacBio CCS and HiSeq contigs produced improvements in assembly statistics, including an 
increase in the average contig length and number of large contigs. The incorporation of CCS data 
produced significant enhancements in taxonomic binning and genome reconstruction of two dominant 
phylotypes, which assembled and binned poorly using HiSeq data alone. Collectively these results 
illustrate the value of PacBio CCS reads in certain metagenomics applications.

Metagenome assembly is a key methodological stage in all environmental sequencing projects, which has signif-
icant repercussions on all down-stream analyses such as taxonomic classification, genome reconstruction, and 
functional gene annotation. It is commonly a very complex process, with many sequencing platform-specific 
issues such as read length and number. Similarly, there are also many sample-specific issues such as the numbers, 
frequencies, types and sizes of microbial genomes present in highly diverse communities. The goal of metagen-
omic assemblies is relatively straightforward: obtain large contig sizes coupled with the fewest possible misas-
semblies. However, metagenomic assemblies often consist of a fragmented collection of short contigs, which 
are difficult to taxonomically and functionally assign accurately. There are at least two current approaches to 
metagenomic assembly: (i) assembly of all data1, which is typically computationally demanding, or (ii) using bin-
ning or normalization methods to select subsets of reads that are then assembled separately2,3. Methods that use 
data from multiple sequencing platforms are still infrequent, despite indications that combined approaches yield 
improvements in contig length and integrity4.

Current sequencing technologies offer a range of read lengths. Methods that produce short reads (< 250 nucle-
otides (nt)) such as Illumina can generate high sequencing depth with minimal costs, however when used for ana-
lyzing complex communities data assembly typically requires massive computational resources and the resulting 
contigs remain relatively short1. In theory, longer read sequencing technologies can overcome many of the known 
assembly problems associated with short reads, however these technologies have traditionally been accompanied 
with one or more inherent shortcomings, such as lower sequencing depth, higher costs and higher error rates. 
Several technologies exist that can produce longer reads. For example, Ion Torrent and Roche 454 offer read 
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lengths of up to 400 nt and 1000 nt, respectively, but these technologies are more costly per base pair and are vul-
nerable to generating homopolymer (single-nucleotide repeats) sequencing errors. Pacific Biosciences (PacBio) 
has designed a sequencing technology based on single-molecule, real-time (SMRT) detection that can provide 
much greater read lengths, with ~50% of reads in a single run exceeding 14 kb and 5% exceeding 30 kb5. High 
error rates, reported as high as 15% in individual reads, have previously prevented the use of raw PacBio reads in 
metagenomics6,7. Interestingly, the error rates may be reduced by using circular consensus sequencing (CCS) that 
entails the repeated sequencing of a circular template, and subsequent generation of a consensus of individual 
DNA inserts. Consensus quality increases with each sequencing pass, and this approach can ultimately result in 
high-quality sequences of about 500 to ~2,500 nt in length with greater than 99% accuracy (Q20 or better)8,9.

Here, we present various applications of PacBio CCS data in a metagenomic analysis of the complex micro-
bial community in a commercial biogas reactor. We compare individual assemblies of short read HiSeq2000 
and PacBio CCS data as well as hybrid assemblies of subsets from both platforms. PacBio CCS data provides a 
dramatic improvement in the assembly of universal marker genes in comparison to HiSeq2000 data, allowing 
for custom training data for phylogenomic binning algorithms and accurate taxonomic binning of assembled 
contigs from both data types. Subsequently this enabled enhancements in genome reconstructions of uncultured 
microorganisms that inhabit complex communities.

Results
PacBio CCS reads improve assembly statistics. For the purpose of this study we analyzed and com-
pared two sequence datasets generated from the same biological sample, a methanogenic biogas reactor micro-
biome containing an estimated 480 individual phylotypes, hereafter referred to as Link_ADI (Table S1). These 
datasets comprised approximately one lane of HiSeq sequence data and data from eight PacBio SMRT cells, 
respectively. HiSeq sequencing entailed 175 nt library construction and generation of 2 ×  100 nt paired end 
sequence data, totaling approximately 149 million read pairs (18.5 Gb). For PacBio, a library was constructed with 
inserts of approximately 1.5 kb, which were sequenced using a RS II instrument and P4-C2 chemistry. A total of 
522,695 PacBio reads were generated with a mean accuracy of 86%, totaling approximately 3.3 Gb. Of these reads, 
71,254 were CCS that averaged 99.7% accuracy and 1,319 nt in length (totaling 95.4 Mb) (Fig. 1). Given the two 

Figure 1. Read length and quality distribution of PacBio “Circular Consensus Sequence” (CCS) reads 
produced from a Link_ADI-derived shotgun library (~1.5 kb inserts) sequenced on a PacBio RS II 
instrument using P4-C2 chemistry. In total, eight SMRT cell were used for sequencing. (a) Read length 
distribution of PacBio CCS reads that passed a 0.99 quality score for which an average of 10 insert passes was 
required. (b) Quality distribution of the 71,254 PacBio CCS reads that passed the 0.99 cutoff using the SMRT 
portal (average 99.7%).
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different sequencing platforms, multiple assembly algorithms were used. MIRA 4.010 was used to assemble the 
PacBio CCS reads, which resulted in approximately 46% of the CCS reads assembling into 2,181 contigs averaging 
4,459 nt with the max contig length of 65,165 nt (Table S2). SOAPdenovo211 was used to assemble approximately 
35.6% of the HiSeq reads generated for Link_ADI (~96 million read pairs unassembled), which produced 55,633 
contigs greater than 1 kb (average contig length: 2411 nt) with a maximum length of 148,797 nt.

Comparing the assembly statistics from the two assemblies showed that, despite the much smaller size of the 
raw PacBio CCS dataset (around 190-fold less sequence), the total length of large contigs produced from the 
MIRA assembly was in the range of those produced from the HiSeq assembly (Fig. 2 and Table S2). The MIRA 
assembly produced 34,513 contigs and unassembled reads that were greater than 1 kb in length, which totaled 
approximately 54.9 Mb (Table S2). In contrast, the HiSeq assembly generated 55,633 contigs greater than 1 kb 
(134.2 Mb). The total size of the 100 biggest MIRA contigs totaled 52% of the equivalent HiSeq subset. Attempts 
to perform hybrid assemblies using raw HiSeq and PacBio CCS reads were ultimately unsuccessful, presumably 
due to the large number of sequencing reads and a paucity of algorithms customized for this particular hybrid 
input (to our knowledge). Therefore, as an alternative we used a downstream approach that was more amena-
ble to our datasets and available assemblers. Both subsets of assembled HiSeq and CCS contigs greater than 
1 kb (including unassembled CCS reads > 1 kb) were further assembled using the “Sanger”-era program CAP312, 
which was designed for use with long sequencing reads. In total, 21.31% and 10.98% of PacBio and HiSeq contigs 
greater than 1 Kb (respectively) assembled into a dataset that included only 4767 hybrid contigs, with the remain-
ing 90,183 contigs not assembling. Despite the modest incorporation rate, the assembly provided an increase in 
cumulative nucleotides from contigs larger than 10 kb (PacBio +  HiSeq: 21.01 Mb, Hybrid: 26.8 Mb) and 25 kb 
(PacBio +  HiSeq: 6.5 Mb, Hybrid: 9.3 Mb) (Fig. 2 and Table S2).

PacBio CCS reads improve genome binning of difficult to assemble phylotypes. Community 
characterization of Link_ADI using short subunit (SSU) rRNA gene amplicon analysis identified approximately 
480 individual phylotypes, of which two exhibited high relative abundance and no close taxonomic relationship 
to cultivated bacterial species (Table S1). Phylotype unClos_1 is an as-yet uncultured bacterium affiliated to 
the Clostridiales family and was estimated to represent ~36% of the total microbiome, whereas unFirm_1 is a 
deeply-branched uncultured representative affiliated to the Firmicutes, accounting for ~5%. In order to function-
ally characterize both phylotypes and determine their contribution to the microbiomes metabolic network, we 
sought to reconstruct and annotate their genomes. Given the high levels of relative abundance, both organisms 
were anticipated to be represented by high DNA levels within the metagenomic datasets, and thus conducive to 
greater assembly in terms of coverage and contig length. First pass comparisons of the assembled HiSeq contigs 
focusing on contig coverage, size and GC %, gave no clear patterns that are indicative of several numerically dom-
inating organisms (i.e. a cluster of large high-coverage contigs within a narrow GC % range, Fig. 3c). In contrast, 
coverage vs GC % comparisons of assembled PacBio CCS contigs revealed one clear cluster of higher coverage 
contigs that were large and within a narrow GC % range (Fig. 3a).

Phylogenomic binning methods were subsequently used in attempts to recover genome sequence information 
for unClos_1 and unFirm_1 and for as many other phylotypes as possible. The presence of only one biological 
sample and DNA extraction, pre-determined the use of sequence compositional binning algorithms and pre-
vented the use of temporal and/or multi-sample binning methods that have been recently shown to produce accu-
rate genomes from metagenomic datasets13,14. PhyloPythiaS+ 15 was initially used to assign taxonomy to PacBio 
CCS and HiSeq contigs (greater than 1 kb), which produced very few taxonomic assignments to a strain or species 
level (Table S3). Instead, the vast majority of contigs were binned to higher- ranking taxa at a phylum or order 
level, implying that the data provides limited functional and structural insights into the individual organisms 
making up the microbial community. This result was not unexpected as the SSU rRNA gene analyses indicated 
that the Link_ADI microbiome is composed of uncharacterized species (Table S1) that are distantly related to the 
available prokaryotic genomes in NCBI used to train PhyloPythiaS+ .

Figure 2. Cumulative number of assembled nucleotides in contigs of different minimum lengths for (a) 
Link_ADI, (b) unClos_1, and (c) unFirm_1. Each line corresponds to a different sample (Link_ADI or eCI, 
where noted), sequencing method (HiSeq [HS] or PacBio [PB]), different assembly method (co-assembly across 
samples Link_ADI and eCI, hybrid using mapped reads from HiSeq and PacBio, or hybrid using contigs from 
HiSeq and PacBio), or assembly program (CAP3, IDBA_UD, MIRA, or SOAPdenovo).
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In cases where PhyloPythiaS and its predecessors have had phylotype-specific training data (at least 100 kb) 
from a given metagenome, the binning and genome reconstruction of the target phylotype has proven to be highly 
accurate16,17. Therefore, to improve the resolution of PhyloPythiaS+  we compiled as much phylotype-specific 
training data as possible. All contigs were evaluated for coverage vs. GC % metrics and the presence of taxonomi-
cally informative marker genes18, with the aim of identifying contigs that correspond to the abundant phylotypes 
identified in our samples and can therefore be used as training data. The complexity and fragmented nature of the 
HiSeq assembly (Fig. 3c) made identification of species-specific genome information problematic. This had direct 
implications on the ability to obtain the ~100 kb high-confidence assemblages of training data that are required 
for accurate species level binning17. However, the increased length and improved clustering of the assembled 
PacBio CCS contigs provided large and accurate training data collections for unClos_1 and unFirm_1 in particu-
lar. We pooled together six contigs totaling 200 kb for unClos_1 and seven contigs totaling 107 kb for unFirm_1 
(Highlighted in Fig. 3b). Interestingly this included large contigs that encoded complete SSU rRNA operons, 
which are notoriously difficult to assemble using short-read NGS data, such as reads obtained using HiSeq. In 
total, we identified 17 SSU rRNA gene fragments in the PacBio CCS contigs and 86 when including unassembled 
reads (compared to six in the HiSeq contigs greater than 1 kb). For unClos_1, we identified 16S rRNA genes in 
three contigs that totaled 96 kb in length.

Both the total collection of HiSeq contigs greater than 1 kb and the PacBio CCS contigs, including unassem-
bled reads, were binned with the custom training model for PhyloPythiaS+ , that includes all the available prokar-
yotic genomes in NCBI and the two phylotype-specific contig subsets described above. The output produced a 
greatly improved recovery of phylotype-level binning for both unClos_1 and unFirm_1 in both HiSeq and PacBio 
CCS contigs from Link_ADI (Fig. 4). For unClos_1, 189 PacBio sequences (PacBio contigs and unassembled 
CCS reads, totaling 1,913,759 nt) and 182 HiSeq contigs (600,903 nt) were assigned to the phylotype (Table S2). 
576 PacBio sequences (1,710,231 nt) and 77 HiSeq contigs (151,790 nt) were binned to unFirm_1. The binning 
of unClos_1 and unFirm_1 contigs also revealed patterns that indicate assembly differences between PacBio CCS 
and HiSeq. Despite the indications from the SSU rRNA gene amplicon analyses that phylotypes unClos_1 and 

Figure 3. Visualization of GC %, coverage and size of assembled contigs generated from PacBio CCS (a,b) 
and HiSeq data (c,d) from a biogas reactor microbiome (Link_ADI). Contigs are coloured based on taxonomic 
binning that was performed using PhyloPythiaS+  under default settings (a,c) and after including custom 
phylotype-specific training data (b,d). Contig lengths are indicated by circle sizes. PacBio CCS contigs that 
contain marker genes and were used as training data for phylotype unClos_1 and unFirm_1 are outlined in 
black. For the purposes of clarity, only HiSeq contigs greater than 5 kb are represented (c,d).
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unFirm_1 were the most abundant in Link_ADI, neither phylotype were attributed to the longest HiSeq contigs 
(Fig. 3d). Nine of the ten largest HiSeq contigs from Link_ADI binned to the Order Actinomycetales (Fig. 3c), 
totaling around 2.2 Mb over 203 contigs (Table S2). Only one phylotype affiliated to the Actinomycetales was 
identified in SSU rRNA gene amplicon analysis, which was ranked 61st most abundant (Table S1). In addition, the 
coverage for each of the Actinomycetales-affiliated HiSeq contigs was on average approximately two-fold higher 
than the contigs binning as unClos_1 (Fig. 3d). In contrast, the Actinomycetales-affiliated PacBio CCS contigs 
were much shorter and exhibited lower coverage than unClos_1 (Figs 3 and 4).

The integrity of the Link_ADI HiSeq and PacBio CCS binning results for both unClos_1 and unFirm_1 phy-
lotypes were evaluated by determining completeness and redundancy in each respective reconstructed genome. 
Genomes were evaluated in terms of conserved single-copy gene (CSCG) coverage19, which was significantly 
lower for unClos_1 HiSeq contigs (24 of 107, 4 redundancies), compared to PacBio CCS contigs (96 of 107, 10 
redundancies). For unFirm_1, only four CSCGs (no redundancies) were identified in binned HiSeq contigs, 
whereas 60 (6 redundancies) were found in the corresponding PacBio CCS dataset. Overall, these results illustrate 
that for both these numerically abundant phylotypes, PacBio CCS data produced greater assembly and binning 
results, subsequently generating more-compete reconstructed genomes.

The custom trained PhyloPythiaS+  with training data obtained from the PacBio CCS contigs also showed 
enhanced binning when used for other biological samples and metagenomics datasets where unClos_1 and 
unFirm_1 were found (Fig. 5). An independently created cellulose enrichment (eCI) was inoculated from Link_
ADI and exhibited reduced species complexity, with both unClos_1 and unFirm_1 demonstrating comparable 
numerical dominance (~48% and ~7%, respectively) (Table S4). Similar to the Link_ADI HiSeq dataset that was 
assembled with SOAPdenovo, assembly of eCI with IBDA_UD20 did not generate long marker-gene encoding 
contigs representative of unClos_1 and unFirm_1, and phylotype-specific binning was not possible using this 
dataset alone (Fig. 5a). Therefore, training data generated from the Link_ADI PacBio CCS dataset was used to 
taxonomically bin the eCI HiSeq dataset (Fig. 5b). The binning produced after training improved cluster visuali-
zation, and binning assignments were concurrent with coverage vs GC % comparisons, which indicated explicit 
clusters for each phylotype (Fig. 5b). Subsequently, the recovery of genomic information linked to the unClos_1 
and unFirm_1 phylotypes was substantially larger (Table S3). Similar to the Link_ADI SOAP_denovo assembly, 
discrepancies were also noted in the eCI IDBA_UD assembly, where the most abundant organisms (unClos_1 
and unFirm_1) did not assemble into the largest contigs. Instead, Actinobacteria-affiliated DNA from one pre-
dicted phylotype (0.45% relative abundance: Table S4) formed the largest contigs (Fig. 5).

Hybrid assembly of genome bins improves overall genomic reconstruction. In an effort to recon-
struct improved genomes for both unClos_1 and unFirm_1, we used a two-step hybrid assembly approach that 
was refined to include only PacBio and HiSeq data that binned to either phylotype. With the intention of gen-
erating as complete as possible genomes, we used all genomic material that was available for both phylotypes 
from both the Link_ADI and eCI samples. Binned HiSeq contigs from Link_ADI and the cellulose enrichment 
eCI datasets were first deconstructed into individual reads and then pooled into one file prior to assembly using 

Figure 4. Selected taxonomic bins generated via PhyloPythiaS+ binning using default settings with 
and without use of custom training data. Circle size indicates relative bin size; for complete binning 
information see Table S3. The proportion of total DNA binned in the major phyla (A) represented in the 
Link_ADI microbiome was similar for both PacBio CCS and HiSeq contigs regardless of the use of training 
data. However, use of training data enhanced the recovery of unClos_1 and unFirm_1 (B) in both the PacBio 
and HiSeq assemblies. Differences between the sequencing methods were also evident at a species level where 
some abundant species assembled and binned better with PacBio (Thermacetogenium phaeum, unClos_1, 
and unFirm_1), whereas others produced better results with HiSeq data (Syntrophomonas wolfei and 
Methanosarcina barkeri).
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IBDA_UD. This initial “phylotype-specific” HiSeq co-assembly improved the cumulative nucleotides from larger 
contigs (Table S2), which were then assembled together with Pacbio CCS contigs and unassembled reads binned 
to the same phylotype. This phylotype-specific hybrid approach improved genome reconstruction in terms of 
total genome size as well as improved average contig length and large contig assembly (Fig. 2b,c and Table S2). For 
unClos_1, a total of 811 out of 1178 sequences (PacBio contigs, unincorporated PacBio reads, and co-assembled 
Link_ADI and eCI HiSeq contigs; 3,350,596 nt in length) assembled into 71 hybrid contigs (909,704 nt) and 367 
unincorporated sequences (2,120,602 nt), totaling 3,030,306 nt. Average contig lengths increased 127%, whereas 
improvements in large contig assembly was particularly evident for contigs greater than 25 Kb (136%) and 50 Kb 
(145%) (Table S2). For unFirm_1, 520 out of 1,212 sequences (3,037,687 nt) were assembled into 123 hydrid con-
tigs (1,086,984 nt) and 692 unincorporated sequences (1,563,729), totaling 2,650,713 nt. Average contig lengths 
increased 118% and large contig assembly was significantly improved for contigs greater than 10 Kb (217%) and 
25 Kb (796%) (Table S2). Hybrid MIRA assemblies that used the individual sequencing reads (that formed the 
original contigs) instead of a two-step approach using CAP3, resulted in contigs that were on average smaller for 
both unClos_1 and unFirm_1 (Fig. 2b,c and Table S2).

Discussion
Many of the commonly used second generation sequencing methods in (meta) genome sequencing provide 
gigabases of data. While this provides high levels of sequencing depth per sample, the short read lengths can 
restrict the ability to assemble longer contigs, particularly when evaluating complex microbial communities. 
Specific exemplary problems include the presence of genes with low evolutionary divergence between organisms 
or repetitive genomic regions that are larger than a sequencing read (e.g., rRNA operons). One way of circum-
venting this is by combining multiple sequencing technologies that can overcome each other’s limitations. For 
example, Illumina HiSeq provides high sequencing depth, but with low sequencing breadth; in other words this 
technique has a high ability to sample across multiple genomes with the drawback that individual reads sample 
a very small proportion of each genome. This can be complemented by additional PacBio sequencing, which has 
high breadth (providing at least 10–30-fold more data per read), but a lot lower depth. By combining the two 
methods, one has a higher probability of covering regions problematic for short read sequencing methods. Several 
studies have illustrated this convincingly for bacterial genomes, where a hybrid Illumina-PacBio approach has 
enabled near-complete chromosome closure with no necessary secondary sequencing or primer-walking meth-
ods21. Previously, the high error rate of PacBio reads (~10–15%) has prevented their use in metagenomic analysis 
of complex communities, where the coverage required to compensate the erroneous reads was not financially or 
technically feasible. However, use of the CCS provides high quality long reads that are suitable for metagenomic 
applications. Here we illustrate the features that PacBio CCS data may bring to a metagenomics project, with 
respect to increased contig lengths, assembly of problematic genomic regions, improved phylogenomic binning, 
and genome reconstruction of the uncultured phylotypes that dominate microbial communities.

Specific benefits of the PacBio CCS contigs for Link_ADI were the considerably larger average contig sizes as 
well as the number of large contigs, with the later being comparable to the HiSeq assembly that was generated 
from 190-fold more data. In metagenomic analyses, larger contigs are key to producing higher quality output 
that is needed for downstream applications such as taxonomic assignments17, gene calling, and annotation of 
operons that often exceed 10 kb in length16. The assembly output from both platforms varied considerably in 
both contig size and distribution (Figs 2 and 4 and Table S2). In particular, numerically dominating organisms 
did not necessary assemble into the largest HiSeq contigs (Figs 3b,d and 5), irrespective of species diversity or the 
assembly algorithms used (Link_ADI: SOAP_denovo, eCI: IDBA_UD), which in contrast transpired for PacBio 
CCS contigs (Fig. 3a,b). Despite the similar size of the PacBio CCS and HiSeq > 1 kb contig datasets available for 

Figure 5. Visualization of GC %, coverage and size of assembled contigs generated from eCI HiSeq data. 
Sample eCI originated from a lab-scale enrichment grown on cellulose that was inoculated from Link_ADI. 
Contig lengths are indicated by circle sizes. Contigs are coloured based on phylogenetic binning that was 
performed using PhyloPythiaS+  under default settings (a) and PacBio-derived custom phylotype-specific 
training data (b). For the purposes of clarity, only HiSeq contigs greater than 5 kb are represented.
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binning, the size of the unClos_1 and unFirm_1 genomic bins obtained from the PacBio CCS data were, on aver-
age, ~3x and ~6x larger, respectively (Fig. 4 and Table S2). Another observation was the examples of PacBio CCS 
contigs containing difficult to assemble regions such as SSU rDNA. On average, PacBio CCS contigs that con-
tained relevant SSU rDNA data were 15-fold larger than the SSU rDNA containing HiSeq contigs. Conventional 
composition-based binning was shown to be substantially improved with the addition of PacBio-derived custom 
training data that contained genomic information specific for unClos_1 and unFirm_1 (Fig. 4 and Table S3). 
The collection of these phylotype-specific training subsets was only possible in the PacBio CCS contig dataset, 
since neither phylotype produced contigs of sufficient length in HiSeq datasets. Hence, this approach presents an 
alternative means to reconstruct genomes in instances were phylotypes are not conducive to HiSeq assembly and 
experimental design that will not allow multiple sample timepoints or several differential DNA extractions, which 
are necessary for accurate binning algorithms that use differential coverage of populations13,14.

Whilst this study shows the potential value PacBio CCS reads can exert upon a metagenomics study, there 
is certainly room for improvement. The comparative high costs of PacBio data (approximately 8 times the cost 
per Gb of data, this study), can restrict the depth of raw data used. Moreover, one of the key concerns with the 
use of PacBio CCS reads is data wastage with respect to the number of reads generated and the number that 
pass CCS quality cutoffs. Upcoming PacBio upgrades will increase read lengths and produce a higher amount 
of high-quality CCS reads per SMRT cell, which will generate greater assemblies and thus less wastage. Notably, 
closer examination reveals that read wastage is also applicable for the use of Illumina in metagenomic applica-
tions. For example, in the present study only 35.6% of the paired-end HiSeq reads assembled into contigs greater 
than 1,000 nt, an arbitrary cutoff that is used in many metagenomic analyses. The improved PacBio CCS assembly 
statistics for the two dominant phylotypes, also suggests that greater depth of PacBio CCS data will increase read 
incorporation rates and average contig lengths in assemblies of lesser abundant phylotypes within complex com-
munities. Whilst the hybrid assemblies of the PacBio CCS and HiSeq contigs from the large Link_ADI metagen-
omes improved assembly statistics, they only produced modest incorporation rates, presumably due to low levels 
of overlap between the two datasets. The observed low level of hybrid assembly overlap is possibly attributed to 
the relatively low amount of raw data used and the high species complexity of the Link_ADI sample, which con-
tains approximately 480 phylotypes. As expected, hybrid assembly overlap was improved for contigs that were 
taxonomically assigned to a phylotype prior to hybrid assembly (Table S2).

Despite the relative small size of the PacBio CCS dataset and high species complexity of the sample, hybrid 
assemblies for both the total community dataset and phylotype-specific bins produced improvements (Fig. 2 and 
Table S2), and this represents just a start. In the future, there will be access to better long read data and it is antici-
pated that further improvement of assembly algorithms customized to incorporate multiple sequencing technol-
ogy inputs will improve hybrid assembly performance. Regardless, these aspects need further attention in moving 
forward, so that the full potential of longer read technology can be exploited to deepen our insight into complex 
microbial communities. This study also shows that as long reads become more common, they will make further 
software extensions of binning algorithms such as PhyloPythiaS+  very valuable and will allow automatic assign-
ment of training contigs to novel phylotypes and not just the higher ranking assignments. Increased capabilities 
to reconstruct accurate genomes representative of uncultured microorganisms are of major importance since they 
allow accurate mapping of community metabolism and are a prerequisite for meaningful “meta-omic” studies 
that may reveal genes and/or proteins with novel functions that cannot be recognized by bioinformatics alone.

Methods
Samples. Sample Link_ADI was obtained from a commercial biogas reactor in Linköping, Sweden, fed on a 
mixture of slaughterhouse waste, food waste, and plant biomass (Reactor I)22. Sample eCI was taken from a batch 
enrichment using the same commercial biogas plant as inoculum source and cellulose as substrate23.

DNA extraction and sequencing. Total genomic DNA was prepared using the FastDNA Spin Kit for Soil 
(MP Biomedicals, Santa Ana, CA, USA). For both Link_ADI and cEI, an aliquot of 200 μ l was used for DNA extrac-
tion following the manufacturer’s protocol. For SSU rRNA gene sequencing, library preparation was performed 
as per manufacturers recommendations (Illumina, 2013). V3 and V4 regions of bacterial SSU rRNA genes were 
amplified using the 341F (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWG 
C AG - 3 ′ )  and  7 8 5 R  ( 5 ′ - G TC TC G TG G G C TC G G AG ATG TG TATA AG AG AC AG G AC TAC H 
VGGGTATCTAATCC-3′) modified primer set24, where the underlined sequence corresponds to the Illumina 
adaptor. The amplicon PCR reaction mixture (25 μ l) consisted of 12.5 ng microbial gDNA, 12.5 μ l iProof HF DNA 
polymerase mix (BioRad) and 0.2 μ M of each primer. The PCR reaction was performed with an initial denatur-
ation step at 98 °C for 30 s, followed by 25 cycles of denaturation at 98 °C for 30 s, annealing at 55 °C for 30 s, and 
extension at 72 °C for 30 s followed by a final elongation at 72 °C for 5 min. A new PCR reaction was carried out 
to attach unique 6 nt indices (Nextera XT Index Kit) to the Illumina sequencing adaptors to allow multiplexing 
of samples. The PCR conditions were as follows: 98 °C for 3 min., 8 cycles of 95 °C for 30s., 55 °C for 30 s., and 
72 °C for 30 °C, followed by a final elongation step at 72 °C for 5 min. AMPure XP beads were used to purify the 
resulting 16S rRNA amplicons. The 16S rRNA amplicons were quantified (Quant-IT™  dsDNA HSAssay Kit and 
Qubit™  fluorometer, Invitrogen, Carlsbad, CA, USA), normalized and then pooled in equimolar concentrations. 
The mulitiplexed library pool was then spiked with 25% PhiX control to improve base calling during sequencing. 
A final concentration of 8 pM denatured DNA was sequenced on an Illumina MiSeq instrument using the MiSeq 
reagent v3 kit chemistry with paired end, 2 ×  300 bp cycle run. HiSeq Shotgun sequencing runs were performed 
on libraries (175 nt, to ensure overlap and allow for merging of the paired-ends) prepared from Link_ADI and 
enrichment cEI DNA using TruSeq PE Cluster Kit v3-cBot-HS sequencing kit (Illumina Inc.). In addition, librar-
ies prepared from Link_ADI DNA were shotgun sequenced using the PacBio RS II Single Molecule, Real-Time 
(SMRT® ) DNA Sequencing System. Library. The library was prepared using the PacBio 2 kb library preparation 
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protocol and sequenced on 8 SMRT cells using P4-C2 chemistry. To increase PacBio read quality, raw reads were 
filtered using RS_ReadsOfInsert.1 pipeline of SMRT Analysis (smrtanalysis_2.3.0.140936.p4.150482) with min-
imum predicted accuracy of 99.

SSU rRNA gene amplicon analysis. Paired end reads were joined using the QIIME v1.8.0 toolkit included 
python script join_paired_ends.py (with the default method fastq-join) and quality filtered (at Phred >  =  Q20) 
before proceeding with downstream analysis25. USEARCH61 was used for detection of chimeric sequences fol-
lowed by clustering (at 97% sequence similarity) of non-chimera sequences and denovo picking of OTUs26,27. 
Joined reads were assigned to OTUs using the QIIME v1.8.0 toolkit25, where uclust28 was applied to search 
sequences against a subset of the Greengenes database29 filtered at 97% identity. Sequences were assigned to 
OTUs based on their best hit to the Greengenes database, with a cut-off at 97% sequence identity. Taxonomy 
was assigned to each sequence by accepting the Greengenes taxonomy string of the best matching Greengenes 
sequence. filter_otus_from_otu_table.py (included with QIIME) was used to filter out OTUs making up less than 
0.005% of the total using default parameters and –min_count_fraction set to 0.00005 as previously reported30.

Raw data assembly. Due to the species complexity of sample Link_ADI (~480 phylotypes) and the compu-
tational resources available to this study, HiSeq data was assembled using SOAPdenovo-63mer (SOAPdenovo2 
http://soap.genomics.org.cn/soapdenovo.html) using the following the parameters: -K 51 -p 40 setting max_
rd_len =  125, avg_ins =  100, reverse_seq =  0, and asm_flags =  1. For all other HiSeq assemblies with samples 
exhibiting lower species complexity (enrichment eCI and phylotype-specific co-assembly, see below), IDBA_UD 
was used. Sequence data from enrichment cEI was trimmed using sickle pe (version 0.940 https://github.com/
najoshi/sickle) with default parameters, converted to an interleaved FASTA using the program fq2fa (bundled 
with IDBA_UD) with the parameters –merge –filter, and assembled with IDBA_UD v1.1.1 (http://i.cs.hku.
hk/~alse/hkubrg/projects/idba_ud/index.html) using the parameters –pre_correction –num_threads 15 –maxk 
60. PacBio reads for Link_ADI were filtered using the SMRT portal, with only those CCS reads that produced a 
minimum accuracy of 0.99 (average 10 passes) being considered for further analysis (ranging from one to three 
kb in length). PacBio CCS reads were assembled using slightly modified parameters in MIRA 4.0 (http://source-
forge.net/p/mira-assembler/wiki/Home/): COMMON_SETTINGS -DI:trt =  ./ -NW:cmrl =  warn \ PCBIOHQ_
SETTINGS -CL:pec =  yes.

Identification of marker genes in contigs. For the identification of protein coding marker genes, 
open reading frame calling was first performed using MetaGeneMark31 version 1 metagenome ORF calling 
model (gmhmmp -m MetaGeneMark_v1.mod -f G -a -d). Output was subsequently converted into a multiple 
FASTA using the included aa_from_gff.pl script. The resulting proteins sequences were compared against the 31 
AMPHORA marker gene HMMs using HMMSCAN (part of HMMER version 3.032), that form the basis of an 
automated phylogenomic inference pipeline for bacterial sequences18. The marker genes used are: dnaG, frr, infC, 
nusA, pgk, pyrG, rplA, rplB, rplC, rplD, rplE, rplF, rplK, rplL, rplM, rplN, rplP, rplS, rplT, rpmA, rpoB, rpsB, rpsC, 
rpsE, rpsI, rpsJ, rpsK, rpsM, rpsS, smpB and tsf. Matches with e-values of < 1.e−5 were considered legitimate. SSU 
rDNA searches were conducted using BLASTN (-e 1e-20 -r 1 -q -1 -v 5 -b 5 -F F) against a database of phyloge-
netically diverse representative sequences from sequenced genomes33.

The completeness of the unClos_1 and unFirm_1 HiSeq and PacBio contig sets was calculated using the 
identification of 107 CSCGs19. Using a provided HMM file19, the protein lists from each contig set were compared 
to the essential protein list using default hmmscan parameters with the –tblout flag. To determine if a match is 
legitimate, we relied on the trusted cutoff values for each protein’s HMM (provided in the file) and excluded all 
matches with scores below the trusted cutoff for each essential protein.

Genomic binning. The GC % was calculated for each contig and the coverage values for each were pro-
vided by each assembler (IDBA_UD provides a single coverage value, MIRA provides average coverage, and 
SOAPdenovo provides k-mer coverage). From this, we created a table of GC % versus coverage for each contig, 
allowing us to visualize clustering of contigs. Using contig clustering and marker gene analysis of our PacBio 
contigs (because they are on average longer and contain greater marker gene representation including SSU 
rDNA fragments), we were able to generate phylotype-specific training data for the two most abundant organ-
isms (unClos_1 and unFirm_1). The taxonomic congruence of marker genes in the training data contigs was 
verified by BLASTP34 and CLUSTALX alignments. Each marker gene was compared against NCBI nr database 
using default parameters except for a more stringent e-value cut off of 1e-5. Representative sequences of the best 
matches, corresponding to sequences from Mageeibacillus indolicus (NC_013895), Ruminoclostridium thermo-
cellum (NC_009012), Caldicellulosiruptor kristjanssonii (NC_014721), and Peptoniphilus sp. 1-1 (NZ_LM997412) 
for unClos_1 and Dethiobacter alkaliphilus (NZ_ACJM01000000), Desulfotomaculum kuznetsovii (NC_015573), 
Ruminoclostridium thermocellum (NC_009012), and Mahella australiensis (NC_015520) for unFirm_1. We also 
included sequences form Escherichia coli (NC_000913) and Thermotoga maritima (NC_000853) as outliers. For 
both sets of marker genes, each sequence was trimmed by the BLASTP alignment with representatives from the 
above mentioned organisms to relevant amino acids and compared using CLUSTALX 2.135 with default param-
eters except the BLOSUM series protein weight matrix was used instead of Gonnet. Bootstrapped, mid-point 
rooted, neighbor-joining trees were generated from the alignments using the random number generator seed of 
111 and 1000 trials. The resulting phylip trees were visualized in phenogram form using the Phylodendron web-
site (iubio.bio.indiana.edu/treeapp/treeprint-form.html).

These subsets consisted of contigs totaling more than 100 kb, the minimum necessary for custom binning 
using PhyloPythiaS+ 15. Contigs that met the criteria for phylotype-specific training data were larger than 7 kb, 
exhibited consist coverage (+ − 2x) and GC % (+ − 3%) values and encoded a SSU rRNA gene or marker gene 

http://soap.genomics.org.cn/soapdenovo.html
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/index.html
http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/index.html
http://sourceforge.net/p/mira-assembler/wiki/Home/
http://sourceforge.net/p/mira-assembler/wiki/Home/
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that demonstrated phylogenomic grouping with the representative OTU sequence identified via 16S rRNA gene 
amplicon analysis. Binning was performed using PhyloPythiaS+  using both default settings, against a database 
consisting of all publically available prokaryotic genomes in NCBI, and with our custom training data.

Co- and hybrid assembly. Various merged assemblies were performed in an attempt to improve assembly 
statistics of the Link_ADI community metagenome and the genome reconstructions of dominate phylotypes 
(unClos_1 and unFirm_1). Hybrid assemblies of whole community contigs (> 1 kb) from both the HiSeq and 
PacBio CCS contig subsets were performed using CAP312 (version date 12/21/07) with default parameters except 
a minimum overlap percent identity (-p) of 0.95.

In order to reconstruct as large as possible genomes for unClos_1 and unFirm_1, we performed hybrid assem-
blies of binned contigs for each phylotype from all of our samples including the PacBio and HiSeq data from 
Link_ADI and the HiSeq data from enrichment eCI. This was carried out in two stages. The first stage con-
sisted of mapping HiSeq reads to their corresponding phylotype contigs using BWA mem36 (version 0.7.8-r455) 
with default parameters. The reads that mapped from each sample (Link_ADI and eCI) were identified by pars-
ing the resulting SAM files, pooled together for each phylotype, and co-assembled with IDBA_UD using the 
same workflow as eCI above into cross-sample HiSeq contigs. The second stage consisted of pooling together 
the cross-sample HiSeq contigs with the phylotype-specific PacBio contigs, which were hybrid assembled using 
CAP3, with the same parameters as above. The unincorporated contigs from the hybrid assemblies (contigs that 
went into the assembly but were not incorporated into hybrid contigs) were also included in the final recon-
structed genomes used in this study.

A hybrid assembly of raw sequences between both platforms was also performed using MIRA 4.0. The 
cross-sample HiSeq reads used above in each co-assembly were used as input along with PacBio reads that 
mapped to each species-specific bin (identified through the MIRA supplied CAF result file). MIRA 4.0 was 
run using the following parameters: COMMON_SETTINGS -SK:mmhr =  1 -NW:cac =  warn -NW:cdrn =  no 
-NW:cmrl =  warn \ PCBIOHQ_SETTINGS -CL:pec =  yes \ SOLEXA_SETTINGS -CL:pec =  yes. For the HiSeq 
readgroup, the following information was supplied: template_size =  100 400 and segmet_naming =  solexa.
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