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Pumping Electron-Positron Pairs 
from a Well Potential
Qiang Wang1, Jie Liu1,2,3 & Li-bin Fu1,2,3

In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded 
bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. 
In this work, by slowly oscillating the width or depth, the population transfer channels are opened and 
closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the 
saturation of pair number in a static super-critical well can be broken, and electrons and positrons can 
be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair 
number after a single cycle has quantized values as a function of the upper boundary of the oscillating, 
and the critical upper boundaries indicate the diving points of the bound states.

In a static, uniform and very strong electric field, the QED vacuum may break down and decay into 
electron-positron pairs due to a quantum tunneling effect1–3. Time dependent fields can also generate pairs 
through another mechanism, that electrons in Dirac Sea transit into positive states via photon absorption4–6. 
Positron beam is a nondestructive probe in positron annihilation spectroscopy for the study of atomic-scale 
structure of materials7,8. Pair creation is an important issue in the study of laser-vacuum, laser-matter interaction, 
and also in astrophysics since it is thought to be associated with the supernova explosion9. In laboratory, pairs 
have been generated by the collision of heavy ions10 and the collision of an intense laser pulse and a 46 GeV elec-
tron beam11. Recently, MeV positron beam with high density was obtained through laser-accelerated electrons 
irradiating high-Z solid targets12. However, due to the presently unfeasible Schwinger critical field strength, which 
is about 1016 V/cm and correspond to a laser intensity of about 1029 W/cm2, pairs created from pure laser light has 
not been observed yet. In light of the rapid advance of laser technology a good theoretical understanding of the 
pair creation in strong laser fields becomes highly desirable13.

For a well potential of depth V0, if V0 >  2c2, the domain c2− V0 <  E <  − c2 exist. Bound states in the well may 
join continuum waves of the same energy E <  − c2 out the well and their wave functions have non-zero probability 
outside. So electrons from the filled Dirac Sea will spontaneously occupy these empty bound states. The holes left 
(identified as positrons) will travel away from the edges of the well to infinity14. This is the picture of spontaneous 
creation of electron-positron pairs. For a static well potential, electrons will fill the embedded bound states, and 
the Pauli principle will prevent further pair creation, resulting an asymptotic saturation behavior15–17. The number 
of pairs created should be the number of bound states which meet these conditions.

If the potential is time dependent, the situation is more complicated. In paper16 by varying the width of poten-
tial, the effects of open and close a pair-creation channel (embedded bound state) were studied. After enough time 
for saturation, the pair number will increase if one more channel is opened, but will not decrease if one of the two 
channels is closed. The reason is that the annihilation needs the electron and positron to be in the same place, 
which is not satisfied because the electrons remain in the well while the positrons have left the creation zone and 
escaped to the opposite direction. Naturally, one would wonder that if the channel is opened and closed periodi-
cally, can this mechanism lead to a continuously pair creation? Moreover, for fixed width and varying depth, since 
the behaviors of energy spectra are similar, will something similar happen? Motivated by these questions, in this 
work we examine the pair creation in a well potential with its width or depth oscillating. By oscillating the width 
or depth, the electrons confined in the well will be released and the the saturation of pair number will be broken. 
We find that this can lead to a constant production rate, which means that pairs can be pumped inexhaustibly 
from the well.

The paper is organized as follows. First, we present our model. The well potential is set to be oscillating in two 
modes, the width oscillating mode and the depth oscillating mode. The energy spectra are shown as a function of 
the width or depth. Then in both two modes, the time evolution of pair number, spacial density and pumping rate 

1National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and 
Computational Mathematics, Beijing 100088, China. 2HEDPS, Center for Applied Physics and Technology, Peking 
University, Beijing 100871, China. 3CICIFSA MoE College of Engineering, Peking University, Beijing 100871, China. 
Correspondence and requests for materials should be addressed to L.-B.F. (email: lbfu@iapcm.ac.cn)

received: 16 December 2015

Accepted: 14 April 2016

Published: 29 April 2016

OPEN

mailto:lbfu@iapcm.ac.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:25292 | DOI: 10.1038/srep25292

are studied. Furthermore, we investigate the adiabatic limit of the oscillating. Brief summary and discussion are 
provided next. The numerical method we employed follows in the last.

Model: one-dimensional well potential with oscillating width or depth
The well potential is defined by two Sauter potentials1, which represent two localized electric fields that have 
identical intensities and frequencies, but phases differ by a shift of π,
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D is the width of the potential edge (a measure of the width of the electric field), and we set D =  0.3λC. (Here 
and below we use atomic units [a.u.], m =  ħ =  e =  1, c =  137.036, Compton wavelength λC =  1/c). W(t) is the 
potential width (the separation between two localized electric fields). The numerical box size is L =  2.5  
(in [a.u.], omitted in the following). We define the two modes as: (1) W-oscillating mode: with V0 =  2.53c2  
constant, ω= + −W t W W W t( ) ( )sin ( /2)W1 2 1

2 ; (2) V-oscillating mode: with W =   10λC constant, 
ω= + −V t V V V t( ) ( )sin ( /2)V0 1 2 1

2 . In this paper we assume W1 =  0 and V1 =  0, then W(t) (or V0(t)) varies as a 
sine function between zero and its upper boundary W2 (or V2).

The Dirac Hamiltonian of this system is (it is sufficient to focus on only the spin-less state)

σ σ= ⋅ + +p̂H c c V z t[ ( , )], (2)z1
2

3

where σ1, σ3 are Pauli matrices. Numerical energy spectra of the Hamiltonian are presented in Fig. 1 for the 
two modes. The behaviors of the bound states diving into the negative continuum, and the accompanied crit-
ical widths or depths are illustrated. For example, if V0 =  2.53c2, there are bound states embedded only when 
W >  2.79λC.

Results
Time evolution of pair number. We graph the time evolution of the pair number N(t) defined in equa-
tion (14) for both W-oscillating and V-oscillating modes in Fig. 2. The width frequency ωW and depth frequency 
ωV are assumed to be relative low comparing to the gap 2c2, so that the photon absorption mechanism is not 
remarkable. The total time is 120π/c2 ≈  0.02. The dash lines indicate the time t ≈  L/(2c) ≈  0.009 when the par-
ticles arrive the boundary, z =  ± L/2 =  ± 1.25. Since W1 =  0 and V1 =  0, if the time is an integer multiples of the 
period (TW or TV), denoted by the triangles in Fig. 2, the system Hamiltonian degenerates to a field free one.

W-oscillating mode. In Fig. 2(a), we illustrate the pair number N(t) as a function of time for ωW =  0.1/6c2, 
0.2/3c2, 0.3c2, 0.6c2. The depth V0 is fixed at V0 =  2.53c2 as Fig. 1(a). The lower and upper boundaries of width are 
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Figure 1. Energy spectrum as a function of the width or the depth of the potential. (a) V0 =  2.53c2, as W 
increasing, the bound states dive into the Dirac Sea at W =  2.79, 5.51, 8.21... (in units of λC). (b) W =  10λC, as 
V0 increasing, the bound states dive into the Dirac Sea at V0 =  2.05, 2.19, 2.38, 2.62, 2.87, 3.15, 3.43, 3.73, ... (in 
units of c2).
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W1 =  0 and W2 =  10λC, corresponding zero and three bound states embedded respectively. When W =  W2, there 
are also eight bound states exist in the gap − c2 <  E <  c2, which can be associated with the pair creation15.

When ωW =  0.1/6c2, the width W can only finish one cycle in the total time 120π/c2. N(t) begin to arise before 
the first bound state dives into the negative continuum when W(t) =  2.79λC and t =  3.57 ×  10−3. The reason is the 
non-adiabatic varying width. N(t) will begin to arise precisely at the time when W(t) =  2.79λC in the adiabatic 
case (ωW →  0 , see the discussion below). N(t) increases as more bound states dive in, and reaches its maximum 
N =  2.89 at t =  1.37 ×  10−2, between t =  1.28 ×  10−2 and 1.47 ×  10−2, at which time the third and the second 
bound state were pulled out the Dirac Sea. Undergoing the particle-antiparticle annihilation, N(t) decreases but 
remains an appreciable value N =  2.85 in the end. In the latter half of this cycle, the embedded bound states depart 
from the Dirac Sea, return to the positive continuum, and become scattering states. The released positrons are 
reflected by the numerical box boundary, come back to the interaction region and affect the pair generation after. 
Though the effect is weak when ωW =  0.1/6c2, it is non-ignorable when, i.e., ωW =  0.3c2 (see Fig. 3 for details).

For ωW =  0.2/3c2 and ωW =  0.3c2, W can finish four and eighteen cycles in the total time and the pair number 
are N =  6.49, N =  21.4 in the end. For t <  0.009, W can finish one and eight cycles respectively. In each cycle, the 
positrons are repulsed by the electric field to the infinity once they were generated, while the electrons are limited 
in the well when the field is strong enough and extruded out as the well is turning off, avoiding the inevitable Pauli 
block in the non-varied static well. The non-synchronous ejections prevent the annihilation and lead to a high 
production rate.

Every next cycle starts from field free and is independent on the previous cycle. In Fig. 2, the dot lines link 
the triangles which denote the pair number when the field is absent. We can find that the pair generation before 
t =  0.009 denoted by the dot lines is linearly depend on time for low frequency ωW. If the system length L is 
infinite and there is no reflection at the boundary, the pairs can be pumped inexhaustibly with a constant produc-
tion rate from the well. Even for ωW =  0.6c2, there is nonlinear effect at the beginning, the generation rate becomes 
stable soon.

Due to the finite period TW and the bound states in the gap, particle generation and ejection processes are not 
monotonic with the increase of the frequency ωW. However, ignoring the reflection, if ωW is very small, we can 
expect a linear dependent of final pair number on the frequency ωW.
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Figure 2. The time evolution of the total number of pairs for both W-oscillating and V-oscillating modes. 
(a) W-oscillating mode, V0 =  2.53c2, W2 =  10λC; (b) V-oscillating mode, W =  10λC, V2 =  2.53c2. The triangles 
denote pair numbers when the field is absent. The dot lines just link these triangles. The dash line represent 
t =  0.009 when positrons arrive the boundary, z =  ± L/2 =  ± 1.25.
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V-oscillating mode. The number of pairs N(t) as a function of time are presented in Fig. 2(b) for 
ωV =  0.1/6c2, 0.2/3c2, 0.3c2 and 0.6c2. As in Fig. 1(b), the width W is fixed at W =  10λC, while the depth varies 
between V1 =  0 and V2 =  2.53c2, corresponding zero and three bound states embedded respectively.

For ωW =  0.1/6c2, the first bound state dives in at t =  7.20 ×  10−3, at which time there are already 
N =  8.83 ×  10−2 pair generated. The first bound state departs the negative continuum after the third and the sec-
ond ones, at t =  1.29 ×  10−2, when N(t) reach its maximum N =  1.81. Finally, there are N =  1.74 pairs survived at 
t =  120π/c2. For ωV =  0.2/3c2, 0.3c2, 0.6c2, the pair number in the end are N =  2.21, 2.56, 3.78.

Instead of pulling and pushing the walls of the well in W-oscillating mode, in this mode it is the rising and 
falling bottom of the well that control the bound states diving in and departing from the negative continuum. It is 
also the non-synchronous ejection of the positrons and electrons which dominates the pumping process.

The dot lines here indicate a linear relation between the pair number and time. The final number is not mono-
tonic depending on the frequency ωV, but we can also expect a linear dependent of final pair number on ωV when 
ωV is very small.

Note that although the two modes have the same beginning and ending parameters, the generation rate in the 
W-oscillating mode is much higher.

Time evolution of spacial density. To show the pumping process explicitly, we compute the time evolu-
tion of spacial density of electrons and positrons (equation (15) and equation (16)) for ωW =  0.3c2 and ωV =  0.3c2 
respectively.

In Fig. 3, for W-oscillating mode, ωW =  0.3c2, we plot the the time evolution of spacial density of electrons and 
positrons (sub-figure (a) and (b)). Specially, for the moments when the fields are zero, these quantities are plotted 
in the waterfall figures, Fig. 3(c,d). For V-oscillating mode, ωV =  0.3c2, similar diagrams are presented in Fig. 4. 
For comparison, the well potential V(z) with wide and depth equal to the upper boundary of the two modes, 
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Figure 3. For W-oscillating mode, ωW =  0.3c2, the three dimensional diagrams for entire time and the waterfall 
figures for field free moments (indicated by triangles on curve ωW =  0.3 in Fig. 2(a)), for electron spacial density 
(a,c) and positron spacial density (b,d). The thicker curves in sub-figure (c,d) mark the last cycles before 
positrons arrive the boundary. The well potentials V(z) with V0 =  2.53c2 and W =  10λC are included on the 
bottom for comparison. All other parameters are the same as Fig. 2(a).
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W =  W2 =  10λC, V0 =  V2 =  2.53c2, are included on the bottom. These figures clearly show how the particles are 
pumped from the well and spread in the numerical box.

Since ωW =  0.3c2, the period of the width oscillating is TW =  1.12 ×  10−3. Before positrons reach the bounda-
ries, the width can finish eight cycles. If we detect the particle population at the boundary, we can find that posi-
trons arrive the boundary first, at t =  9.15 ×  10−3, in conformity to the estimation L/(2c) =  9.12 ×  10−3. Electrons 
arrive the boundary at t =  1.02 ×  10−2, about one period (TW or TV) later than the positrons. We can see that the 
particles reflected by the boundary come back to the interaction region, and cause non-ignorable effect, for exam-
ple, the non-linearity of the last three triangles in the dot line in Fig. 2(a), ωW =  0.3c2.

Comparing with the rising and falling bottom of the well, more work is done by the wall of the well in the case 
of opening and closing the well. In the W-oscillating mode, the wavefront of the particles are more abrupt and 
regular. In energy space, higher energy modes are excited, and the spectrum show periodic structure with 0.3c2 
between each peak. In the V-oscillating mode, electrons are lifted and released naturally. Less work is done and 
only low momenta are excited.

Time dependent pumping rate. It turns out that in the V-oscillating mode electrons are more inclined to 
gather in the well region (defined as − 5λC <  z <  5λC) than it in W-oscillating mode. We can integrate the spacial 
density Nz in this region and get the particle number in the well, ∫= λ

λ. .
−

. .N t N t dz( ) ( )in
el po

z
el po( )

5

5 ( )

C

C . For the pump-
ing process in last section, . .N t( )in

el po( )  are graphed in Fig. 5(a,b). In W-oscillating mode, as time increasing, .Nin
el  

saturates to a constant 1.60 quickly, while .Nin
po  to a constant 0.36. But in V-oscillating mode, .Nin

el  keeps increasing 
while .Nin

po  keeps zero. The reason is that in W-oscillating mode positrons can be generated in the well region, 
while in V-oscillating mode the walls (the electric fields) shut the door upon positrons.

In a pumping process, the pumping rate is vitally important and can be defined as α(t) =  Nout(t)/N(t), where 
Nout =  N −  Nin, as shown in Fig. 5(c,d). In both modes, at the end of the first cycle, when t =  TW or TV, nearly all 
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Figure 4. For V-oscillating mode, ωV =  0.3c2, the three dimensional diagrams for entire time and the waterfall 
figures for field free moments (indicated by triangles on curve ωV =  0.3 in Fig. 2(b)), for electron spacial density 
(a,c) and positron spacial density (b,d). The thicker curves in sub-figure (c,d) mark the last cycles before 
positrons arrive the boundary. The well potentials V(z) with V0 =  2.53c2 and W =  10λC are included on the 
bottom for comparison. All other parameters are the same as Fig. 2(b).



www.nature.com/scientificreports/

6Scientific RepoRts | 6:25292 | DOI: 10.1038/srep25292

the electrons are limited in the well region, while positrons are ejected. In V-oscillating mode, since all the gener-
ated positrons are kept out of the well, the pump rate become 1 directly. For electrons in the V-oscillating mode, 
or electrons and positrons in W-oscillating mode, in the long time limit, α(t) come to 1 in the form 1− β/t, where 
β depends on the saturation number of particles in the well and the number of particles can be generated in each 
cycle.

The adiabatic limit. In Fig. 2, for ωW =  0.1/6c2 and ωV =  0.1/6c2, there are N =  2.85 and N =  1.74 pairs sur-
vived in the end. We have proposed that in low frequency limit, the pairs survived finally should equal to three, 
the maximum number of embedded bound states swept in one cycle of each mode. In Fig. 6, ignoring the reflec-
tion, for each frequency, the total time is chosen equal to the period for both modes, so that the oscillation can 
only finish one cycle. The survived final pair number NT as a function of the upper boundary of the oscillating 
width (W2) and depth (V2) are presented.

In the adiabatic limit, a sub-critical well potential cannot trigger pairs. As the width or depth increasing, the 
bound states in the gap dive into the negative continuum successively. Pairs can be generated and saturated to the 
number of embedded bound states. However, as the width and depth decreasing, bound states depart the nega-
tive continuum successively and the generated pairs cannot annihilate because of the non-synchronous ejection. 
Finally, the number of pairs survived at the end of this cycle has quantized values, equal to the maximum number 
of bound states embedded. The quantized values depend on the upper boundary of the two oscillating cycle (W2 
or V2).

In Fig. 6, the curves of NT vs. W2 or V2 are like a flight of stairs. As the frequency become lower, the rising edges 
of the stairs become more sharper. In the limit ωW, ωV →  0, the the rising edge of the stairs will precisely locate at 
the points where the bound states dive into the negative continuum. These points are W =  2.79, 5.51, 8.21... (in 
units of λC), and V0 =  2.05, 2.19, 2.38, 2.62, 2.87, 3.15, 3.43, 3.73, ... (in units of c2), as illustrated in Fig. 1.

The gaps between bound states with − c2 <  E <  c2 in V-oscillating mode are smaller than that in W-oscillating 
mode. To achieve a quasi-adiabatic (finite TW or TV) simulation, TV should be larger than TW to build a similar 
stairs.

Now, if the quasi-adiabatic oscillating cycle repeat periodically, we can expect a linear increasing pair number, 
i.e., for Fig. 6(a), W2 =  7λC, the final pair number will be 2 times the number of the cycles.
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Discussion
In this work, we have constructed a toy model, in which oscillating width or depth are proposed to break the 
Pauli block which is a barrier in further pair generation process. Since the bound states diving behaviors in the 
energy spectra are similar when sweeping the depth or width, the physical process have common points in these 
two modes. We find that by open and close the transfer channels for population alternately, the non-synchronous 
ejection of particles prevent the particle annihilation, break the saturation of pair number in a static super-critical 
well potential, and lead to a high constant production rate. The width oscillating mode can deliver more energy 
to particles and is more efficient in pumping pairs than the depth oscillating mode. The time evolution of spacial 
density provide clearly graphical representations for the pumping and the spreading of electrons and positrons. In 
a quasi-adiabatic case, the final pair number as a function of upper boundary of the oscillating changes abruptly 
at the diving points of the bound states. This can also be expected to detect the energy structure of a complicated 
potential.

In order to reduce the computing cost, we have neglected the larger part of the discrete momenta. On the 
other hand, with the same computing resource, the number of spatial points can be larger to describe the details 
of the potential. Although the simulation here is done on a personal stand-alone computer, it can be paralleled 
easily since the time evolution of each negative eigenstate can be done on a single CPU. Furthermore, if the 
spatial derivative is done by finite difference approximations instead of Fourier transformation here18 larger 
one-dimensional, even two-dimensional system can be simulated by paralleling the algorithm on memory shared 
parallel computers.

Method: the numerical quantum field theory approach. Various numerical approaches were devel-
oped recently to cope with the pair creation problem which in general is non-equilibrium, non-perturbation, 
and space-time dependent. For example, the semi classical WKB methods19–21, the world-line formalism 
(string-inspired formalism)22,23 and the quantum kinetic theory (QKT)24,25 by solving the quantum Vlasov 
equation. In this paper we employ the numerical approach to quantum field theory which has been introduced 
recently to study the pair creation process with full space-time resolution (for a review see26). This approach can 
provide details of the boson27–29 or fermion30–32 pair creation dynamics, and has been used to research various 
conceptual problems where the negative energy states must be taken into account, such as the Zitterbewegung33, 
the relativistic localization problem31, and the Klein paradox29,34.

In this approach, the problem is reduced to single particle quantum mechanics formulation. In quantum field 
theory, the time evolution of the field operator Ψ̂ t( ) fulfills the Heisenberg equation of motion ∂ Ψ = Ψˆ ˆ ˆi t t H( ) [ ( ), ]t . 

2 4 6 8 10
0

1

2

3

W
2
 /λ

C

N
T

 

 

T=60π/c2, ω=0.1/3c2

T=120π/c2, ω=0.1/6c2

T=180π/c2, ω=0.1/9c2

2.0 2.5 3.0 3.5 4.0
0

2

4

6

8

V
2
 /c2

N
T

 

 

T=120π/c2, ω=0.1/6c2

T=180π/c2, ω=0.1/9c2

T=360π/c2, ω=0.1/18c2

(a)

(b) V−oscillating mode

W−oscillating mode

Figure 6. The final pair number after one cycle as a function of the upper boundary of the oscillating width 
and depth. (a) W-oscillating mode, V0 =  2.53c2; (b) V-oscillating mode, W =  10λC. The total time T is chosen 
equal to one oscillating period.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:25292 | DOI: 10.1038/srep25292

It was proved30 that Ψ̂ t( ) can be obtained equivalently as a solution of the Dirac equation ∂ Ψ = Ψˆ ˆi t h t t( ) ( ) ( )t , with 
Hamiltonian h(t) =  cα ⋅  (p −  eA/c) +  c2β +  eV(r, t). This equivalence between the quantum field theoretic treat-
ment and the solution of the Dirac equation has also been established in the context of pair creation in heavy-ion 
collisions35,36. Thus, the dynamics of Ψ̂ t( ) can be obtained via the time evolution of the single particle Dirac equa-
tion with space and time taking into account.

This approach can visualize the processes inside the interaction zone, while the traditional scattering matrix 
approach14 which is based on the initial state and the final state of a physical system undergoing a scattering pro-
cess and cannot offer details inside the interaction region. It does not include the interaction between particles 
and the back reaction onto the electrodynamic field. To overcome this weakness is beyond the computing power 
presently. Despite that, in contrast to the quantum kinetic theory which can include the particle collisions and 
back reaction, but is a mean field approximation and works only for spatial homogeneous fields, this ab initio 
approach is exact and works for arbitrary field construction.

In the following we will briefly review this method and describe how we deal with the model.
The time evolution of the Heisenberg field operator Ψ̂ z t( , ) is given by the Dirac equation14,30.

σ σ∂
∂
Ψ =  ⋅ + + 

Ψ .ˆˆ ˆpi
t

z t c c V z t z t( , ) ( , ) ( , ) (3)z1
2

3

As in equation (2), the discussion is confined in one dimension. The field operator can be expressed in terms 
of the electron annihilation and positron creation operators as26

∑ ∑Ψ = +ˆ ˆ ˆ†
z t b W z t d W z t( , ) ( , ) ( , )

(4)p
p p

n
n n

∑ ∑= +ˆ ˆ†
b t W z d t W z( ) ( ) ( ) ( ),

(5)p
p p

n
n n

in which p and n denote the momenta of positive and negative energy states, Wp(n)(z) =  〈 z|p(n)〉  are solutions of 
the filed-free Dirac Hamiltonian (V(z, t) =  0), and ∑ p(n) denotes summation over all states with positive (negative) 
energy. The eigenstates of the filed-free Hamiltonian are

π
=










+

−










W z e
E

E c

sign p E c
( )

4 ( ) (6)
p

ipz

p

p

p

2

2

π
=
−










− − −

− +










W z e
E

sign n E c

E c
( )

4

( )
,

(7)
n

inz

n

n

n

2

2

where = +E c p cp
4 2 2, and = − +E c n cn

4 2 2 respectively. The time dependent single particle wave function 
Wp(n)(z, t) can be got by introducing the time-evolution operator 

 ∫= − ′ ′ˆ ˆ ˆU t t T dt H t( , ) exp( ( ))i
t

t
2 1

1

2 ,

= =ˆW z t U t t W z( , ) ( , 0) ( ), (8)p n p n( ) ( )

where T̂  denotes the Dyson time ordering operator. In this paper, we use the numerical split operator tech-
nique37,38, then

+ ≈

= +

−

− − −∂ ∂

W t dt e W t es

e e e O dt

( ) ( )

( ), (9)

iHdt

i dt H idtH i dt H2 2 3z

with

σ σ= ⋅ +∂ p̂H c c , (10)z1
2

3

= .H V z t( , ) (11)z

Practically, since the derivation (the momentum operator) can be implemented by replacing the operator p̂z 
with its value kz in momentum space, the evolution operation has the following form,

φ φ
σ σ

=








−
⋅ +

+









− −∂e W t i
k c

c k
W t( ) cos( ) sin( ) ( ),

(12)

i dt H z

z

2 1 1 3
2 2

 

= −−e W t V t dt i V t dt W t( ) [cos( ( ) ) sin( ( ) )] ( ), (13)idtH z
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where φ = +c k ,cdt
z2

2 2  and −( )1   denotes Fourier transformation (inverse Fourier transformation).
Then, after the time dependent field operator Ψ̂ z t( , ) can be calculated, the number and the spacial distribu-

tion of electrons created from the vacuum (defined as || 〉 =b̂ vac 0p , =d̂ vac 0n ) are obtained from the positive 
part of the field operator,

∑= 〈 ||Ψ Ψ || 〉 = | |. + +ˆ ˆ†
N t vac z t z t vac U t( ) ( , ) ( , ) ( ) ,

(14)
el

pn
pn

( ) ( ) 2

∑∑= | |.N t U t W z( ) ( ) ( ) ,
(15)

z
el

n p
pn p

2

where ∫= 〈 | 〉 = ⁎U t W z W z t dzW z W z t( ) ( ) ( , ) ( ) ( , )pn p n p n . The pair number N(t) is equal to the electron number 
Nel.(t).

The spacial distribution of the created positrons can be written as

∑∑= | | ..N t U t W z( ) ( ) ( )
(16)

z
po

p n
pn n

2

The positron number Npo.(t) is equal to the electron number Nel.(t). We can also get it from the negative part 
of the field operator by computing the number and spacial distribution of the holes. In this paper we use this 
expression, equation (16), to reduce the computational cost, because Upn has been calculated in equation (14).

Furthermore, we can neglect the larger part of the momenta (when +k c cz
2 2 4 is far greater than V and ω), 

for its contribution to the matrix element Upn(t) is very small. In this paper the number of spatial points is 2048, 
and we only take 1024 discrete momenta in the evolution.

Based on the projection of the field operator onto the field-free electronic states in this method, Nel.(po.)(t) here 
is actually the pair number if the field is turned off abruptly at time t. In this paper we present physical quantities 
for all time but focus on the moments when the field is absent.
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