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Unsteady stagnation-point flow 
and heat transfer of a special 
third grade fluid past a permeable 
stretching/shrinking sheet
Kohilavani Naganthran1, Roslinda Nazar1 & Ioan Pop2

In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third 
grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation 
is used to transform the system of boundary layer equations which is in the form of partial differential 
equations into a system of ordinary differential equations. The system of similarity equations is then 
reduced to a system of first order differential equations and has been solved numerically by using the 
bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer 
coefficient as well as the velocity and temperature profiles are presented in the forms of tables and 
graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is 
performed to determine which solution is stable and valid physically. Results from the stability analysis 
depict that the first solution (upper branch) is stable and physically realizable, while the second solution 
(lower branch) is unstable.

Rheology which relies on the perception that non-Newtonian materials exist in real life, explores the properties 
of matter determining its behavior towards deformation and flow. Blood, saliva, lubricants, polymer solutions 
and fresh concrete are typical non-Newtonian fluids that disobey the Newton’s law of viscosity, and since they are 
highly viscous and do exhibit their significant elastic properties, the studies of non-Newtonian flows have grabbed 
the opportunity to fill the thirst of vast development in most engineering and industrial processes. Consequently, 
many non-Newtonian models have been established by researchers such that Fosdick and Rajagopal1 and Dunn 
and Rajagopal2. It is well established that second grade fluids exhibit the normal stress effect and do not show the 
shear-thinning and shear-thickening phenomena which many fluids do2. However, third grade fluids are capable 
of describing such phenomena1. Moreover, the equation of motion in a third grade fluid is more complicated 
than the corresponding equation in a second grade fluid. Non-Newtonian fluids with heat and mass transfer are 
critically essential in paper making and lubrications with greases industries3 and due to its substantial practical 
implications, many researchers have scrutinized non-Newtonian models in various conditions and can be found 
in numerous literatures by Rajagopal et al.4, Pakdemirli5, Makinde6, Vajravelu and Rollings7, Lok et al.8, Makinde9, 
Maneschy et al.10, Qasim11 and Noor12. Also, of considerable interest for the present paper are the book by Bejan13, 
and the papers by Bejan14, and Khan and Gorla15. It should also be mentioned that the Bejan number was high-
lighted as a useful number for the topic of entropy generation analysis for non-Newtonian fluid (see Yazdi et al.16).

The ability of a third grade fluid model to describe the shear thinning and shear thickening properties for dif-
ferent kind of flows has inspired researchers to explore this model under many types of physical circumstances. 
Ellahi et al.17 obtained exact solutions for the generalized Couette flow problem in a third grade fluid. Abbasbandy 
and Hayat18 investigated the unsteady boundary layer flow of a special third grade fluid, and found that the 
boundary layer thickness increased with the third grade parameter and that suction reduced the boundary layer 
thickness. Kecebas and Yurusoy19 presented the unsteady two-dimensional boundary layer equations of a special 
third grade fluid and concluded that the non-Newtonian behaviour is directly proportional to the thickness of 
the boundary layer. Besides that, Ariel20 examined the steady flow of a third grade fluid in a porous flat channel 
and showed several sorts of solutions including an exact numerical solution, perturbation solution, an iterative 
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solution and the approximate solutions. Later Hayat et al.21 reconsidered the problem of Ariel20 and found the 
three terms homotopy solution valid for all values of the third grade fluid.

Stagnation point exists on all solid figures moving in a fluid to freeze the fluid motion and this region con-
fronts the peak of pressure, heat transfer and rates of mass deposition22. The pioneer work of Hiemenz23 in 
two-dimensional stagnation flow has attained much attention because of its utilization in engineering applica-
tions, especially in the polymer industry. The flow of an incompressible viscous fluid over a continuously stretch-
ing/shrinking surface is a dilemma faced in engineering processes with applications in industries, for instance 
wire drawing, plastic films drawing, glass-fibre production, crystal growth, and aerodynamic extrusion of plastic 
sheets. Sakiadis24 initiated the work on this topic throughout his investigation of the flow due to a continuously 
stretching surface from a slit into a stationary fluid with a constant speed. The flow was under Blasius type as the 
boundary layer thickness increased with the distance from the slit. Further, Crane25 extended the Sakiadis24 prob-
lem by considering the direct proportional relationship of the velocity to the distance from the slit and found an 
exact solution of the two-dimensional Navier-Stokes equations for a stretching sheet problem which is very useful 
to predict the system execution and hence contributed to the physical understandings of the relevant problems. 
On the other hand, Miklavcic and Wang26 investigated the properties of the flow due to a shrinking sheet with 
suction and concluded that sufficient suction on the surface are needed to sustain the flow over the shrinking 
sheet. Later, various literatures were presented regarding the stretching/shrinking surfaces under different states.

Mahapatra and Gupta27 obtained an exact similarity solution of the Navier-Stokes equations for the steady 
two-dimensional stagnation-point flow of an incompressible viscous fluid towards a stretching sheet and noticed 
that the thermal convection in the boundary layer occurred when the temperature of the stretching surface is 
constant. Wang22 studied the stagnation flow towards the shrinking sheet and found that the existence of a region 
filled with enduring opposite flow occured close to the surface where the transfers of heat, mass and momentum 
are blocked away from the sheet. Fang et al.28 presented an exact solution of the Navier-Stokes equation for the 
unsteady viscous flow over a continuously shrinking surface with mass suction problem. Futhermore, Hayat et al.29  
investigated the mixed convection stagnation point flow and heat transfer over an unsteady stretching surface 
with the existence of a time-dependent free stream while Rohni et al.30 considered the unsteady flow over a con-
tinuosly shrinking surface with wall mass suction in nanofluid by using the Buongiorno’s model.

The present paper considers the similarity solutions of the unsteady stagnation-point flow and heat transfer of 
a special third grade fluid past a permeable stretching/shrinking sheet with the numerical solutions generated by a 
bvp4c function in Matlab software. The current results can be used to explain the characteristics and applications 
of non-Newtonian fluids in the field of tribology, automotive industry, etc. For instance, lubricating oils in the 
machineries are frequently tested for viscosity since it could affect the performance of oil and hence influence the 
lifespan of the equipment. As oils used for a long duration and still being utilized, factors including contamination 
particles and soot from incomplete combustion, can cause them to take on more non-Newtonian characteristics 
even at the lower shear rates. Thus, related parameters involved and appropriate situations such as stretching/
shrinking surfaces, sufficient suction, etc. need to be applied and handled in order to control the non-Newtonian 
behaviour of the oil. To the best of our knowledge, this specific problem on special third grade fluid has not been 
considered before and therefore, the reported results are new and original.

Problem Formulation
Consider the unsteady stagnation-point flow and heat transfer of a third grade fluid in the region y >  0 driven by 
an impulsively started stretching/shrinking surface, as shown in Fig. 1, where x and y are Cartesian coordinates 
measured along the surface and normal to it, respectively. It is assumed that at time t =  0 the surface starts to 
move with the velocity Uw(x, t) =  λuw(x, t) in an external free stream of velocity ue(x, t), where λ is a dimension-
less constant with λ >  0 for a stretching surface and λ <  0 for a shrinking surface, respectively. It is also assumed 
that the mass flux velocity is vw(t) and the uniform temperature of the surface is Tw, while that of the ambient fluid 
is T∞, where we consider that Tw >  T∞ (heated surface). For third grade fluids, physical considerations were taken 
into account by Fosdick and Rajagopal1 in order to obtain the following form for the constitutive law

µ α α βΤ = − + + + +p trI A A A A A( ) (1)1 2 1
2

1
2

11 2 3

Figure 1.  Physical model and coordinate system. 
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where T is the Cauchy stress tensor, p is the hydrostatic pressure, μ is the dynamic viscosity, I is the identity ten-
sor and αi (i =  1, 2) and βj (j =  1, 2, 3) are material constants. Moreover, thermodynamics imposes the following 
constraints (see Fosdick and Rajagopal1):

µ α α α µβ β β β≥ ≥ + ≤ = = ≥0, 0, 24 , 0, 0 (2)1 1 2 3 1 2 3

Under these assumptions, the basic equations of the problem under consideration can be written in Cartesian 
coordinates x and y as (see Abbasbandy and Hayat18)
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where u and v are the velocity components along the Cartesian coordinates x and y, T is the fluid temperature, 
α is the thermal diffusivity of the fluid, ν is the kinematic viscosity and κ(x, t) is the non-Newtonian parameter. 
It should be pointed out that for κ(x, t) =  0, equation (4) reduces to the case of viscous fluid. In order that equa-
tions (3) to (5) subject to the boundary conditions (6) admit similarity solutions, hence assume that

= =
−

u x t u x t ax
ct

( , ) ( , )
1 (7)w e

where c is a constant with dimension (time)−1 showing the unsteadiness of the physical problem. The effective 
stretching/shrinking rate 1/(1 −  ct) increases or decreases with time since c >  0 or c <  0, respectively. Meanwhile, 
κ =  κ0(1 −  ct)3/x2 were assumed, where κ0 is a positive constant (see Mukhopadhyay and Andersson31).

The similarity solution of equations (3)–(5) of the following form will be explored
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where ψ is the stream function defined in the usual form as u =  ∂ ψ/∂ y and v =  − ∂ ψ/∂ x.
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where s is the constant wall mass transfer parameter with s >  0 for suction and s <  0 for injection, respectively. 
Substituting (8) into equations (4) and (5), the following ordinary (similarity) equations will be obtained
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where primes denote differentiation with respect to η, Pr =  v/α is the Prandtl number, K =  6κ0a3/ν2 is the constant 
dimensionless non-Newtonian parameter and β =  c/a is the constant unsteadiness parameter with β >  0 for an 
accelerating flow and β <  0 for a decelerating flow, respectively. Here, only the case of β <  0 (see Fang et al.28) will 
be considered. It should be mentioned that for K =  β =  0, equation (10) reduces to the classical stagnation-point 
flow problem first studied by Hermann32.

Quantities of interest in this problem are the skin friction coefficient Cf and the local Nusselt number Nux, 
which are defined as
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where τw is the skin friction along the surface of the stretching/shrinking sheet and qw is the heat flux from the 
surface of the sheet, which are defined as
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Substituting (8) into (14) and using (13), the following expression can be attained

θ= ″ = − ′−C f NuRe (0), Re (0) (15)x f x x
1/2 1/2

where ν= u x t xRe ( , ) /x w  is the local Reynolds number.

Stability Analysis
Merkin33 proved the existence of dual solutions and showed that stability analysis is the right approach, possibly 
holds for the steady-state problems, to recognize which of the solutions that is stable and hence physically appli-
cable. Referring to Weidman et al.34, the presence of a dimensionless time variable, τ is necessary to determine 
which solution can be logically obtained in reality. Thus, variables (8) are modified by considering a dimension-
less time variable, τ and the following new similarity variables are introduced:

η
η τ

ν η τ θ η τ

η
ν

τ

=


 −




∂
∂

= −
−

= − −

=
−

=
−

∞

u ax
ct

f

v a
ct

f T T T T

y a
ct

at
ct

1
( , ),

1
( , ), ( , ) ( )/( )

(1 )
,

1 (16)

w w

Substitute (16) into equations (4) and (5), the following equations can be obtained:
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According to Weidman et al.34, take
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By substituting (20) into equations (17) and (18), the following equations are obtained:
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The stability of the steady stagnation-point flow and heat transfer equations (10) and (11) subject to the boundary 
conditions (12) has been studied by considering τ =  0 (see Weidman et al.34). Then, the following linear eigen-
value problem will be solved:
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In order to determine the range of possible eigenvalues, one of the boundary conditions, namely η′F ( )0  or H0(η) as 
η →  ∞  should be relaxed (see Harris et al.35). The stability of the steady-state flow solution depends on the small-
est eigenvalue, γ1. In this study, we relax the condition η′ →F ( ) 00  as η →  ∞ , and for a fixed value of the eigen-

λ

Present results Bhattacharyya32 Wang22

First 
solution

Second 
solution

First 
solution

Second 
solution

First 
solution

Second 
solution

− 0.25 1.4022407 – 1.4022405 – 1.40224 –

− 0.50 1.4956697 – 1.4956697 – 1.49567 –

− 0.75 1.4892982 – 1.4892981 – 1.48930 –

− 1.00 1.3288168 0 1.3288169 0 1.32882 0

− 1.15 1.0822311 0.1167020 1.0822316 0.1167023 1.08223 0.116702

− 1.20 0.9324733 0.2336496 0.9324728 0.2336491 – –

− 1.2465 0.5842759 0.5542976 0.5842915 0.5542856 0.55430 –

− 1.24657 0.5745397 0.5640169 0.5745268 0.5639987 – –

Table 1.   Comparison of numerical results for the values of f ″(0) for the steady-state flow when the surface 
is shrunk and when K = 0, β = 0, s = 0 and Pr = 0.72.

Figure 2.  Variations of f ″(0) with λ for some values of s when β = −1 and K = 1. 
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value, γ, equations (24) and (25) will be solved with the introduction of new boundary condition that is 
″ =F (0) 10 .

Results and Discussions
The ordinary differential equations (10)–(11), subject to the boundary conditions (12), can be solved numeri-
cally using the bvp4c programme in Matlab software. In this study, the relative error tolerance was set to 10−5. 
The results from the numerical solution are reviewed in terms of the reduced skin-friction coefficient, f ″ (0) and 
the reduced local Nusselt number, − θ ′ (0) for different values of s, K and λ. This problem is considered under 
decelerating flow and Pr =  0.72 has been used where thermal diffusivity dominates the situation and controls the 
relative thickness of the momentum and thermal boundary layers. When Pr is small (Pr <  1), the heat diffuses 
immediately compared to the velocity (momentum), hence the thickness of the thermal boundary layer is much 
larger than the velocity of the boundary layer.

The numerical results for the reduced skin friction coefficient f ″ (0) for the steady state flow obtained in this 
study via the bvp4c function in Matlab are compared with those of Wang22 and Bhattacharyya36 for validation 
purposes, as presented in Table 1. The comparisons are found to be in a very good agreement, and thus we are 
confident that the present numerical method is accurate. The accuracy of bvp4c function enables it to match with 
the numerical results that have been produced by using other methods such that Runge-Kutta method. From 
Tables 2–4, it can be seen that as the sheet is stretched, the values of f ″ (0) drop and particularly when the sheet 
is stretched at λ =  1, f ″ (0) becomes zero. This is because of the uniform movement of the fluid velocity with the 
surface of the boundary. Hence, there is no force that resists the motion of the fluid across the surface of the sheet 

Figure 3.  Variations of −θ′(0) with λ for some values of s when β = −1 and K = 1. 

Figure 4.  Variations of f ″(0) with λ for some values of K when β = −1 and s = 1. 
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(solid). Meanwhile, the value of − θ ′ (0) increases when the sheet is stretched but decreases when the sheet is 
shrunk. As the sheet shrunk, there will be less space for the special third grade fluid to flow pass it and this reduces 
the convective heat transfer.

On the other hand, the effects of suction towards the critical values, λc which have been displayed in Table 5, 
express that the higher rate of suction s lowers the critical point values. However, this trend is in contrast with the 
impact of the non-Newtonian parameter K over the critical values. The higher non-Newtonian characteristics 
of the special third grade fluid seem to increase the critical point values and this is shown in Table 6. There is no 
solution when λ <  λc and this statement is clearly illustrated in Figs 2–5. The existence of dual solutions, namely 
first (upper branch) solution and second (lower branch) solution has been noticed from Figs 2–5. It is seen that 
for λc <  λ <  4 (see Figs 2 and 3), and for λc <  λ <  3 (see Figs 4 and 5), the equations have two solutions, while for 
λ <  λc <  4 (see Figs 2 and 3), and for λc <  λ <  3 (see Figs 4 and 5), there is no solution, respectively. In this region, 
the full Navier-Stokes equations should be solved where λc is the critical value of λ. Moreover, Figs 2 and 3 indi-
cate that the reduced skin friction coefficient, f ″(0) and the reduced local Nusselt number, − θ ′(0) will increase 
when the rate of suction increases. Figures 4 and 5 interpret that high non-Newtonian characteristics, (K =  3) on 
a special third grade fluid has small reduced skin friction coefficient and lower rate of heat transfer at the surface 
of the sheet compared to the case when K =  1 and K =  2.

The velocity and temperature profiles which have been shown in Figs 6–13 satisfy the far field boundary con-
ditions (10) asymptotically, which support the validity of the numerical results obtained and the existence of the 

λ

f ″(0) −θ′(0)

First 
solution

Second 
solution

First 
solution

Second 
solution

− 1.5 2.193377 − 1.28285 1.938451 1.423448

− 1.0 2.166659 − 1.72211 2.081987 1.479233

− 0.5 2.004485 − 2.01423 2.197901 1.586895

0 1.704967 − 2.26468 2.294649 1.736056

0.5 1.185006 − 2.51231 2.374083 1.907967

1.0 0 − 2.77119 2.433741 2.081403

1.5 − 1.2484 − 3.04334 2.490572 2.241382

Table 2.   Dual solutions of f ″(0) and −θ′(0) for the shrinking surface (λ < 0) and stretching surface 
(λ > 0) when s = 3, K = 1 and β = −1.

λ

f ″(0) −θ′(0)

First solution
Second 
solution

First 
solution

Second 
solution

− 1.5 1.496961 − 0.776316 1.854743 1.465027

− 1.0 1.555887 − 1.190537 2.032096 1.515417

− 0.5 1.476845 − 1.413027 2.166841 1.641006

0 1.288081 − 1.592146 2.277386 1.821447

0.5 0.941126 − 1.771238 2.368117 2.020089

1.0 0 − 1.964797 2.433741 2.202279

1.5 − 0.991262 − 2.173651 2.496140 2.354546

Table 3.   Dual solutions of f ″ (0) and −θ′(0) for the shrinking surface (λ < 0) and stretching surface 
(λ > 0) when s = 3, K = 3 and β = −1.

λ

f  ″(0) −θ′(0)

First solution
Second 
solution

First 
solution

Second 
solution

− 1.5 1.630754 − 0.151577 1.892278 1.737387

− 1.0 1.897845 − 1.431371 2.068307 1.744285

− 0.5 1.835419 − 1.898569 2.193046 1.806175

0 1.594179 2.221268 2.293849 1.904763

0.5 1.117490 − 2.498897 2.375587 2.026513

1.0 0 − 2.765888 2.437028 2.157663

1.5 − 1.191628 − 3.036448 2.495190 2.287105

Table 4.   Dual solutions of f ″(0) and −θ′(0) for shrinking surface (λ < 0) and stretching surface (λ > 0) 
when s = 3, K = 1 and β = −3.
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Figure 5.  Variations of −θ′(0) with λ for some values of K when β = −1 and s = 1. 

Figure 6.  Velocity profiles, f ′(η) for different values of s when λ = −0.5, β = −1, and K = 1. 

Figure 7.  Temperature profiles, θ(η) for different values of s when λ = −0.5, β = −1, and K = 1. 
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Figure 8.  Velocity profiles, f ′(η) for different values of β when λ = −1, s = 3, and K = 1. 

Figure 9.  Temperature profiles, θ(η) for different values of β when λ = −1, s = 3, and K = 1. 

s λc

1 − 0.9689

2 − 1.5877

3 − 2.2076

Table 5.   Critical values of λ for various values of s when β = −1 and K = 1.

K λc

1 − 0.9689

2 − 0.9286

3 − 0.9030

Table 6.   Critical values of λ for various values of K when β = −1 and s = 1.
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dual solutions. For example, Figs 6, 8, 10 and 12 display the identified converged solutions when the plot of veloc-
ity profile f ′(η) approaches 1 as the boundary layer thickness value is less than or equals to 8 and they show the 
relationship f(0) =  s. Figures 7, 9, 11 and 13 also able to reflect the boundary conditions θ(0) =  1 and θ(∞ ) →  0. In 
Figs 6 and 7, an increase in the rate of suction reduces the boundary layer thickness. Besides, the slower motion of 
the flow lowers the boundary layer thickness and this is shown in Figs 8 and 9. The high effects of non-Newtonian 
characteristic in the special third grade fluid will increase the boundary layer thickness and are well portrayed in 
Figs 10 and 11. Meanwhile, in Figs 12 and 13, the higher shrinking rate increases the boundary layer thickness, 
but the second solution opposes the trend where the higher shrinking rate decreases the boundary layer thickness 
compared to the stretching case. As mentioned earlier in this paper, the existence of dual solutions when the sheet 
is stretched and shrunk as the value of λ lies in between λc <  λ <  4 have been noticed. Therefore, there is a neces-
sity to conduct the stability analysis and we found that the first solution (upper branch) is stable and physically 
applicable while the second solution (lower branch) is unstable. The stable solution is identified based on the pos-
itive smallest eigenvalue whereas the unstable solution is recognized based on the negative smallest eigenvalue. 
Table 7 illustrates the smallest eigenvalue, γ1 for some values of λ when s =  3, K =  3, and β =  − 1.

Conclusions
This paper considered numerical solutions and stability analysis of the unsteady stagnation-point flow and heat 
transfer of a special third grade fluid past a permeable stretching/shrinking sheet. From this study, the reduced 
skin friction coefficient and the reduced local Nusselt number at the sheet increased as the rate of suction 
increased. Higher non-Newtonian characteristics of a special third grade fluid has smaller reduced skin friction 

Figure 11.  Temperature profiles, θ(η) for different values of K when λ = 0.5, s = 1, and β = −1. 

Figure 10.  Velocity profiles, f ′(η) for different values of K when λ = 1.5, s = 1, and β = −1. 
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coefficient and lower rate of heat transfer at the surface of the sheet compared to lower non-Newtonian character-
istics of a special third grade fluid. Dual solutions can be obtained when the sheet is stretched and shrunk when 
λc <  λ ≤  4. Therefore, stability analysis has been done to show that the first solution (upper branch) is stable, 
whereas the second solution (lower branch) is unstable.

Figure 13.  Temperature profiles, θ(η) for different values of λ when K = 1, s = 3, and β = −1. 

λ
First solution (Upper 

branch), γ1

Second solution (Lower 
branch), γ1

− 1.5 0.0968 − 0.0237

− 1.0 0.3137 − 0.1873

− 0.5 0.4553 − 0.2917

0 0.5000 − 0.3203

0.5 0.5770 − 0.4029

1.0 0.5900 − 0.5230

1.5 0.6449 − 0.6055

Table 7.   Smallest eigenvalue, γ1 for some values of λ when s = 3, K = 3, and β = −1.

Figure 12.  Velocity profiles, f ′(η) for different values of λ when K = 1, s = 3, and β = −1. 
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