Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973–2013


PM2.5 has been given special concern in recent years when the air quality monitoring station started recording. However, long-term PM2.5 concentration dynamic analysis cannot be taken with the limited observations. We therefore estimated the PM2.5 concentration using meteorological visibility data in Beijing. We found that 71 ± 17% of PM10 were PM2.5, which contributed to visibility impairment (y = 332.26e−0.232x; R2 = 0.75, P < 0.05). We then reconstructed a time series of annual PM2.5 from 1973 to 2013 and examined its relationship with urbanization by indicators of population, gross domestic production (GDP), energy consumption and number of vehicles. Concluded that 1) Meteorological conditions were not the major cause of PM2.5 increase from 1973 to 2013; 2) With population and GDP growth, PM2.5 increased significantly (R2 = 0.5917, P < 0.05; R2 = 0.5426, P < 0.05); 3) Intensive human activity could change air quality in a short period, as observed changes in the correlations of PM2.5 concentration with energy consumption and number of vehicles before and after 2004, respectively. The success of this research provides an easy way in reconstructing long-term PM2.5 concentration with limited PM2.5 observation and meteorological visibility and insight the impact of urbanization on air quality.


Due to rapid urbanization in the last century, more than half the world’s human population now live in cities1. Human activities, especially in large cities, have led to an improvement in material wealth and a higher standard of living, but have also caused severe environmental problems such as air pollution. This is particularly true in the rapidly developing mega cities of developing countries2,3.

Fine particulate matter is a major air pollutant, which causes visibility degradation and is a toxic component that threatens public health in many large cities4,5,6. Generally, PM2.5 concentrations can be monitored with an air quality monitoring network, remote sensing images and meteorological visibility records7. Air quality networks have long been established in developed countries and in recent years have been established in a limited number of large cities in developing countries where rapid urbanization has negatively impacted urban air quality2. Remote sensing has been paid special concern on PM2.5 retrieval; however, it still needs further algorithmic approaches to improve its retrieval accuracy and remains limited in regards to long-term series image availability7. Meteorological visibility data, which has been available since the 1970 s in most major cities of the world, provides another way to determine PM2.5 concentrations by calibrating the relationship between visibility and PM2.5 observation records8,9.

PM2.5 concentration is a typical indicator for urban air quality and is impacted by rapid urbanization progress. The present research utilized ground measurements of PM2.5 concentration, meteorological visibility data and urbanization indicators 1) to determine the correlation between visibility and PM2.5 concentration; and 2) to quantify PM2.5 concentration dynamics and its relationship with urbanization in Beijing, a typical large Chinese city.


Results showed that PM2.5 (71 ± 17%) was the major component of PM10 in Beijing by analyzed with 223 days under stable meteorological conditions (Fig. 1A). In addition, the increase in PM2.5 contributed to visibility impairment significantly (R2 = 0.75, P < 0.05; Fig. 1B). Annual mean visibility decreased in Beijing from 1973 to 2013 (Fig. 2). Moreover, annual mean visibility on days with only wind speeds greater than 4 m/s (V_WS4) were greater than other conditions, indicating strong wind is the major force to remove the air pollutants.

Figure 1
figure 1

Proportion of PM2.5 in PM10 (A) and relationship between PM2.5 concentration and visibility (B) on stable meteorological days.

Figure 2
figure 2

Visibility in Beijing from 1973 to 2012.

V_Original is the original annual mean visibility; V_WS4 is annual mean visibility on days with average wind speeds >4 m/s; V_FRS is annual mean visibility on days with fog, rain, or snow; V_D_WS4 is annual mean visibility with wind speed (>4 m/s) days eliminated; V_D_FRS is annual mean visibility, with fog, rain, or snow days eliminated; V_D_WS4_FRS is annual mean visibility, with fog, rain, snow, or wind speed (>4 m/s) days eliminated.

The annual mean PM2.5 concentration under stable meteorological condition increased significantly (R2 = 0.6325, P < 0.05; Fig. 3), with wind speed showed a “U-shape” trend which is relative stable, thus, indicated human activities would be the major reason that result in the increase of PM2.5 concentration(Fig. 3). The seasonal mean increase of PM2.5 concentration was increased stronger in summer (slope = 1.0269) and autumn (slope = 0.9614) than that in spring (slope = 0.5282) and winter (slope = 0.2342). Moreover, PM2.5 concentration increased largest in summer, but no significant trend was observed in winter during 1973–2013.

Figure 3
figure 3

Annual and seasonal mean PM2.5 concentrations and wind speeds in Beijing from 1973 to 2013 on stable meteorological days.

Dark red and blue dots represent annual PM2.5 concentration and wind speed, respectively. Winter includes January, February and the previous December; Spring includes March, April and May; Summer includes June, July and August; and Autumn includes September, October and November.

Urbanization indicators were significantly correlated with PM2.5 concentration at Beijing. Both population (R2 = 0.5917, P < 0.05; Fig. 4A) and GDP (R2 = 0.5426, P < 0.05; Fig. 4B) were positively correlated with PM2.5 concentration during 1973–2013, indicating the increasing human activities is highly attribute to the increase of PM2.5 concentration. Energy consumption also could contribute to the increase the PM2.5 concentration (Fig. 4C). The slopes between PM2.5 concentration and energy consumption were changed after 2004. While, similar correlation was also obtained between PM2.5 concentration and vehicle amount before and after 2004 (Fig. 4D).

Figure 4
figure 4

Correlation between urbanization indicators (Population (A) from 1973 to 2011, GDP (B) from 1973 to 2011, energy consumption (C) from 1980 to 2010 and number of vehicles (D) from 1978 to 2013) and PM2.5 concentration on stable meteorological days in Beijing.


PM2.5 is an important component in PM10. However, the ratio of PM2.5 to PM10 varies among different areas, for example, 33% in Jeddah City, Saudi Arabia and between 45–60% in Greece10,11,12. PM2.5 can easily enter the human respiratory system and cause serious health impacts, while larger particles are not able to penetrate as deeply and therefore cause less serious health impacts6. Thus, at the same particulate pollution levels, higher ratios of PM2.5 to PM10 indicate the potential for greater negative impacts on human health. In the present study, the ratio in Beijing was found to be 71% ± 17%, indicating the probability of significant impact on health. Furthermore, both PM10 and PM2.5 are the major course of visibility impairment. If PM2.5 is not the major component in PM10, our method cannot be applied, thus the accuracy of long-term PM2.5 concentration is highly correlated with the consistency of the correlation between PM2.5 concentration and visibility during the study period. The particulate data collected in this research was only available for a year and further calibration of the ratio and the relationship between PM2.5 concentration and visibility at longer time scale is strongly suggested to improve the accuracy in determining long-term PM2.5 dynamics at different cities.

The negative impacts of urbanization on the environment, especially on air, have been given special attention in recent years. For instance, the Environmental Kuznets Curve (EKC) found an inverse U-type relationship between the urban eco-environment and the economy, with the turning point of the U-curve normally at a per capita income of $8000. However, we did not observe an inverse U-type relationship between the economy and PM2.5 concentration, indicating that Beijing may not have reached the turning point in the EKC U-type curve. The relationship between energy consumption, the number of vehicles and PM2.5 concentration (Fig. 4C,D) also indicated that the economy was not the only influence on the air environment. Different relationships were observed before and after 2004, for example, indicating the strong impact of human activity on environmental improvement.

Urban systems are not naturally developed, but are always influenced by human activities1. Intense human activity can change the urban environment over a short period. This was also observed in this work as the relationship between PM2.5 and urbanization indicators showed. At beginning, Beijing’s development was highly depended on heavy industries that made the GDP increase while polluted the atmospheric environment, however, the policy was changed thanks to the Olympic Games and its related environmental protection activity13. After Beijing was selected as the host city of the 2008 Olympic Games, several environmental protection policies were established, including the relocation of heavy industry to outside of Beijing. These activities, which took great effect from 2004, contributed to the reduction in the concentration of PM2.5. After the improvement in air quality in 2004, however, the rapid increase in the number of vehicles provided a new source of PM2.5, with the significant relationship observed indicating the strong negative impact of vehicle emissions on urban air quality after 2004 (R2 = 0.9218, P < 0.05; Fig. 4D). Thus, the relationship between PM2.5 concentration and urbanization indicators showed increase, decrease and increase again from 1973 to 2013.

Similar to other mega cities in China, Beijing will continue its rapid urbanization for another decade as part of the National New-type Urbanization Plan stratagem (2014 to 2020) designed by the Chinese Central Government. From now until 2020, the national urbanization rate is planned to reach around 60% on the basis of the 52.6% achieved in 2012. Such rapid increase will bring more intensive social and economic activities, which will directly affect the urban environment. Thus, the development of better strategies for the control and reduction of air pollution without compromising economic growth is essential for China’s continued urbanization.

Materials and Methods

Daily visibility and meteorological data

Daily visibility, wind speed at 10 m height and indicators for occurrences of fog, rain and snow were obtained from Global Summary of the Day from the National Climate Data Center of the U.S. Department of Commerce. These data have been recorded in Beijing since 1973, allowing long-term series analysis of visibility in order to illustrate particulate pollution dynamics in the city.

Social-economic data

Data on the annual urban population, gross domestic production (GDP), energy consumption and numbers of vehicles in Beijing were collected from the Beijing 60 Yearbook and were further correlated with the annual PM2.5 dynamics to understand the impact of urbanization on urban air quality in a typical Chinese megacity.

Daily PM2.5 and PM10 data

Daily records of PM2.5 and PM10 concentrations in Beijing were obtained from the China National Environmental Monitoring Centre from October 2013 to September 2014, covering an entire year with both high and low pollution days and various meteorological conditions following the ways that set under the Specifications and Test Procedures for PM10 and PM2.5 Sampler (HJ-93-2013) by Ministry of Environmental Protection of China (available at:

Visibility under stable meteorological condition

Visibility under stable meteorological condition could illustrate the local particulate pollution condition, we therefore eliminate the visibility under instable meteorological conditions: (1) visibility under rain, fog and snow days was firstly eliminated to minimize visibility impairment from natural precipitation; (2) and then, visibility with wind speed faster than 4 m/s, which was deduced in our previous research when comparing wind speed with air quality index (AQI)4, was also eliminated to ease the wind speed’s positive impact on air quality improvement via carry and spread the pollutant to the downward area.

Estimation of annual PM2.5 concentration from visibility

The relationship between PM2.5 and PM10 was firstly examined to ensure that PM2.5 was the major component in PM10 that caused the visibility impairment. The correlation between daily PM2.5 concentration and visibility was then obtained under stable meteorological conditions. From this, 40 years of PM2.5 concentration dynamics were finally estimated.

Correlation analysis

Annual and seasonal stable PM2.5 concentrations were firstly correlated with annual and seasonal stable wind speeds during the 40 years to understand stable meteorological conditions has less impact on local emitted PM2.5 dynamics. Correlations between PM2.5 and population, GDP, energy consumption and number of vehicles were then examined to understand the impact of urbanization on PM2.5 concentrations in the typical Chinese megacity, Beijing.

Additional Information

How to cite this article: Han, L. et al. Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973–2013. Sci. Rep. 6, 23604; doi: 10.1038/srep23604 (2016).


  • Population Division, Department of Economic and Social Affairs, United Nations. World Urbanization Prospects: The 2011 Revision; Population Division, Department of Economic and Social Affairs, United Nations: New York, 2012.

  • Han, L., Zhou, W., Li, W. & Li, L. Impact of urbanization on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environmental Pollution 194, 163–170 (2014).

    CAS  Article  Google Scholar 

  • Chan, C. & Yao, X. Air pollution in mega cities in China. Atmospheric Environment 42, 1–42 (2008).

    CAS  ADS  Article  Google Scholar 

  • Han, L., Zhou, W., Li, W., Meshesha, D., Li, L. & Zheng, M. Meteorological an urban landscape factor on severe air pollution in Beijing. Journal of the Air & Waste Management Association 65, 782–787 (2015).

    Article  Google Scholar 

  • Zhao, H., Che, H., Zhang, X., Ma, Y., Wang, Y., Wang, H. & Wang, Y. Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmospheric Pollution Research 4, 427–434 (2014).

    Article  Google Scholar 

  • Davidson, C., Phalen, R. & Solomon, P. Airborne particulate matter and human health: A review. Aerosol Science and Technology 39, 737–749 (2005).

    CAS  ADS  Article  Google Scholar 

  • van Donkelaar, A., Martin, R., Brauer, M., Kahn, R., Levy, R., Verduzco, C. & Villeneuve, P. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environmental Health Perspect 118, 847–855 (2010).

    CAS  Article  Google Scholar 

  • Vajanapoom, N., Shy, C., Neas, L. & Loomis, D. Estimation of particulate matter from visibility in Bangkok, Thailand. Journal of Exposure Analysis and Environmental Epidemiology 11, 97–102 (2001).

    CAS  Article  Google Scholar 

  • Zhang, Q., Zhang, J. & Xue, H. The challenge of improving visibility in Beijing. Atmospheric Chemistry and Physics 10, 7821–7827 (2010).

    CAS  ADS  Article  Google Scholar 

  • Koulouri, E., Grivas, G., Gerasopoulos, E., Chaloulakou, A. Mihalopoulos, N. & Spyrellis, N. Study of size-segregated particle (PM1, PM2.5, PM10) concentration over Greece. Global Nest Journal 10, 132–139 (2008).

    Google Scholar 

  • Khodeir, M., Shamy, M., Alghamdi, M., Zhong, M., Sun, H., Costa, M., Chen, L. & Maciejczyk, P. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmospheric Pollution Research 3, 331–340 (2012).

    CAS  Article  Google Scholar 

  • Grossman, G. & Krueger, A. Economic growth and the environment. The Quarterly Journal of Economics 110, 353–377 (1995).

    Article  Google Scholar 

  • Wang, S., Gao, J., Zhang, Y., Zhang, J., Cha, F., Wang, T., Ren, C. & Wang, W. Impact of emission control on regional air quality: An observational study of air pollutants before, during and after the Beijing Olympic Games. Journal of Environmental Sciences-China 26, 175–180 (2014).

    CAS  ADS  Article  Google Scholar 

Download references


This research was supported by National Natural Science Foundation of China (Grant No. 41590841 and No.41301199). And, it also received finical support from the Science and Technology Service Network Initiative Project of Chinese Academy of Sciences (KFJ-EW-ZY-004), Hundred Talents Program of Chinese Academy of Sciences and Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry of China.

Author information

Authors and Affiliations



L.H. contributed to the literature search, study design, data analysis and interpretation and manuscript writing and revision. W.Z. and W.L. contributed to study design and the manuscript writing and revision.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhou, W. & Li, W. Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973–2013. Sci Rep 6, 23604 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing