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Steady-state mechanical squeezing 
in a hybrid atom-optomechanical 
system with a highly dissipative 
cavity
Dong-Yang Wang1, Cheng-Hua Bai1, Hong-Fu Wang1,2, Ai-Dong Zhu1 & Shou Zhang1

Quantum squeezing of mechanical resonator is important for studying the macroscopic quantum 
effects and the precision metrology of weak forces. Here we give a theoretical study of a hybrid 
atom-optomechanical system in which the steady-state squeezing of the mechanical resonator can 
be generated via the mechanical nonlinearity and cavity cooling process. The validity of the scheme 
is assessed by simulating the steady-state variance of the mechanical displacement quadrature 
numerically. The scheme is robust against dissipation of the optical cavity, and the steady-state 
squeezing can be effectively generated in a highly dissipative cavity.

The optomechanical system is a rapidly growing field from the classical Fabry-Pérot interferometer by replac-
ing one of the fixed sidewalls with a movable one1. The introduced one-dimensional freedom of the movable 
sidewall can be regarded as a free resonator mode, which can interact with the cavity mode through radiation 
pressure force originating from the light carrying momentum. Many projects of cavity optomechanics systems 
have been conceived and experimentally demonstrated in the past decade2–6. For example, the radiation force has 
been used for cooling the mechanical resonators to near their quantum ground states and entangling the cavity 
and mechanical resonator, and for coherent-state transiting between the cavity and mechanical resonator7–18. 
Quantum fluctuations become the dominant mechanical driving force with strong radiation pressure, which leads 
to correlations between the mechanical motion and the quantum fluctuations of the cavity field19. In addition, the 
optomechanical method of manipulating the quantum fluctuations has also been used for generating the squeez-
ing states of the optical and mechanical modes20–23.

The history of optical squeezing is linked intimately to quantum-limited displacement sensing24, and many 
schemes have been proposed to generate squeezing states in various systems25–27. The squeezing of light field is 
proposed for the first time using atomic sodium as a nonlinear medium26. In addition, the squeezing of micro-
wave field, which has been demonstrated with up to 10 dB of noise suppression27, is an important tool in quantum 
information processing with superconducting circuits. In recent years, researchers have found that the optom-
echanical cavity, which can be regard as a low-noise Kerr nonlinear medium28,29, can be a better candidate to 
generate squeezing of the optical and mechanical modes. The squeezing of optical field is easy to be achieved in 
the optomechanical systems, and has been obtained experimentally20,30,31. The squeezing of mechanical mode is 
not observed experimentally until Wollman achieved it in 201532. Many schemes have been proposed to gener-
ate mechanical squeezing in the optomechanical systems, including methods based on measurement, feedback, 
parametric processes, and the concept of quantum-reservoir engineering33–38. Quantum squeezing of mechanical 
mode is one of the key macroscopic quantum effects, which can be used for studying the quantum-to-classical 
transition and improving the precision of quantum measurements26,39–41. So the mechanical squeezing attracts 
more and more attentions. For example, in 2011, Liao et al.21 proposed a scheme to generate mechanical squeez-
ing in a optomechanical cavity. They showed that parametric resonance could be reached approximately by 
periodically modulating the driving field amplitude at a frequency matching the frequency shift of the mirror, 
leading to an efficient generation of squeezing. In 2013, Kronwald et al.22 proposed a scheme to generate mechan-
ical squeezing by driving the optomechanical cavity with two controllable lasers with differing amplitudes. 
The scheme utilized a dissipative mechanism with the driven cavity acting as an engineered reservoir. In 2015,  
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Lü et al.23 proposed a scheme to generate steady-state mechanical squeezing via mechanical nonlinearity, which 
showed that squeezing could be achieved by the joint effect of nonlinearity-induced parametric amplification and 
cavity cooling process.

Traditionally and generally, the decay rate of cavity field, which is a dissipative factor in optomechanical sys-
tem, is considered to have negative effect on the performance of quantum manipulation of mechanical modes. 
With the development of the hybrid system42, here we propose a method to generate steady-state mechanical 
squeezing in a hybrid atom-optomechanical system where the atomic ensemble is trapped in the optical cavity 
consisting of a fixed mirror and a movable mirror. The coherently driving on the cavity mode is a monochromatic 
laser source which can generate strong optomechanical coupling between the mechanical and cavity modes. We 
show that, via the mechanical nonlinearity and cavity cooling process in transformed frame, the steady-state 
mechanical squeezing can be successfully and effectively generated in a highly dissipative cavity. Different with 
ref. 23, our scheme is feasible for Low Q cavity via the coherent auxiliary atomic ensemble interfering.

The paper is organized as follows: In Section II, we describe the model of a hybrid atom-optomechanical sys-
tem and derive the effective coupling between the atomic ensemble and the mechanical resonator. In Section III, 
we engineer the mechanical squeezing and derive the analytical variance of the displacement quadrature of the 
movable mirror in the steady-state. In Section IV, we study the variance of mechanical mode with the large decay 
rate of cavity by numerical simulations method and discuss the validity of the scheme in the highly and lowly 
dissipative cavities. A conclusion is given in Section V.

Results
Basic model. We consider a hybrid atom-optomechanical system depicted in Fig. 1, in which N identical 
two-level atoms are trapped in the optical cavity consisting of a fixed mirror and a movable mirror. The total 
Hamiltonian H =  H0 +  Hpump, which describes the hybrid system, consists of three parts, which reads ( =  1), 
respectively,
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The part H0 accounts for the free Hamiltonian of the cavity mode (with frequency ωa and decay rate κ), the 
atoms (with transition frequency ωc and linewidth γc), and the mechanical resonator (with frequency ωm and 
damping rate γm). Here a(a†) is the bosonic annihilation (creation) operator of the optical cavity mode, b(b†) is 
the bosonic annihilation (creation) operator of the mechanical mode, and σ= ∑ =S i

N
z
i

z 1  is the collective z–spin 
operator of the atoms. The last term of H0 describes the cubic nonlinearity of the mechanical resonator with 
amplitude η. For mechanical resonator in the gigahertz range, the intrinsic nonlinearity is usually very weak with 
nonlinear amplitude smaller than 10−15 ωm. We can obtain a strong nonlinearity through coupling the mechanical 
mode to an ancillary system43,44, such as the nonlinear amplitude of η =  10−4 ωm can be obtained when we couple 
the mechanical resonator to an external qubit23.

The part HI accounts for the interaction Hamiltonian consisting of the atom-field interaction and the optom-
echanical interaction derived from the radiation pressures. Where = ∑ =g g N/i

N i
0 1 0  represents the averaged 

atom-field coupling strength with g i
0 being the coupling strength between the ith atom and single-photon, and g 

is the single-photon optomechanical coupling strength.
The part Hpump accounts for the external driving laser with frequency ωd used to coherently pump the cavity 

mode. The driving strength κ ωΩ = P2 /( )d d  is related to the input laser power P, the mechanical resonator 
frequency ωd, and the decay rate of cavity κ.

The spin operators S− (S+) of the atomic ensemble can be transformed to a collective bosonic operator c(c†) in 
the Holstein-Primakoff representation10,11,25,
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Figure 1. Schematic diagram of a hybrid atom-optomechanical system with a cloud of identical two-level 
atoms trapped in an optical cavity consisting of a fixed mirror and a movable mirror. The cavity mode is 
coherently driven by an input laser with frequency ωd.
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where operators c and c† obey the standard boson commutator [c, c†] =  1. Under the conditions of sufficiently 
large atom number N and weak atom-photon coupling g0, the total Hamiltonian in the frame rotating at input 
laser frequency ωd is written as

δ ω η′ = − − ∆ + + + + +

− + + Ω +

† † † † † †
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H a a c c b b b b G a c ac
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where δa =  ωd −  ωa, Δc =  ωd −  ωc, and =G g N0 0 . Applying a displacement transformation to linearize the 
Hamiltonian, a →  α +  a, b →  β +  b, c →  ξ +  c, where α, β, and ξ are c numbers denoting the steady-state ampli-
tude of the cavity, mechanical, and collective atomic modes, which are derived by solving the following 
equations:
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One can see that when the driving power P is in the microwatt range, the amplitudes of the cavity and mechan-
ical modes satisfy the relationships: |α|, |β| ≫  1, as shown in Fig. 2. And the amplitudes of the cavity and mechan-
ical modes increase with increasing the driving power. For example, at the point of the driving power P =  49 mW, 
|α| ≃  670 and β ≃  330 can be obtained, respectively.

After the standard linearization procedure, the linearized Hamiltonian is given by
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And the Hamiltonian of the nonlinear terms, which come from the radiation-pressure interaction and the 
cubic nonlinearity, is written as
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2 3

Under the conditions of g, η ≪  Λ , G, G0, the nonlinear terms in HNL can be neglected because they are much 
weaker than the linear terms in HL.

Considering the effect of the thermal environment and basing on the linearized Hamiltonian HL, the quantum 
Langevin equations for the system are written as
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Figure 2. The steady-state amplitudes |α| and β versus the driving power P. The parameters are chosen to be 
ωm/(2π) =  5 MHz, ωa/(2π) =  500 THz, δa =  400 ωm, Δc =  − 0.9 ωm, G0 =  6.3 ωm, g =  10−3 ωm, η =  10−4 ωm, 
κ =  10 ωm, γc =  0.1 ωm, γm =  10−6 ωm, and κ ωΩ = P2 /( )d d .
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where the corresponding noise operators ain, bin, and cin satisfy correlations ′ = ′ =† †a t a t c t c t( ) ( ) ( ) ( )in in in in  
δ − ′ ′ = ′ =† †t t a t a t c t c t( ), ( ) ( ) ( ) ( ) 0,in in in in δ δ′ = + − ′ ′ = − ′† †b t b t n t t b t b t n t t( ) ( ) ( 1) ( ), ( ) ( ) ( )in in in inth th , 
where ω= − −n k T{exp[ /( )] 1}m Bth

1  is the mean thermal excitation number of bath of the movable mirror at 
temperature T, kB is the Boltzmann constant, and one recovers a Markovian process. Since the decay rate of cavity, 
κ, is much larger than the linewidth of the atoms, and under the conditions ω∆ ∆� �( , ),a c m  
ω κ γ ω ω γΛ� � �� 2 , ( , ),m c m m m, we can approximatively obtain11
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where Ain(t) denotes the modified noise term. The detailed derivation is displayed in methods part. Neglecting 
the fast decaying term which contains exp(− κt/2) and substituting Eq. (9) into Eq. (8), we can obtain the effective 
coupling between the mechanical mode b and collective atoms mode c, which can be written as
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where Bin and Cin denote the modified noise terms, the effective parameters of the mechanical frequency, optom-
echanical coupling strength, detuning, damping rate, and coefficients of bilinear terms are given by
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Thus the effective Hamiltonian is rewritten as

ω= −∆ + ′ − + + + Λ′ + .
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When considering the system-reservoir interaction, which results in the dissipations of the system, the full 
dynamics of the effective system is described by the master equation

  ρ ρ γ ρ γ ρ γ ρ= − + + + +
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where  ρ ρ ρ ρ= − +† † †o o o o o o o[ ] ( )/2 is the standard Lindblad operators, γeff is the effective damping rate of 
the mode c, and nth is the average phonon number in thermal equilibrium.

Engineering the mechanical squeezing. Applying the unitary transformation S(ζ) =  exp[ζ(b2 −  b†2)/2], 
which is the single-mode squeezing operator with the squeezing parameter
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to the total system. Then the transformed effective Hamiltonian becomes
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where ω ′m is the transformed effective mechanical frequency and G′ is the transformed effective optomechanical 
coupling. The transformed Hamiltonian is a standard cavity cooling Hamiltonian and the best cooling in the 
transformed system is at the optimal detuning ω∆ = − ′meff . In the transformed frame, the master equation 
ρ′  =  S†(ζ)ρS(ζ) of system-reservoir interaction can be approximatively written as23
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which is the transformed master equation and can achieve the cooling process. Here ζ ζ′ = +n n cosh (2 ) sinh ( )th th
2 , 

is the transformed thermal phonon number. The steady-state density matrix ρ can be obtained by solving the 
master equation Eq. (13) numerically. Defining the displacement quadrature X =  b +  b† for the mechanical mode, 
the steady-state variance of X is given by 〈 δX2〉  =  〈 X2〉  −  〈 X〉 2, which can be derived as

δ = ′ + ζ−X n e(2 1) , (18)2
eff

2

where ′neff  is the steady-state phonon number of the transformed system. When the best cooling (at the optimal 
detuning ω ω ω∆ = − ′ = − + Λ′1 4 /m m meff ) in the transformed system ′ =n 0eff  is achieved by the cooling pro-
cess, the steady-state variance 〈 δX2〉  =  e−2ζ approaches the minimum value.

Discussion
In this section, we solve the master equation numerically to calculate the steady-state variance of the mechanical 
displacement quadrature X. Firstly, we show the numerical results for the time evolution of the variance with the 
Hamiltonian HL and Heff as shown in Fig. 3. We can find that the variance will be stable after time evolution. The 
relationship between the steady-state variance and effective detuning is shown in Fig. 4. One can see from Fig. 4 that 
the minimum value of variance can be achieved at the optimal detuning point of ω∆ = − ′meff , which comes from 
the standard cavity cooling Hamiltonian in Eq. (15) under the transformed frame. The change rate of variance on the 
effective detuning increases with increasing the average phonon number nth. In the process of numerical simulation, 
the parameters are set to be ωm/(2π) =  5 MHz, ωa/(2π) =  500 THz, δa =  400 ωm, Δc =  − 0.9 ωm, G0 =  6.3 ωm, g =  10−3 ωm, 
η =  10−4 ωm, κ =  10 ωm, γc =  0.1 ωm, γm =  10−6 ωm, κ ωΩ = P2 /( )d d , and =n 1, 10, 50th  respectively, which satisfy 
the conditions ω ω κ γ ω ω γ κ γ η γ α β∆ ∆ Λ� � � � � �� �( , ), 2 , ( , ), , ( , , ) , ( , ) 1a c m m c m m m c m , 
and ηΛ G G g( , , ) ( , )0 . The average phonon number =n 50th  corresponds to the temperature T =  12 mK. At the 
optimal detuning point ω ω ω∆ = − ′ = − + Λ′1 4 /m m meff

, the steady-state variance of the displacement quadra-
ture is 〈 δX2〉  =  e−2ζ =  0.65. However, one can see from Fig. 4 that we need a more precise control for Δeff to achieve the 
optimal steady-state squeezing of the mechanical resonator with the temperature rising constantly.

In addition, considering the situation of the smaller cavity decay rate κ =  0.1 ωm. The relationship between the 
steady-state amplitudes (|α|, |β|) and driving power P is shown in Fig. 5 and the relationship between the 
steady-state variance and effective detuning is shown in Fig. 6 (here we calculate the steady-state variance of the 
mechanical displacement quadrature X numerically by setting P =  5 mW, |α| =  680, and β =  330), respectively. At 
the optimal detuning point ω ω ω∆ = − ′ = − + Λ′1 4 /m m meff , the steady-state variance of the displacement 
quadrature is 〈 δX2〉  =  e−2ζ =  0.65.

In the above, we study the steady-state squeezing of the mechanical resonator in a hybrid atom-optomechanical 
system and illustrate that it can be effectively generated in both the highly and lowly dissipative cavities. The 
steady-state squeezing can be generated at the optimal detuning point by adjusting the parameters appropriately. 
Furthermore, the generated steady-state mechanical squeezing in the present scheme can be detected based on 
the method proposed in refs 23,45. As illustrated in refs 23,45, for detecting the steady-state mechanical squeez-
ing, we can measure the position and the momentum quadratures of the mechanical resonator via homodyning 
detection of the output field of another auxiliary cavity mode with an appropriate phase, and the auxiliary cavity is 
driven by another pump laser field under a much weaker intracavity field so that its backaction on the mechanical 

Figure 3. The variance of the displacement quadrature X relates to the time evolution with the Hamiltonian 
HL and Heff. 
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mode can be neglected. Furthermore, to achieve the steady-state mechanical squeezing, the number of atoms N 
should be a large number and approximate million. This might be a high challenge in present experiment of the 
macroscopic objects.

In conclusion, we have proposed a scheme for generating the steady-state squeezing of the mechanical res-
onator in a hybrid atom-optomechanical system via the mechanical nonlinearity and cavity cooling process in 
transformed frame. The atomic ensemble is trapped in the optomechanical cavity, which is driven by an exter-
nal monochrome laser. The effective coupling between the mechanical resonator and the atomic ensemble can 
be obtained by reducing the cavity mode in the case of large detuning. We simulate the steady-state variance 
of the mechanical displacement quadrature numerically at a determinate laser driving power and find that the 

Figure 4. The variance of the displacement quadrature X relates to the effective detuning Δeff by solving the 
master equation numerically. Here Δeff can be tuned individually by varying Δc, the average phonon number 
nth is set to be 1, 10, and 50 respectively, and the other parameters are chosen to be the same as in Fig. 2.

Figure 5. The steady-state amplitudes |α| and β versus the driving power P. The cavity decay rate is chosen 
to be κ =  0.1ωm.

Figure 6. The variance of the mechanical displacement quadrature X relates to the effective detuning Δeff by 
solving the master equation numerically. 
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steady-state variance has the minimum value at the optimal detuning point, where the effective detuning is in 
resonance with the effective transformed mechanical frequency.

Methods
The effective atom-mechanical interaction. To derive the effective coupling between the mechanical 
resonator and atomic ensemble, the quantum Langevin equations Eq. (8) can be formally integrated as
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Since the decay rate of cavity κ is much larger than the linewidth of atoms and the damping rate of resonator, and 
under the case of ω Λ�� 2m , the dynamics of mode b and c are only slightly affected by mode a. We obtain the 
approximated expressions
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where ′B t( )in  and ′C t( )in  denote the nosie terms. By Plugging Eq. (20) into the first equation of Eq. (19), we obtain
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where ′Ain denote the noise term. Under the conditions of ω∆ ∆� �( , )a c m  and κ γ ω ( , )c m , we obtain
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which is same as Eq. (9).
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