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Magnetic neutron scattering 
by magnetic vortices in thin 
submicron-sized soft ferromagnetic 
cylinders
Konstantin L. Metlov1 & Andreas Michels2

Using analytical expressions for the magnetization textures of thin submicron-sized magnetic cylinders 
in vortex state, we derive closed-form algebraic expressions for the ensuing small-angle neutron 
scattering (SANS) cross sections. Specifically, for the perpendicular and parallel scattering geometries, 
we have computed the cross sections for the case of small vortex-center displacements without 
formation of magnetic charges on the side faces of the cylinder. The results represent a significant 
qualitative and quantitative step forward in SANS-data analysis on isolated magnetic nanoparticle 
systems, which are commonly assumed to be homogeneously or stepwise-homogeneously 
magnetized. We suggest a way to extract the fine details of the magnetic vortex structure during the 
magnetization process from the SANS measurements in order to help resolving the long-standing 
question of the magnetic vortex displacement mode.

The ongoing miniaturization and the related progress in the field of magnetism and magnetic materials calls for 
the continuous development and improvement of observational techniques. Neutron scattering is of particular 
importance for magnetism studies, since it provides access to the structure and dynamics of magnetic materials 
on a wide range of length and time scales (e.g., ref. 1). Moreover, in contrast to electrons or light, neutrons (due to 
their charge neutrality) are able to penetrate deeply into matter and, thus, enable the study of bulk properties. As 
such, magnetic neutron scattering ideally complements surface-sensitive microscopy techniques such as Lorentz 
and Kerr microscopy2, magnetic-force microscopy3,4, spin-polarized scanning tunneling microscopy5,6, or pho-
toemission electron microscopy with X-ray magnetic circular dichroism7.

Magnetic small-angle neutron scattering (SANS) is an important tool for the characterization of nonuni-
form magnetization textures on the nanoscale8; it measures the diffuse scattering along the forward direction 
(momentum-transfer q ≅  0) which arises from nanoscale variations in both the magnitude and orientation of 
the magnetization vector field M(r). The typical resolution range of magnetic SANS covers a few nm up to a few 
hundreds of nm. Recent advances in the field of nanomagnetism have resulted in a growing interest to use the 
magnetic SANS method as the main characterization tool. Indeed, SANS (with polarized neutrons and uniaxial 
polarization analysis) could address key outstanding questions in studies with both fundamental and technolog-
ical relevance; examples include the study of interfacial magnetic effects in nanoscopic heterostructures and the 
manipulation of magnetism with strain and electrical current9, electric-field-induced magnetization in multi-
ferroics10, magnetostriction in Fe-Ga alloys11, vortex structures in Fe-based superconductors12, skyrmions13, or 
studies of the intraparticle spin disorder in nanoparticles14,15 and in arrays of nanorods16. Furthermore, the recent 
progress in SANS instrumentation regarding time-resolved data-acquisition procedures (TISANE), opens up the 
way to study the dynamics of magnetic materials up to the microsecond time regime17–19.

Nevertheless, despite the “success” of the magnetic SANS technique, the underlying theoretical framework 
is still at an early stage and a more fundamental understanding needs to be developed in order to solve the new 
challenges that magnetism-based nanotechnologies are dealing with. Whereas for bulk ferromagnets the theory of 
magnetic SANS has recently been developed20,21, there exists the open problem of calculating the magnetic SANS 
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cross section of isolated magnetic nanoparticles embedded in a nonmagnetic matrix. This is the prototypical sample 
microstructure in most magnetic SANS experiments.

In order to illuminate the problem, let us discuss the “standard formula” which is commonly used for mag-
netic SANS analyses on two-phase magnetic nanoparticle-nonmagnetic matrix type microstructures (see also 
the discussion in ref. 8). For such systems (and for the scattering geometry where the applied magnetic field is 
perpendicular to the incoming neutron beam), the magnetic SANS cross section dΣ M/dΩ is commonly expressed 
in terms of noninterfering single-particle form factors:

ρ α
Σ
Ω
= ∆n V F qd

d
( ) ( ) sin , (1)p p

M
mag

2 2 2 2

where np is the particle number density, (Δ ρmag)2 ∝  (Mp −  Mm)2 is the magnetic contrast between particle (Mp) 
and matrix (Mm), Vp is the particle volume, and F(q) is the form factor of the particle. The factor αsin2  in Eq. (1) 
takes account of the dipolar nature of the neutron-magnetic interaction; its expectation value increases from a 
value of 1/2 at magnetic saturation (of the nanoparticle) to a value of 2/3 in the demagnetized state (random spin 
orientation).

However, for many systems, SANS models based on Eq. (1) are very much oversimplified, since they assume 
the particles to be homogeneously (or stepwise homogeneously) magnetized. Hence, such approaches ignore the 
possibility that each particle may exhibit an internal spin structure, e.g., due to the presence of crystal defects or 
surface anisotropy22; in other words, the spatial dependency of the magnitude and direction of the magnetization 
is not taken into account. But even more obvious, nothing can be directly learned from Eq. (1) on the internal 
magnetodipolar interaction, the magnetic anisotropy, or on the exchange interaction, simply because the cor-
responding energy terms are left out. Instead of solving the geometrical (form factor) and statistical-mechanics 
(structure factor) problems which are inherent to Eq. (1), it appears to be straightforward to employ the contin-
uum theory of micromagnetics23,24 for calculating the nanoparticle’s magnetization, since its Fourier image will 
then naturally provide the desired magnetic SANS cross section.

In this work, we contribute to the solution of the above described problem by computing the SANS cross 
section of magnetic nanostructures consisting of submicron-sized circular cylinders in highly inhomogeneous 
chiral magnetic vortex states. This state itself has only recently been discovered experimentally25; it is an inter-
esting example of a magnetic topological soliton—substantially, a nonlinear stable entity behaving in many 
respects as a mechanical particle26. There are analytical expressions for the magnetization distribution in cen-
tered27 and displaced28–30 magnetic vortices (as well as states with higher topological charge in simply31 and 
multiply-connected32 magnetic nanoelements). Here, we make use of some of these expressions in order to com-
pute the ensuing magnetic SANS cross section analytically.

As we will see below, the definition of the magnetic (spin-misalignment) SANS cross section usually involves 
the subtraction of the measured SANS cross section at magnetic saturation, which in the present case is domi-
nated by the effects of magnetic poles at the particle boundary. The magnetic vortex state and its displacement, 
on the other hand, greatly reduce the magnetic-pole formation. This means that in the measured magnetic SANS 
cross sections the saturation term dominates and masks the effects of the magnetic vortex displacement. To 
unmask these effects, we propose to add the saturated term back into the cross section as discussed below. This 
procedure should allow one to extract the finer details of the magnetic vortex displacement process (e.g., extract-
ing the position and shape of the magnetic vortex core by fitting the resulting SANS images to our cross-section 
expressions).

The paper is organized as follows: first, we introduce the well-known (first Born approximation based) equa-
tions for the unpolarized SANS cross sections which we are going to compute; then, the expression for the mag-
netization distribution of a circular cylinder is introduced and related to the different regions on the cylinder’s 
hysteresis loop, which suggests a simplifying approximation; the next step is to compute the Fourier images of 
the magnetization components, which enter the SANS cross section; finally, we obtain and plot the cross sections 
for cylinders in different states and introduce some more simplifying assumptions, which allow us to express the 
cross sections in closed algebraical form. We discuss the results in the process of presenting them and draw the 
conclusions at the end.

Unpolarized SANS Cross Sections
Magnetic SANS experiments are performed by subjecting the sample to a stream of neutrons (characterized by 
a wave vector k0) in the presence of an applied magnetic field H. Two scattering geometries are most commonly 
employed: the perpendicular geometry k0 ⊥  H and the parallel geometry k0 || H. If we choose the Cartesian coor-
dinate system in such a way that its Z-axis coincides with the direction of H =  {0, 0, H}, the SANS image on the 
two-dimensional detector will be a function of the scattering vector: q =  q⊥ ≅  q{0, sin α, cos α} in the perpendicu-
lar geometry and q =  q|| ≅  q{cos β, sin β, 0} in the parallel geometry. Note that the neutrons are traveling along the 
X-axis in the first case and along the Z-axis in the second case, which is in both cases perpendicular to the planar 
nanostructures that are of interest in this work. Most relevant for the present paper is the perpendicular scattering 
geometry which is displayed in Fig. S1 in the Supplementary file.

The expressions for the unpolarized SANS cross sections of ferromagnetic media are summarized elsewhere8. 
They are related to the Fourier transforms of the Cartesian components of the magnetization vector field 
=˜ ˜ ˜ ˜M M M M{ , , }X Y Z ; in particular, the total unpolarized nuclear and magnetic SANS cross section reads33:
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where bH =  2.91 ×  108 A−1 m−1 is a constant relating the atomic magnetic moment to the Bohr magneton8, V 
denotes the scattering volume, ˜ qN( ) is the nuclear scattering amplitude, Re stands for taking the real part of a 
complex number, and overbar for its complex conjugate. The above SANS cross sections are functions of the scat-
tering vector q, which is q⊥ in the perpendicular geometry and q|| in the parallel geometry. The atomic magnetic 
form factor (contained in bH) is approximated by unity (forward scattering). The Fourier transform Q of a quan-
tity Q is defined as:

∫ ∫ ∫π
= −

 q r rQ Q e( ) 1
(2 )

( ) d ,
(4)

qri
3/2

3

where = −i 1, and the integration extends over the whole space.
In order to study the magnetic effects only, one must eliminate the nuclear scattering contribution (∝ Ñ 2). For 

this purpose, it is customary to consider the so-called spin-misalignment SANS cross section,

Σ
Ω
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Σ
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which corresponds to the total cross section (at a specific field) minus the total cross section at a very large (satu-
rating) magnetic field. Since at saturation the magnetization Fourier components are given by 

→ ∞ =˜ ˜M qH M( ) {0, 0, ( )}S , the spin-misalignment SANS cross sections can be written as:
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The q-dependence of the saturation magnetization ˜ qM ( )S  reflects the “shape” (structure factor) of the mag-
netic nanostructure. The saturation magnetization of the magnetic material itself is assumed to be constant, 
which is denoted by the symbol MS without tilde and without the argument q.

Equilibrium Magnetization States of an Isolated Magnetic Cylinder
The magnetization textures of thin submicron-sized ferromagnetic cylinders can be approximately expressed 
via functions of complex variable31. Specifically, when the cylinder is circular28, the single-vortex textures are 
described by the following quadratic function of complex variable z:

= + −f z icz
p

A A z
p

( ) ,
(6)

2

2

where p and c are two real-valued constants, and A is a complex-valued constant. The variable z specifies the 
Cartesian coordinates on the cylinder’s face. For the choice of the coordinate system described in the previous 
section, with the magnetic field H || eZ directed in the cylinder’s plane and the X-axis parallel to the cylinder’s axis 
z =  Z +  iY. The parameter p allows one to describe the quasiuniform magnetization states, for which the magnet-
ization at the cylinder’s boundary acquires a normal component34,35. For the most of the following computation, 
we will assume that the magnetization is always tangential to the boundary (p =  R), which is a reasonable approx-
imation in the vortex state, but our expressions for the Fourier components of the magnetization (given in the 
Supplementary file) are valid for an arbitrary p >  R. The corresponding Cartesian components of the normalized 
magnetization vector m =  {mX, mY, mZ} =  M/MS are expressed via stereographic projection
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using another auxiliary complex function:
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>
w z z
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which ensures that |m| =  1. The cylinder with radius R and thickness L is assumed to be thin enough so that the 
magnetization vector m is independent of the Cartesian coordinate X along the cylinder’s axis. Thus, the compo-
nents of m depend on the coordinates in the dot’s plane, Z and Y, as well as on the three parameters p, c, and A in 
the function f(z). In the outer region of the cylinder (|z| >  R), the magnetization is zero.

Equations (6)–(7) are not arbitrary, but are the result of an approximate analysis31 with generalization from 
ref. 34. These magnetization distributions correspond to the local extremum of the exchange energy (which is the 
most important energy term in submicron-sized magnets) and of the magnetostatic energy related to magnetic 
charges on the side faces of the cylinder at p =  R; note that the energy of side-face and volume magnetic charges 
can be further minimized by selecting appropriate values of the parameters c and A. Different combinations of 
these parameters correspond to different magnetic states, as they are commonly encountered in submicron cylin-
drical dots (see Fig. 1).

In-plane hysteresis loops of submicron cylinders made of isotropic ferromagnetic material (magnetic dots) are 
typical for a soft magnet. An example loop, measured on a weakly interacting array of individual magnetic cylin-
ders36, is displayed in Fig. 2. It can be sketched using straight lines only: two parallel-inclined ones and two hori-
zontal ones. The former two lines correspond to the magnetic vortex displacement [shown in Fig. 1(b)] and the 
latter ones to the dot in the state of magnetic saturation [such as in Fig. 1(d)] corresponding to c =  0 and |p| →  ∞ . 
It is possible to model the quasiuniformity of the saturated state and consequently the departure of the tails of the 
hysteresis loop from the horizontal straight line34 by permitting p to take on values in the range R ≤  |p| <  ∞ . The 
dotted vertical lines on the sketch denote the transitions between these two states (such as that from a displaced 
vortex to the quasiuniform state29). It is around these transitions that the straight-line sketch of the hysteresis loop 
in Fig. 2 departs most from reality. Nevertheless, as one can see, the discrepancy is not very large.

Thus, we can conclude that for the most part during the in-plane hysteresis loop, the magnetization in the dot 
assumes either the displaced vortex state (|A| <  |c|/2, p =  R) or the quasiuniform state (c =  0, p >  R). Both states 
can be analytically described by Eqs (6)–(7). In the next section, the SANS cross section of the dot in the vortex 

b)a)

d)c)

Z
Y

Figure 1. Equilibrium and transient magnetization states in ferromagnetic nanodiscs as described by  
Eqs (6)–(7) with p =  R =  1 and for different values of the parameters c and A (ref. 32): (a) centered magnetic 
vortex (A =  0); (b) displaced magnetic vortex (|A| <  |c|/2); (c) “C”-like state (|c| <  2|A|); (d) “leaf ” state 
(|A| ≫  |c|).
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state is computed. The linearity of the major hysteresis-loop branches in the vortex state suggests that the linear 
approximation in the vortex-core displacement is sufficient to model the low-field part of the hysteresis loop.

SANS Cross Sections of an Isolated magnetic Dot in the Vortex State
For the computation of the SANS cross section, let us first make the variable substitution A =  bc and assume that 
p =  R in Eq. (6):

=




+ −






f z c i z
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b z b
R
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where |b| ≪  1 is a dimensionless small parameter specifying the vortex-center displacement. The equation for the 
vortex-core boundary | f(z)| =  1 is solved in polar coordinates {Z, Y} =  r{cos ϕ, sin ϕ} up to the first order in b by
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The region of 0 <  r <  rC is inside the vortex core [the first line in Eq. (8)] and the region r >  rC is outside. The 
core region contains the spin configuration which is called soliton, while the outer region contains the meron 
configuration37. The soliton and the meron are continuously joined at the vortex-core boundary. Due to this 
continuity, the integrals of the type
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where s(rC(b), b) =  u(rC(b), b), do not contain terms associated with the vortex-core boundary, and can, thus, be 
directly expanded into a Taylor series over b:
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where rC(0) =  R/c is the centered vortex-core radius. Such integrals are typical when computing the Fourier com-
ponents of the magnetization entering the SANS cross section (see the Supplementary file). Using the results in 
the Supplementary file, the perpendicular SANS cross section for different values of p, c, and b can be graphically 
displayed (see Fig. 3).

If we further neglect the vortex core (which has a size of 5–15 nm in many different ferromagnetic materials), 
the second-order expansion of the perpendicular magnetic SANS cross section can be algebraically expressed via 
Bessel and Struve functions:

Figure 2. Typical in-plane hysteresis loop of an array of weakly interacting submicron-sized cylinders (data 
are taken from ref. 36). The inset depicts schematically the array, the direction of the coordinate-system axes 
and of the externally applied magnetic field. Straight solid and dotted lines: see discussion in the main text.
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where σΣ Ω = ∂ ∂Ω⊥ ⊥b VMd / d 4 /M H
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M ; Jn =  Jn(k) and Hn =  Hn(k) denote, respectively, the Bessel functions and the 
Struve functions with their argument k =  qR omitted, q =  {0, qY, qZ} =  q{0, sin α, cos α} and V =  πR2L. In this case, 
the incident neutrons travel along the X-axis and the vortex, displaced by the magnetic field, acquires a nonzero 
Z-component of the average magnetization. The value of the parameter b is proportional to the externally applied 
field H. The proportionality coefficient can be derived from the relation MZ/MS =  2b/3, which is valid under the 
same assumptions of b ≪  1 and p =  R.

The cross section, as it is visible in the top row of Fig. 3, is dominated by the saturation term αJ ksin /1
2 2 2, 

which masks the effects of the vortex-center displacement. This can be understood by noting that the saturated 
state is characterized by a maximum of magnetic poles (“surface charges”) on the outer boundary of the dot. The 
divergence (jump) of the magnetization on a scale of the cylinder diameter D =  2R, then gives rise to a large mag-
netic SANS signal at small momentum transfers. By contrast, the magnetic scattering due to the vortex state, 
which is characterized by small magnetic charges, shows up at larger q.

The saturation term itself is determined by the dot shape and for circular dots depends only on the dot’s size R 
(entering the definition of k). That is why, to reveal the finer structure of the SANS cross section, it is advanta-
geous to add back the saturation term to σ∂ ∂Ω⊥/M . The in this way “corrected” cross sections are shown in the 
bottom row of Fig. 3; the symmetry breaking due to the vortex-center displacement now becomes more clearly 
visible. The corrected cross sections can be represented as a sum of two terms of zero and second order in b, which 
are shown separately in Fig. 4. Larger vortex displacement means more weight on the second-order term in this 
sum.

Note that both the saturation term, dominating the top row in Fig. 3, and the term corresponding to the vortex 
displacement (the right half of Fig. 4) each individually have the mathematical form αA sin2  with A positive. 
Both these terms produce an image in the shape of a vertical “8” symbol when plotted against the components of 

q Y
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−1
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0

0.5

1

q Y
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/(2
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−1

−0.5

0

0.5

1

qZ R/(2π)
−1 −0.5 0 0.5 1

qZ R/(2π)
−1 −0.5 0 0.5 1

Figure 3. Perpendicular SANS cross section of a ferromagnetic disc with R = 1 containing a centered (left, 
b = 0) and a displaced (right, b = 0.4) magnetic vortex with c = 5 and p = 1. The vortex displacement produces 
the magnetization = ∗ . .M M/ 2/3 0 4 0 27Z S , which, reading from Fig. 2, roughly corresponds to H =  0.6 kOe 
for the sample from ref. 36. The top row shows the spin-misalignment SANS cross section as it is commonly 
defined [Eq. (5)] with the saturated magnetic term subtracted. The bottom row displays the same cross section 
but with the magnetic saturation term αJ ksin /1

2 2 2 added back.
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the q-vector. However, in the spin misalignment cross section (13) the saturation term is subtracted, while the 
vortex displacement related term is added. This is the reason why the “8” in Fig. 3 stands vertically in the top row, 
while it lies horizontally in the bottom right plot. Both centers of each “8” in Fig. 3 correspond to local minima 
(dips) in the cross section.

Apart from just computing and adding back the saturation term in the cross section, another way to exclude 
it and to highlight the effects of the vortex-center displacement during the SANS-image analysis is to subtract 
the zero-order terms altogether. This can be achieved by considering the following combination of magnetic 
cross-section values:

σ σ σ
Ω
=
Ω
−
Ω →

d
d

d
d

d
d

,
(14)H

2 M M

0

in which only the second and higher-order terms in the vortex-center displacement parameter b remain. 
This combination of cross sections is expected to have the structure which is shown in the right half of Fig. 4. 
Departure from this simple dependency might reveal higher-order effects and may shed new light on the details 
of the vortex-core deformation during its displacement.

A small external field applied along the cylinder’s axis does not lead to a vortex-center displacement and does 
not change the symmetry of the magnetization distribution. This implies that the parallel SANS cross section is 
isotropic. For the case of vanishing field and neglecting the vortex core (c →  ∞ ), the magnetic SANS cross section 
in the parallel scattering geometry can be expressed algebraically as:
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which uses the same notation as Eq. (13), except that now = +q q qX
2

Y
2 ; it has the shape of a series of concentric 

rings with the first maximum strongly dominating the others. The second term in Eq. (15) originates from sub-
tracting the magnetically saturated state and the isotropic first term coincides with the first term in Eq. (13) for 
the perpendicular cross section. When in both cross sections, Eqs (13) and (15), the respective saturation term is 
added back, then their subtraction directly yields the second-order contribution in b.

Summary and Conclusions
We have analytically computed the magnetic small-angle neutron scattering (SANS) cross sections of 
submicron-sized circular ferromagnetic cylinders in the magnetic vortex state for different magnitudes of the 
in-plane magnetic field in the perpendicular scattering geometry and for the case of vanishing field in the parallel 
one. During the computation, we have assumed a linear relationship between the vortex-center displacement 
and the applied magnetic field, which is valid in almost the entire range of the external field magnitudes, where 
the vortex state exists. Further neglecting the magnetic vortex core allows us to express the SANS cross sections 
algebraically in terms of Bessel and Struve functions. The vortex is a low-field configuration, which implies that 
the subtraction of the saturated neutron scattering cross section significantly distorts the cross-section images. 
Subtraction of the magnetic cross section at vanishing field should allow one to unmask the features of the mag-
netic vortex and might help to analyze its fine structure appearing during the magnetization process. This can be a 
valuable input to help decide which model of vortex displacement better describes the magnetization process: the 

Figure 4. Zero-order (left) and second-order (right) terms in b of the perpendicular magnetic SANS cross 
section of a ferromagnetic disc containing a magnetic vortex. The zero-order term is displayed with the 
magnetic-saturation contribution added back (as in the bottom row of Fig. 3), otherwise its structure is masked 
by the saturation term. The second-order term is independent of this addition.
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uniform translation38, the conformal mode29, or the mode with no magnetic charges on the cylinder’s side faces30. 
Regarding spin-polarized neutron scattering, the displaced noncentrosymmetric vortex structure is expected 
to show up as a polarization-dependent contribution to the spin-flip cross section. Since the unwanted nuclear 
coherent (background) scattering is non-spin-flip, the fine details of the vortex can be investigated by carrying 
out polarization-analysis experiments.
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