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Recovery of infrastructure networks 
after localised attacks
Fuyu Hu1,2, Chi Ho Yeung3, Saini Yang1,2, Weiping Wang1,2 & An Zeng4

The stability of infrastructure network is always a critical issue studied by researchers in different 
fields. A lot of works have been devoted to reveal the robustness of the infrastructure networks against 
random and malicious attacks. However, real attack scenarios such as earthquakes and typhoons are 
instead localised attacks which are investigated only recently. Unlike previous studies, we examine in 
this paper the resilience of infrastructure networks by focusing on the recovery process from localised 
attacks. We introduce various preferential repair strategies and found that they facilitate and improve 
network recovery compared to that of random repairs, especially when population size is uneven at 
different locations. Moreover, our strategic repair methods show similar effectiveness as the greedy 
repair. The validations are conducted on simulated networks, and on real networks with real disasters. 
Our method is meaningful in practice as it can largely enhance network resilience and contribute to 
network risk reduction.

In the past decade, many studies have contributed to the interpretation of topological structures1–3, dynamical 
processes4–6 and controllability7–9 of complex networks. Among them, a large proportion of research explained 
the robustness or vulnerability of networks by percolation theory and dynamic simulation10,11, as well as critical 
component identification12,13. Recently, there were concerns focusing on the study of resilience of infrastructure 
networks against attacks or failures, which is significantly benefited from the rapid development of complex 
network research14–17. Substantial research focused on the random attack and malicious attack18–22, and a more 
realistic attack, namely the localised attack, only starts to draw attention recently. Localised attacks are geograph-
ically attacks induced by natural disasters (e.g. tropical cyclone, earthquake, landslide and so on) or mass attacks 
(burst of atom bomb or hazardous chemicals). The main difference between localised attacks and random attacks 
or malicious attacks is that the localized attacks always cause aggregated destruction of adjacent components lim-
ited to a specific area, while the random attacks or malicious attacks are global attacks and the failed components 
are distributed throughout the whole system. So far, localised attacks are studied on monopartite network23 and 
spatially embedded interdependent networks24 with the percolation theory.

The recovery and repairability of complex networks have attracted more and more attention lately. Recovery 
mechanism exists in nature, which includes the spontaneous recovery and deliberate repairs. Spontaneous recov-
ery is defined as the process that damaged components of the network spontaneously become active again in a 
period of time after failure25. For example, a river bed dries up in dry seasons and the river losses its transport 
capacity, but it regains its water level and function in wet seasons. On the other hand, deliberate repairs refer to 
the procedures that the significant damaged parts in the network are manually restored when the system cannot 
regain its function automatically or fail to be repaired in a reasonable time. For instance, after a severe earthquake, 
infrastructure systems such as power-grid and transportation networks may be damaged and cannot be recovered 
without external efforts. In some systems these two types of recovery can co-exist, e.g., heavy snow can cause traf-
fic congestion, which may let-up by gradual spontaneous recovery, but the duration is usually long. Snow plowing 
is needed as a way of deliberate repair to shorten the recovery process. Manual recovery approach for systems 
with high cost-benefit ratio can largely enhance the system resilience and contribute to emergency management 
and system risk reduction.

Robustness and repairability are two important resilience criteria14. Robustness is closely related to network 
redundancy26–28. Some researchers enhance the resilience of network through increasing the inherent redundancy 
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by using self-healing algorithms29. For localised attacks, merely strengthening network robustness against attacks 
may not make the network resilient to some specific attacks. For instance, localised attacks always simultaneously 
disrupt multiple adjacent components, including both nodes and edges. In this case, the redundancy of network 
cannot effectively resist or absorb the disturbance since the whole local region is disrupted, and deliberate repairs 
play an important role to restore the system functionality. In transportation networks (especially road networks), 
methods to recover from these edge attacks are crucial since transportation to the disrupted region is totally dis-
torted, and such methods will also be relevant to other systems such as power-grid and pipeline networks. To the 
best of our knowledge, so far there is no research on the deliberate recovery of complex networks after localised 
edge attacks.

The aim of this paper is to identify the optimal repair strategy on geographical networks after localised attacks. 
First, we will illustrate the deliberate recovery process of two-dimensional weighted square lattice under localised 
attacks. Secondly, four different repair strategies are devised and tested under localised, random and malicious 
attacks. Finally, we validate the repair strategies on a real-world road network in Hainan province in China under 
two real historical damage profiles caused by an earthquake and a tropical cyclone.

Results
Problem Statement. Specifically, we focus on the road networks and model them with two-dimensional 
square lattices with side length l, which is the simplest geographical network with N =  l2 nodes and E =  2l(l −  1) 
edges. The network is denoted by an adjacency matrix A where Aij =  1 if there is an edge connecting vertexes i 
and j, and Aij =  0 otherwise. Nodes in the network correspond to regions or towns, with a population size drawn 
randomly from a power-law distribution. Edges in the network correspond to roads, and a fraction of them are 
disrupted under attacks. We call this ratio the edge damage percentage.

There are several different attack scenarios. Firstly, localised attacks (LA) model natural hazards which occur 
in specific areas. It is a group of failed edges concentrated in a geographical domain, resulting in adjacent isolated 
nodes, as illustrated in Fig. 1(A,B). Secondly, malicious attacks (MA) model the case where terror attacks disrupt 
the most important parts in a network to damage its functionality as much as possible. In MA, the edges with the 

Figure 1. The illustration of various strategic repair processes after localised attack (LA) on two-
dimensional square lattice with heterogeneously populated nodes. The attack center is randomly selected. 
(A) The schematic localised attack. The attack intensity will decline with distance from the attack center. An 
edge is disrupted only if the attack intensity is larger than a threshold. The distance between two edges is 
defined as the vertical distance from the mid-point of one edge to other edge. The darkest gray area suffers the 
largest attack intensity, and the lightest gray area suffers the smallest attack intensity which is lower than the 
physical disruption threshold of edge. Only the edges coloured red, blue and yellow fail. In this case, a group 
of geographically localised edges fail and are removed from the network. (B) The remaining functional edges 
after localised attack, and the yellow nodes are isolated. (C1–C3) The operations of PR. In (C1) the blue edges 
with arrowhead are the damaged edges adjacent to the functional components of the network. The red node n1 
is the node adjacent to the network with the largest population, and either edge m1 or m2 will be repaired first 
randomly. In this case, m1 is selected to be restored first and coloured green. After all the isolated nodes are 
connected at last, m2 will be repaired coloured yellow. At the next step, the node n2 in (C2) is the node adjacent 
to the functional network and with the largest population, and either edges m3 or m4 will be repaired randomly. 
The process will be iterated until all the isolated nodes are connected to the functional network, as shown in (C3). 
At last, the yellow edges will be repaired randomly one by one until all are repaired. (D1–D4) The operation of 
PRNW. In (D1) the red node n3 has the largest population among all the isolated nodes, and edge m5 connects n3 
to the network. The edge m5 will be repaired first and coloured green. In the next step, n5 is the most populated 
node; the edges m6 and m7 which connect n5 to the functional network, will be repaired one after the other. The 
procedures are iterated until all the isolated nodes are connected to the network, as shown in (D4). At last, the 
yellow edges will be repaired randomly one by one until the all edges are repaired.
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largest betweenness centrality (updated dynamically) are removed in order, leading to the emergence of several 
separated sub-networks, as illustrated in Fig. S1(a,b). Thirdly, random attacks (RA) model random failures. In 
RA, edges are damaged in random (see the illustration in Fig. S2(a,b)). Reference30 has pointed out that malicious 
attacks are more destructive than random attacks. In this paper, we aim to address the question: which recovery 
methods should be adopted to recover from network disruptions, especially for localised attacks?

Network Functionality. To quantify the effectiveness of different recovery approaches, we first define net-
work functionality and measure the speed and the extent various approaches recover. We introduce the weighted 
inverse distance, which is an index used to measure the efficiency of the whole network, formulated as

∑∑η = w w
d
1 ,

(1)i

N

j

N

i j
ij

where η denotes weighted inverse distance; wi and wj respectively denote the weight or population of nodes i and 
j. The shortest distance between nodes i and j is denoted as dij, and it is infinite if nodes i and j are not connected. 
We then normalize η by

η
η

=F ,
(2)0

where F denotes the network functionality; η0 denotes the weighted inverse distance of the network before the 
attack. In other words, F =  1 if the network is intact, and F =  0 if the network is totally collapsed.

Recovery Approaches. To recover the network from damages, the most straightforward method is random 
recovery (RR), where the damaged edges are repaired randomly. A more effective method is to repair the damaged 
links in order such that the network regains the largest network functionality in each time step. This method is 
called greedy recovery (GR). However, by doing this there is no guarantee that this order of recovered links leads to 
the fastest recovery when all the possible sequence of recovered links are combined. For instance, it may happen 
that some links which lead to sub-optimal recovery have to be repaired first, in order to achieve the fastest recov-
ery in later steps. In other words, the method could be trapped in a local optimum since we do no search exhaus-
tively in the space of the order of repaired links. GR has a high computational complexity and is very difficult to 
be applied to large scale networks. Thus, local optimal strategies become preferable. Figure 1(C,D) respectively 
depicts the processes of two local strategies under LA. The first method is called preferential recovery based on 
nodal weight (PRNW), whose main idea is to preferentially repair the edges which connect the isolated nodes with 
the largest population to the functional component of the network. The other method is called periphery recovery 
(PR). As LA always results in a group of adjacent isolated nodes, the isolated node with the largest population 
at the boundary has the priority to be repaired. The recovery procedures by PRNW and PR under MA and RA 
are respectively illustrated in Figs S1 and S2. Both the greedy recovery and two local approaches are deliberate 
strategic recovery methods, which means that links are restored in a specific order to speed up the recovery of 
the damaged networks. The mathematical representation of above recovery approaches has been shown in the 
Methods section.

Recovery Metrics. In order to measure and compare the effectiveness of the various recovery approaches, 
we define the following quantitative measures: edge recovery percentage, recovery level and recovery efficiency.

Edge recovery percentage (ζ) is the ratio of damaged edges restored after attack, as Equation (3).

ζ =
N
N

,
(3)

R

T

where NR denotes the number of restored edges; and NT denotes the total number of damaged edges.
Recovery level (RL) is the degree to which the network regains its functionality after some damaged edges are 

repaired, given by
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where FI denotes the network functionality of the damaged network after attack; FA denotes the intact network 
functionality before attack; and FR(ζ) denotes the network functionality after a percentage ζ of damaged edges are 
repaired. After all, RL(ζ) denotes the recovery level after a percentage damaged ζ of edges are repaired. Therefore, 
the value of RL is between 0 and 1. If the damaged network has not began to be restored yet, RL =  0; If the network 
has been totally repaired well, RL =  1;

Recovery efficiency (RE) measures the effectiveness of the recovery approaches, formulated by the integral of 
the recovery level RL(ζ) in Equation (4), given by

∫ζ = .ζRE RL( ) (5)0

1

We denote REPRNW, REPR, RERR as the recovery efficiency of PRNW, PR and RR respectively.

Numerical Simulations. The numerical simulations are conducted on two-dimensional square lattices 
with l =  50 and N =  2500 and heterogeneous population on nodes. Figure 2(A) shows the decrease of network 
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functionality with the percentage of damaged edges. Under MA, the network loses most of its functionality in 
the early stage because the removed edges are the most critical ones. The decreasing speed of the network func-
tionality induced by RA is small when the damage percentage is less than 50% but becomes significantly larger 
afterwards. This is due to the emergence of isolated components in the network. The decrease of network func-
tionality under LA seems to be linear and the decreasing rate is stable without large variation at any edge damage 
percentage.

Figure 2(B) shows the network recovery level under LA after removing 40% of links, i.e., the initial percentage 
of damaged edge is 0.4. As we can see, the various strategic recovery approaches are significantly more effective 
than random recovery to recover network functionality. GR aims at repairing the best link at each step, in the 
sense that the increase of network functionality is maximum at each step. The recovery level quickly reaches a 
very high value around 0.7. In RR, the recovery level increases first very slowly but becomes fast when the edge 
recovery percentage is larger than 0.5. There are l2 nodes and 2l(l −  1) edges homogeneously distributed in the 
lattice network. Under LA, after damaging P% of the edges, there will be roughly P/2% isolated nodes concen-
trated in a specific domain. Connecting all the isolated nodes needs at least l2 P/2% links, which is very close to 
50% of the damaged edges. It means that the network becomes connected again when edge recovery percentage 
reaches at least 50%. Therefore, the recovery level by RR stays very low when the recovery percentage is small but 
increases substantially after the recovery percentage is higher than 0.5.

In contrast to GR and RR, the recovery level of PRNW and PR increases non-linearly with recovery percent-
age. PRNW and PR have three points with abrupt changes. As for PRNW, the three points respectively locate at 
edge recovery percentages around 0.2, 0.5 and 0.7, which divides the recovery process into four stages. In the first 
stage, the damaged edges connected to the most populated nodes are first repaired; the recovery level increases 
quickly. In the second stage, the damaged edges linking the less populated but isolated nodes are repaired and the 
network becomes connected at an edge recovery percentage of 0.5. These links between the connected compo-
nent and the isolated nodes with small weight contribute less to the functionality of the network, and hence the 
increase of recovery level is very small at this stage. However, the connectivity of network is restored at this stage, 
which means that network recovers its basic functionality again. In the third stage, the increase of recovery level 
becomes faster because the edges restored in the second stage effectively reduce the shortest distances. At the final 
stage, the recovery level reaches a high value, and only the remaining edges between less populated nodes are 
repaired. These links are in many cases redundant.

For PR, the three points of abrupt changes are located at edge recovery percentages around 0.3, 0.5 and 0.7. 
There also exist four stages and the latter three stages are very similar to those of PRNW. As for the first stage, 
repairing is prioritised for periphery edges linking an isolated node with large population. The recovery level also 

Figure 2. The change in network functionality and recovery level after the attack and recovery in two-
dimensional square lattice with heterogeneous population on individual nodes. (A) The degradation of 
network functionality as a function of the percentage of damaged edges under LA, MA and RA. The red dotted 
line in the figure corresponds to the percentage of damaged edges, i.e. 0.4, from which restoration processes 
start. (B) The recovery level as a function of the percentage of repaired nodes of PRNW, PR, GR and RR after 
LA. (C) The recovery level as a function of the percentage of repaired nodes of PRNW after LA, MA and RA. 
(D) The difference of the recovery level between PRNW and RR after the three kinds of attack.
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increases quickly. Since population size follows a power-law distribution, the number of nodes with large weight 
is far less than those with small weight. In the initial steps, when edge recovery percentage is smaller than 0.1, the 
recovery level of PR is larger than that of PRNW. The reason is that in PRNW, the damaged edge e connecting the 
nodes with the largest weight may be far away from the functional network. The restoration of other damaged 
edges which constitute the path between the network and the node with the largest weight is a preparation for 
restoring e. These edges always connect nodes with small weights, which lead to a slow increase in recovery level 
at the early stage of PRNW. But after the initial steps, PRNW has a higher recovery level than that of PR because 
for each edge restoration in PR, the weight of the repaired periphery is large but not necessarily the largest.

In summary, PRNW has very similar recovery efficiency with GR, and PR is slightly worse than PRNW. 
Meanwhile, PRNW and PR have lower computational complexity than GR, and are much easier to be applied 
in simulations. PRNW and PR also have other important merits in policy implication, which will be further dis-
cussed in the Discussion section. We also tested different recovery methods when the network is attacked by MA 
and RA. The results of the numerical simulation are shown in Fig. S3. One can see that the curves of PRNW and 
PR after MA and RA are totally different from that after LA.

Figure 2(C) displays the recovery level of PRNW after LA, MA and RA. PRNW has the largest recovery effi-
ciency after RA and the smallest recovery efficiency after LA, which implies that it is most difficult to recover the 
network after LA. In the context of LA, there are isolated nodes in the attack center such that much more edges 
have to be repaired to connect them to the functional network. While for MA and RA, most isolated nodes are 
close to the functional network and restoring the connectivity between them and the network requires much less 
repairs than the case of LA.

Figure 2(D) shows the difference of recovery level between PRNW and RR under three types of attacks. As 
we can see, the largest difference is found in the case of LA compared to those of MA and RA. In other words, for 
most values of the edge recovery percentage, PRNW has larger recovery level than RR. Moreover, as we can see in 
Fig. 2(B), the recovery efficiency of PRNW is much larger than that of RR. It implies that in comparison with MA 
and RA, strategic recovery methods are much more effective than random recovery after LA.

After revealing the general behaviours of the various scenarios of attacks and repairing, we go on to examine 
the influence of initial edge damage percentage, network size and nodal weight distribution on the performance 
of different recovery approaches.

Initial Edge Damage Percentage. As shown in Fig. 3(A), the recovery efficiency of all the three recovery 
approaches decreases with increasing percentage of initially damaged edges. It implies that network recovery 
becomes more difficult when more edges are damaged initially. To regain the necessary connectivity, the percent-
age of recovery edges needs to be larger. PRNW shows a much better performance than PR when the percentage 
of initially damaged edges is higher, since PRNW is easier to reach the populated nodes than PR. However, the 
difference between PRNW and RR is relatively stable.

Similar behaviours are found for MA, as shown in Fig. 3(B), except an increasing tail is observed for PRNW 
and PR in the regime with large initial damage percentage. It is because MA deliberately reduces the whole net-
work functionality, such that the largest sub-networks are always broken down into smaller sub-networks when 
the percentage of initially damaged nodes is large. Isolated nodes do not emerge until all sub-networks are left 
with only one edge. That is to say, one node connects one and only one edge. There is a threshold of edge dam-
age percentage (N −  1)/2E ≈  0.75, below which the connectivity is likely to have been destroyed but no isolated 
node exists. The edges connecting the nodes with the largest weight will be restored in priority. In other words, 
all the surrounding edges of the nodes with the largest weight will be repaired first, followed by those of the 

Figure 3. Recovery efficiency of PRNW, PR, RR. (A–C) respectively under LA, MA, RA with a network size 
N =  2500. (D–F) respectively under LA, MA, RA with a percentage of damaged edge of 0.45.
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second largest weight. Therefore, a large portion of damaged edges will be repaired before the network regains 
its connectivity, which makes the recovery efficiency of PRNW and PR worse than that of GR in the context of 
MA, as shown in Fig. S3. When the edge damage percentage is larger than 0.75, the isolated node emerges. With 
an increasing edge damage percentage, on one hand, the increasing isolated nodes will make it more difficult to 
repair the network; on the other hand, the hubs are completely isolated in this case when the initial edge damage 
percentage is larger than 0.75, then connecting one link already regains a lot of network recovery. This happens 
when damage percentage increases, and more and more isolated hub nodes emerge, so the repairing becomes eas-
ier, leading to an increase in network efficiency. Therefore, due to the above contrary effects, with the edge damage 
percentage increases from 0.75, the recovery efficiency still declines first and then increases.

Compared with MA and LA, the recovery approaches show different characteristics under RA. The recovery 
efficiencies of PRNW, PR and RR increase first, and then decline when the initial edge damage percentage is 0.5. 
The explanation of this phenomenon is that under RA, the damaged edges are uniformly distributed throughout 
the whole network. When the percentage of damaged edge is smaller than 0.5, more important edges are removed 
when damage percentage increases, but the network is still connected and shows strong robustness. So it will be 
easier for the network to recover, the more important edges are removed and can be repaired now. In other words, 
the gain from repairing these important links is higher. As a result, the network efficiency increases. At the same 
time, the strategic recovery approaches have higher effectiveness than random recovery. On the other hand, when 
the percentage of the damaged edge is larger than 0.5, the network is separated into several sub-networks and 
becomes disconnected. In the early stage of repairing, much more damaged edges should be repaired to regain 
the basic functionality of the network. With an increase in the percentage of initially damaged edges, network 
recovery becomes more difficult.

When the percentage of initially damaged edges becomes very large, the recovery efficiencies of PRNW and 
PR also bound back upwards, and their difference with RR becomes larger. The reason is similar to that observed 
in the case of MA, but with two different characteristics. First, the percentage of damaged edges at which the 
recovery levels of PRNW and PR start increase under RA is larger than that of MA. This is because there is 
a higher probability of the existence of several sub-networks which contain more than one edge in RA. This 
phenomenon leads to a larger number of isolated nodes in RA than that in MA given the same percentage of 
remaining edges. As a result, more damaged edges have to be repaired to regain the connectivity. Second, the 
performance of PRNW is worse than that of PR under RA when the percentage of damaged edges is larger than 
0.6. The uniform distribution of remaining intact edges makes it much easier for PR to find the nodes with the 
largest weight.

When the percentage of damaged edges is extremely large (very close to 1), large-scale edge disruption 
emerges in the whole network, just like a huge localised attack. In this case, a very limited number of edges 
remain, and the recovery procedures of PRNW and PR after MA and RA are close to those after LA, as shown in 
Fig. S4. As we can see, the recovery efficiency of PRNW and PR is very sensitive to the percentage of damaged 
edges, especially for PRNW after RA. The results are significantly different when the percentages of damaged 
edges are respectively 0.99 and 0.999 under MA and RA.

Network Size. We then examine the relation between the recovery efficiency and the network size. We show 
in Fig. 3(D–F) the recovery efficiency of the various recovery approaches after LA, MA and RA with 45% of the 
edges damaged, as a function of system size N. The behaviour of RR is not universal after the various kinds of 
attack. With the increasing network size, the recovery efficiency of RR declines under LA, but increases under 
MA and RA. For LA, the recovery efficiency of PR decreases with the increasing network size. In other words, 
it becomes more difficult for PR to recover a larger network. The same happens for PRNW under LA, as well as 
for PRNW and PR under MA when network size is small. Under RA, the recovery efficiency of PRNW and PR 
increases with N when N is small. It implies that it is easier for PRNW and PR to recover larger networks after 
RA. Among the three repair approaches, PRNW shows the most stable recovery efficiency with the system size 
N, implying that the performance of PRNW is less affected by scale and can be used in the repairing of large 
networks. In addition, PRNW significantly outperforms the other two approaches in restoring the networks dis-
rupted by LA. Moreover, deliberate recovery approaches are better than random recovery under MA and RA 
as the network size increases. Figures S5–S7 further illustrates the recovery efficiency of the various recovery 
approaches in the parameter space of edge damage percentage and network size after the three kinds of attacks. 
Analyses are given in SI.

Nodal Weight Distribution. Based on the recovery procedures of PRNW and PR, it is reasonable to antic-
ipate that population (nodal weight) distribution is one of the key factors that influences the effectiveness of the 
various deliberate recovery approaches. To further study the influence of nodal weight distribution, we ana-
lyse the two-dimensional lattice networks with more homogeneously nodal weight distribution (we have chosen 
Poisson distribution) for comparison, as shown in Fig. S8. For PRNW and PR, the recovery level increases line-
arly. There is no abrupt change of recovery level, since the number of nodes with various magnitude of weight is 
relatively even. In this case, PRNW is not obviously superior to PR. On the other hand, RR is similar to that in the 
lattice network with heterogeneous weight distribution.

Real Networks. The recovery of network infrastructure systems from localised attacks induced by natural 
disasters has drawn wide attention throughout the world. United Nations International Strategy for Disaster 
Reduction (UNISDR) put forward Sendai Framework for Disaster Risk Reduction on 18 March 2015, which listed 
damage reduction and resilience development of critical infrastructures as one of the global targets, and regarded 
high cost-benefit investment to relieve disaster risk as a priority for action. Transportation networks are one of 
the most typical infrastructures. We thus take Hainan province in China as our empirical study to test the various 
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attacks and recovery approaches, which is separated by the Qiongzhou strait from the mainland of China, making 
its road network relatively independent. The degree of nodes in the Hainan highway network follows a Gaussian 
distribution with an average value of 3.14, as shown in Fig. S9, which means the degree is homogeneous and the 
network is close to a 2-dimensional lattice network. The population near the node is treated as the weight of the 
node. We choose two disaster scenarios as localised attacks to analyze the resilience of Hainan highway network. 
The highway network map used in this paper was digitalised from the publication31 using ArcGIS 9.3 for deriving 
its topological information. Demographic data are provided by the Hainan statistical yearbook 2014.

Earthquake. There was an extraordinary earthquake happened in Hainan in 1605, namely the Qiongshan 
earthquake, which reached up to a magnitude X. It is no doubt that there will be a big catastrophic disaster if 
earthquake of the same magnitude happens again. Figure 4(A) illustrates seismic intensity distribution of the 
1605 Qiongshan earthquake in Hainan province, which is redrawn from the map opened on the website of 
Hainan seismological Bureau (http://dzj.hainan.gov.cn/zqzq/). The most severely affected area was located in 
the northeastern part. In Fig. 4(B), the network functionality degradation under earthquake was close to a linear 
degradation, which is similar to the result of numerical simulations. The recovery procedures of the four recovery 
approaches under the earthquake are shown in Fig. 4(C). GR has the highest recovery efficiency, followed by 
PR, then by PRNW. As we can see, RR has the worst effect. PR is better than PRNW, which is different from the 
numerical simulations. Even though the population in Hainan province is close to a power-law distribution as 
shown in Fig. S10(a), the vertexes with larger population are located in the coastal areas which are the margins 
of the network as shown in Fig. S10(b). Therefore, in PRNW, edges connected to nodes with smaller population 
need to be repaired before the edges connected to nodes with larger population are repaired, which makes PRNW 
worse than PR.

Typhoon. Hainan province frequently suffers from typhoons, among which more than 25% of the typhoons 
are strong tropical cyclones and often disrupt the road network. Highways are sometimes closed in advance 
of tropical cyclones with wind speed larger than 50 knots in many areas due to strong winds and a mass of 

Figure 4. Recovery procedures in a real-world disaster scenario. (A) The seismic intensity distribution of the 
1605 Qiongshan earthquake in Hainan province of China. (B) The degradation process of network functionality 
under the earthquake. (C) The recovery level of the four recovery approaches after the earthquake. (D) The 
affected areas of the second cyclone in 2010 in Hainan province. (E) The degradation process of network 
functionality under the cyclone. (F) The recovery level of the four recovery approaches after the cyclone hit. The 
maps in (A,D) are drawn using ArcGIS 9.3 (http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://dzj.hainan.gov.cn/zqzq/
http://www.esri.com/software/arcgis/arcgis-for-desktop
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wind-borne debris32. The hazard can induce physical damage to traffic poles, overhead and roadside signs. We 
randomly choose one typhoon, the second typhoon in 2010, as a cyclone scenario. The cyclone track is abstracted 
from China Meteorological Administrations tropical cyclone data center for the western North Pacific basin 
(http://tcdata.typhoon.gov.cn/), which consists of the location, the maximum sustained wind (MSW), and the 
minimum sea level pressure at 6 hour intervals. The track is interpolated into one hour intervals by Inverse 
Distance Weighting method. Its maximum sustained wind was 35 m/s. It was across the west-southern part of 
Hainan Island. This tropical cyclone disrupted about 40% of highway road segments. The detailed calculation of 
the affected area of the cyclone is shown in SI. We also examined different cyclones and the results are similar.

Figure 4(D) displays the affected areas of the cyclone in the Hainan province. The affected areas are located in 
the southwestern part. Network functionality degradation under the cyclone is also close to a linear degradation, 
as shown in Fig. 4(E). In Fig. 4(F), the recovery procedures of four recovery approaches are shown. The deliberate 
repair approaches PRNW, PR and GR show a similar profile in the recovery level, which is much better than that 
of RR. These results are similar to the results obtained from numerical simulations.

Discussion
This paper provides insight into deliberate and strategic recovery approaches on geographical networks under 
localised attacks. Literatures23, as well as Fig. 2(A), imply that localised attacks indeed do not ruin the system as 
much as malicious attacks. Nevertheless, we need a good strategy to recover the system from localised attacks, and 
our results show that it is difficult to recover the system after localised attacks compared with malicious attacks 
and random attacks. In comparison with strategic recovery, the effect of random recovery is less than satisfactory. 
Strategic recovery approaches such as the preferential recovery based on nodal weight (PRNW) and periphery 
recovery (PR) are shown to be much more effective after localised attacks, and the results are well supported by 
numerical simulations and simulations on real-world disaster scenarios.

The philosophy behind PRNW is consistent with the demand of real-world disaster risk reduction. After the 
occurrence of natural disasters, the first 72 hours are sometimes quoted as the golden time and is the most val-
uable time for rescue. There is an urgent need to strategically recover the infrastructure network in a timely and 
efficient manner. The proposed PRNW shows a low computational complexity, and a high efficiency in connect-
ing the most populated region in a short time. On one hand, PRNW is concerned with the holistic connectivity 
to ensure every node is connected and accessible to the functional component of the network. On the other hand, 
in the premise of connectivity, the disrupted edges linking with the largest weighted nodes are preferentially 
repaired, which enhances the recovery level in the early stage. While GR always repairs edges to maximise the 
recovery in the network functionality, there may still exist isolated nodes a long time after the incidence. Most 
importantly, PRNW is very similar to GR in terms of recovery effectiveness under LA for the whole recovery 
process. In addition, in the early stage, the recovery level of PRNW is higher than that of GR, which implies that 
when the recovery resource is too limited to ensure all the isolated nodes to connect the network, PRNW can still 
provide a reasonable solution with high cost-benefit ratio.

Most natural hazards, not merely earthquakes and cyclones, are typical localised attacks. Our findings provide 
a scientific understanding to recognise the intrinsic recovery mechanism from localised attacks as well as differ-
ent characteristics of malicious attacks and random attacks. These findings also offer important support for risk 
management for a wide range of real world systems. The proposed PRNW provides solid scientific evidence for 
strategic resource allocation to optimise the recovery process. It is an intelligent post-disaster recovery method, 
which can greatly shorten the time needed to restore system function and reduce the associated losses, especially 
for infrastructure systems. Similar applications can be extended to ecological systems and social systems if their 
function mechanism of can be modelled precisely.

Future studies can be extended to investigate the impact of geographical distribution of population on the 
consequences of localised attacks and on the efficiency of recovery strategies. We only consider topological 
metrics on one independent infrastructure network in this work. Infrastructure networks such as water supply 
networks, electric power grids, transportation networks involve specific processes of flow dynamics. There also 
exist various interdependencies among coupling critical infrastructure networks33,34, including physical interde-
pendency, cyber interdependency, geographic interdependency and logical interdependency35. The combination 
of dynamics and interdependencies can propagate and amplify a small amount of failures, inducing a series of 
cascades effects36–39, and are studied as cascading failures in interdependent networks10. In further investiga-
tion, post-disaster recovery of infrastructure network should also take systemic dynamics and interdependencies 
into account. Besides, some realistic infrastructure networks show different characteristics of cascading failures. 
Pahwa et al.40 pointed out that due to long-range nature of electric interaction, a first order phenomenon can be 
predicted using a simple mean-field model from line overloads angle, and an increase in system size leads to more 
abrupt breakdown. Yet, further investigations are needed for the recovery dynamics of large power grids after a 
black-out41,42.

Methods
Nodal Weight Distribution. We adopt two probability distributions to respectively describe the homoge-
neous and heterogeneous nodal weight, i.e. population.

(a) Power-law distribution:

∝ α−P b b( ) , (6)

where b is the nodal weight and α is the exponent determining the heterogeneity. In the numerical simulations, 
we set b to be between 1 and 1000 and α =  1.

http://tcdata.typhoon.gov.cn/
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(b) Poisson distribution:

λ
∝

λ
P b e

b
( )

!
, (7)

b

where b is the nodal weight and λ is the mean value of b in the distribution P(b). In this paper, we set λ =  5.

Network Recovery Approach. Four different approaches are adopted on network recovery.

(a) Preferential Recovery based on Nodal Weight (PRNW):

∪=
∈

R x
(8)

t
x Path O D

i j
( , )

,
i j,

where xi,j denotes the edges between node i and j, Path(O, D) is the set of edges on the shortest path between 
nodes O and D, such that D is the node with the maximum weight among all isolated nodes, and O is a node con-
nected to the functioning component of the network and is closest to D. Rt is thus a set of edges which are repaired 
at tth iteration. And xO,i and xj,D are respectively the first and the last edges on the shortest path from O to D. The 
computational complexity of PRNW is O(N3).
(b) Periphery Recovery (PR):

= | ∈ ∈ Ω =R max x i P j A{ , , 1} (9)t w ij ijj

where xi,j denotes the edges between node i and j, wj is the weight on node j, P is set of nodes on periphery or 
nodes that are connected to the functioning component of the network and has at least one damaged edge, and Ω 
is the set of nodes that are isolated. Rt is the set of edges which are repaired at the tth iteration. The computational 
complexity of PR is O(N2).
(c) Greedy Recovery (GR):

∪= −R F x e F eargmax [ ( ( , { })) ({ })] (10)t x

where {e} is the set of functioning edges at t −  1th iteration, and F({e}) is the network functionality with {e}, Rt is 
the set of edge which are repaired at tth iteration. The edge x which maximises the increase in network function-
ality is restored at each iteration. The computational complexity of GR is O(N4).
(d) Random Recovery (RR): This is the simplest method where a damaged edge is randomly chosen to be restored 

in each time step. The computational complexity of RR is O(N).
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