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Restoring electronic coherence/
decoherence for a trajectory-based 
nonadiabatic molecular dynamics
Chaoyuan Zhu1,2

By utilizing the time-independent semiclassical phase integral, we obtained modified coupled time-
dependent Schrödinger equations that restore coherences and induce decoherences within original 
simple trajectory-based nonadiabatic molecular dynamic algorithms. Nonadiabatic transition 
probabilities simulated from both Tully’s fewest switches and semiclassical Ehrenfest algorithms follow 
exact quantum electronic oscillations and amplitudes for three out of the four well-known model 
systems. Within the present theory, nonadiabatic transitions estimated from statistical ensemble of 
trajectories accurately follow those of the modified electronic wave functions. The present theory can 
be immediately applied to the molecular dynamic simulations of photochemical and photophysical 
processes involving electronic excited states.

A mixed quantum-classical dynamics starts from solving electronic adiabatic potential energy surfaces Uj(R) and 
nonadiabatic coupling vectors dij(R) by applying various ab initio quantum chemistry methods. Then, the nuclear 
motion is represented by classical trajectories computed by numerical integration of Newton’s equations. The 
nonadiabatic transitions along the classical trajectories are described by the coupled time-dependent Schrödinger 
equations in terms of the density matrix representation1,

 ∑ρ ρ ρ ρ= − − ⋅ − ⋅ 


i U U iR R R d R R d R[ ( ) ( )] ( [ ( )] [ ( )]),

(1)kj kj k j
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where R is an N-dimensional vector of nuclear coordinates and an overdot denotes a time derivative 
(N-dimensional velocity) with the sum over all adiabatic electronic states. Tully’s fewest switches1 and the sem-
iclassical Ehrenfest2 algorithms, which are the two representative methods, provide a powerful tool to perform 
nonadiabatic molecular dynamics simulations with simple trajectory-based approaches. These trajectory-based 
nonadiabatic molecular dynamics methods with various modified versions have been successfully applied to 
photochemical and photophysical related molecular spectra and reaction dynamics for large systems3–17. Tully’s 
fewest switches method propagates nonadiabatic trajectory on each adiabatic electronic state with trajectory sur-
face hopping from one adiabatic potential energy surface to another. The semiclassical Ehrenfest method propa-
gates nonadiabatic trajectory on averaged adiabatic electronic states in which a single mean-field potential energy 
surface governs nuclear motion. Both methods suffer an overcoherence problem in electronic wavefunction (or 
density matrix ρkj in eq. (1)) when nonadiabatic trajectory passes through non-zero region of nonadiabatic cou-
pling vector. In order to reproduce exact coherent motion of quantum wavefunction propagating on multiple 
adiabatic electronic states, the semiclassical density matrix described by eq. (1) should decohere. Numerous algo-
rithmic coherence/decoherence schemes in the literature have been designed for nonadiabatic trajectory coupled 
with electronic motion18–32. All of these approaches can improve decoherence/coherence effects of the electronic 
wavefunction to some extent but at either high computational cost or through the use of complicated algorithms.

Results
Theory. In order to preserve simplicity of trajectory-based algorithms for large-scale nonadiabatic molecular 
dynamic simulations, we propose both simple and accurate scheme to restore electronic coherence/decoherence 
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in a unified way for both Tully’s fewest switches and the semiclassical Ehrenfest methods. Let us exam solution of 
eq. (1) in the regions where nonadiabatic coupling vector is equal to zero, we have

∫ρ ρ= − − .{ }i U U dtR R(0)exp [ ( ) ( )]
(2)kj kj

t
k j

0

Let us compare the phase integral in eq.  (2) with the conventional time-independent Jeffreys- 
Wentzel-Kramers-Brillouin33 (JWKB) semiclassical phase integral
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where μ is reduced mass, E is total energy and T =  (E − U) is kinetic energy. From trajectory-based approach, 
R in eq. (3) can be considered as a classical trajectory propagating along a one-dimensional curved space. 
Alternatively, we can obtain the same relation as
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in which U(R) is an effective potential energy surface for nonadiabatic trajectory. For Tully’s fewest switches 
approach, U(R) is a single adiabatic potential energy surface Uj(R) or Uk(R) on which trajectory is propagating, 
and for semiclassical Ehrenfest approach, U(R) is defined as an average potential energy surface

∑ρ= .
=

U U RR( ) ( )
(5)i

N

ii i
1

Finally, we obtain modified coupled time-dependent Schrödinger equations,
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Equation (4) shows that time-dependent and time-independent approaches have the same limit in the 
high-energy regime. We can expect that both original and modified coupled Schrödinger equations should agree 
each other for the high-energy regime, namely E − U ≫  |Uk(R) − Uj (R)|).

Using a similar approach to the semicalssical Ehrenfest method, the symmetrical windowing quasi-classical 
approach27 (that is as simple as the present theory) restores coherence/decoherence pretty well with window-
ing parameter γ  =  0.366. However, numerical tests in Supplementary Note 1 show that the present modified 
Ehrenfest approach is slightly better than the symmetrical windowing quasi-classical approach. Using a simi-
lar approach to the Tully’s fewest switches trajectory surface hopping method, the Gaussian wavepackets phase 
correlation method28 (that is more complicated than the present theory) restores coherence/decoherence in a 
similar way as the present one, and actually two are the same in one-dimensional case. However, the two are 
different in multidimensional case, their diagonal element in Hamiltonian does not approach limit Uk(R)−Uj (R) 
in the high-energy regime, and their decoherent term (p1 · p2/m) requires calculation of classical momentum on 
two adiabatic potential energy surfaces simultaneously. Numerical tests in Supplementary Note 3 show that the 
present modified the Tully’s fewest switches approach can nicely reproduce quantum oscillation for the certain 
two-dimensional model system.

We select four well-known model problems in the following to perform both semiclassical Ehrenfest and 
Tully’s fewest switches calculations from original eq. (1) and modified eq. (6). Model 1 describes the electronic 
transitions in the non-crossing case of adiabatic potential energy surfaces initially developed by Rosen and 
Zener34. Model 2 and Model 3 describe the electronic transitions in the avoided-crossing case of adiabatic poten-
tial energy surfaces initially developed by Landau35, Zener36 and Stückelberg37. Model 4 describes the electronic 
transitions in the crossing case with the peculiar degeneracy of adiabatic potential energy surfaces initially devel-
oped by Renner37,38. All these pioneer studies focused on developing analytical formula for nonadiabatic transi-
tion probability from various mathematical methods nicely documented by Child39. The present study focuses 
on simulating nonadiabatic transition probability for all cases numerically solving original eq. (1) and modified 
eq. (6).

We compute the overall nonadiabatic transition probability defined as the probability of starting on the lower 
adiabatic potential energy surface at x =  −∞  and finishing on the upper adiabatic potential energy surface at 
x =  + ∞ . Accurate quantum mechanical calculations for the four one-dimensional two-state models are per-
formed using the conventional time independent close-coupling method. Semiclassical calculations are per-
formed by using the fourth-order Runge–Kutta method for numerically integrating the trajectories as well as 
coupled time-dependent Schrödinger equations. For a given total energy, the Tully’s fewest switches method 
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unitizes 10,000 sampling trajectories while the Ehrenfest semiclassical method needs only one sampling trajec-
tory. The reduced mass is chosen to be 2000 au for all four model systems.

Dual Rosen-Zener-Demkov non-crossings. Model 1 is defined by two parallel diabatic potentials with 
diabatic coupling expressed in terms of two Gaussian functions:

=
=

= = − − + − +

V x
V x A
V x V x B C x x C x x

( ) 0,
( ) ,
( ) ( ) [exp( ( ) ) exp( ( ) )] (7)
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22
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2

0
2

with the parameters chosen to be A =  B =  0.025 Hartree, x0 =  3.0 Bohr, and C =  0.7 Bohr−2. This model can induce 
electronic coherence from overlapping of two semiclassical wavepackets in between two non-crossing peaks at 
x =  ± 3.0 Bohr as shown in Fig. 1(a). The results simulated by Tully’s fewest switches (see Fig. 2(a)) and semiclassical 
Ehrenfest (see Fig. 2(b)) within the modified semiclassical eq. (6) follow exact quantum oscillations and amplitudes 
of the overall nonadiabatic transition probabilities very well. The results simulated from the original semiclassical 
eq. (1) cannot reproduce exact quantum results, and besides Tully’s fewest switches and semiclassical Ehrenfest 
methods do not agree each other for oscillations and amplitudes of the overall nonadiabatic transition probabilities.

Dual Landau-Zener-Stückelberg avoided-crossings. Model 2 is defined by two diabatic potentials 
having dual crossings given in the diabatic representation:

=
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with the parameters chosen to be A =  0.1 Hartree, B =  0.28 Bohr−2, E0 =  0.03 Hartree, C =  0.01 Hartree, and 
D =  0.06 Bohr−2. This model can induce different electronic coherence from overlapping of two semiclassical 
wavepackets in between two avoided-crossings at x =  ± 2.07 Bohr as shown in Fig. 1(b). The results simulated by 
Tully’s fewest switches (see Fig. 3(a)) and semiclassical Ehrenfest (see Fig. 3(b)) within the modified semiclassi-
cal eq. (6) follow exact quantum oscillations and amplitudes of the overall nonadiabatic transition probabilities 
very well. The results simulated from the original semiclassical eq. (1) cannot reproduce exact quantum results, 
and besides Tully’s fewest switches and semiclassical Ehrenfest methods show very different oscillations and 
amplitudes of the overall nonadiabatic transition probabilities. This model system has been well studied in the 

Figure 1. Potential energy curves for (a) Model1, (b) Model 2 and (c) Model 3. Dashed (solid) lines represent 
diabatic (adiabatic) potential energy curves.
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Figure 2. Overall nonadiabatic transition probabilities for Model 1 are calculated from (a) Tully’s fewest 
switches and (b) semiclassical Ehrenfest methods. Dashed lines represent original semiclassical results (see 
eq. (1)), open circles represent the present modified semiclassical results (see eq. (6)), and solid lines represent 
exact quantum results.

Figure 3. The same as Fig. 2 except for Model 2. (a) Tully’s fewest switches and (b) semiclassical Ehrenfest 
methods.
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literatures for the subject of decoherence problem. We show in Supplementary Note 2 that if we shrink E0 =  0.015 
in eq. (8) by well satisfying (E − U) ≫  U2(R) − U1 (R) =  E0, the overall nonadiabatic transition probabilities cal-
culated from both original eq. (1) and the present eq. (6) all agree with exact quantum results in the high-energy 
regime. However, in low energy region, the present theory (see Supplementary Figure S3) works very well but 
the original one (see Supplementary Figure S4) fails. Two statistical averaged populations based on number of 
trajectories and electronic wavefunction agree each other for Tully’s fewest switches approach with either equa-
tions (1) or (6).

Simple avoided crossing. Model 3 is defined by two diabatic potentials having one simple crossing given 
in the diabatic representation:

= − − >

= − − <
= −

= = −

V x A Bx x
V x A Bx x
V x V x
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( ) [1 exp( )], 0,
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with A =  C =  0.01 Hartree, B =  1.6 Bohr−1, and D =  1.0 Bohr−2. One simple diabatic crossing is appeared at x =  0 
as shown in Fig. 1(c). However, the strong Gaussian-type diabatic coupling can produce two vague avoided cross-
ings around x =  ± 1.0 Bohr, and thus it can induce small electronic coherence at low energies as shown in Fig. 4 
The results simulated by Tully’s fewest switches (see Fig. 4(a)) and semiclassical Ehrenfest (see Fig. 4(b)) within the 
modified semiclassical eq. (6) can well reproduce this small oscillation and amplitudes of nonadiabatic transition 
probabilities. The results simulated from the original semiclassical eq. (1) cannot well reproduce this small oscil-
lation, although Tully’s fewest switches and semiclassical Ehrenfest methods almost agree with the exact quantum 
amplitudes of the overall nonadiabatic transition probabilities for high energies, but two are not exactly the same.

Renner-Teller crossing. Model 4 is defined by two diabatic potentials having same as V11(x) and V22(x) in 
eq. (9). However, diabatic coupling is changed as

= = −V x V x Cx Dx( ) ( ) exp( ), (10)12 21
2 2

in which diabatic coupling approaches zero as x2 at diabatic crossing point x →  0. This is typical Renner-Teller 
coupling40. Potential parameters are chosen to be A =  0.005, C =  0.01 Hartree, B =  1.6 Bohr−1, and D =  1.0 Bohr−2. 
Due to significant degeneracy of two adiabatic potential energy surfaces at crossing zone, the both original and 

Figure 4. The same as Fig. 2 except for Model 3. (a) Tully’s fewest switches and (b) semiclassical Ehrenfest 
methods.
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modified methods cannot follow exact calculation of the overall nonadiabatic transition probability as shown in 
Fig. 5. This means that the restoring term in eq. (6) is still not good enough for describing electronic transitions 
in significant degenerate case and this term basically comes from approximation of kinetic energy operator in 
nuclear degree of freedom. Further study should be carried out in the near future.

Concluding remarks. In three out of the four model systems given above, we have shown that the results 
simulated from the modified semiclassical eq. (6) follow exact electronic coherence as well as amplitude of the 
overall nonadiabatic transition probabilities, and both the semiclassical Ehrenfest and Tully’s fewest switches 
methods agree with each other and even for small oscillation in Model 3. On the other hand, the results simulated 
from the original semiclassical eq. (1) cannot follow exact electronic coherence, and besides the semiclassical 
Ehrenfest (Tully’s fewest switches) method shows slight greater (smaller) amplitude of the overall nonadiabatic 
transition probabilities than exact quantum results. This can be seen clearly from Model 3 in the region of  
monotonically increasing of the overall nonadiabatic transition probabilities against energy. More tests  
have been performed with changes of potential parameters, and conclusion is the same for the modified  
coupled Schrödinger equations. The present modified eq.  (6) only modifies diagonal element by 

− → − − − −U U E U E U E UR R R R R([ ( ) ( )] 2 ( ) ( ( ) ( ) ))k j j k  in eq. (1) while preserving original sim-
plicity of Tully’s fewest switches and semiclassical Ehrenfest algorithms. For instance, detailed balance behavior 
in the present Tully’s fewest switches should follow Tully’s fewest switches and global flux surface hopping41, while 
the present semiclassical Ehrenfest should follow detailed balance of symmetrical quasi-classical treatment of the 
Meyer-Miller (MM) model42. In the multi-state nonadiabatic molecular dynamic simulation, the global flux sur-
face hopping43 shows promising accuracy in comparing Tully’s state-to-state surface hopping. This can be imme-
diately applied to the present coupled electronic Schrödinger eq. (6) to perform multi-state nonadiabatic 
molecular dynamic simulation. However, it should be noticed that when two adiabatic potential energy surfaces 
significantly degenerate at crossing zone with Renner-Teller coupling, the present modified method still fails. 
Otherwise, we conclude that in the present theory both semiclassical Ehrenfest and Tully’s fewest switches algo-
rithms are shown to work equally well and the both follow electronic coherence/decoherence the same as exact 
quantum results. The present theory can be immediately applied to nonadiabatic molecular dynamic simulation 
for photochemical and photophysical processes involving with electronic excited states.

Figure 5. The same as Fig. 2 except for Model 4. (a) Tully’s fewest switches and (b) semiclassical Ehrenfest 
methods.
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