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Clinical Evaluation of a Fully-
automatic Segmentation Method 
for Longitudinal Brain Tumor 
Volumetry
Raphael Meier1,†, Urspeter Knecht2,†, Tina Loosli2, Stefan Bauer1,2, Johannes Slotboom2, 
Roland Wiest2,‡ & Mauricio Reyes1,‡

Information about the size of a tumor and its temporal evolution is needed for diagnosis as well 
as treatment of brain tumor patients. The aim of the study was to investigate the potential of a 
fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry 
by comparing the automatically estimated volumes with ground truth data acquired via manual 
segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly 
diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month 
follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong 
correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA 
and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense 
tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the 
disagreement between BraTumIA and each of the human raters was comparable to the disagreement 
between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-
enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of 
human raters. These findings suggest the potential of automated longitudinal tumor segmentation 
to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense 
tumor compartments.

The accurate and reproducible measurement of tumor size and its changes over time is of crucial importance for 
diagnosis, treatment planning as well as monitoring of response to oncologic therapy for brain tumors. Current 
clinical guidelines (RANO/AvaGlio1) for response assessment of high-grade glioma patients rely on bidimen-
sional measures. Compared to tumor volumetry, bidimensional measures show several limitations: Increased 
measurement variability2–5, sensitivity to imaging quality6 and difficulties in assessing irregularly shaped, unmeas-
urable or satellite lesions7. Volumetry of a tumor requires an operator to outline the tumor and to differentiate 
between the different tumor compartments and peritumoral changes, which in turn requires considerable skill 
and expertise in tumor diagnostics as well as in handling of the respective software. Consequently, manual tumor 
volumetry is a time-consuming procedure prone to subjectivity and hence large inter-observer variability8–10. 
Fully-automatic segmentation methods constitute a possible solution to these issues. They perform volumetry in a 
fraction of the usual amount of time, which can take up to one hour per patient, while eliminating intra-observer 
and inter-observer variability.

A compartmentalisation of high-grade glioma into necrosis, edema, non-enhancing and enhancing tumor has 
been found to be associated with response to treatment and patient survival11,12. Recent studies show that a stand-
ardised set of Magnetic Resonance (MR) imaging features of these tumor compartments can be used to stratify 
patients into different risk groups13,14. In parallel, automatic methods capable of segmenting a high-grade glioma 
into its subcompartments have been proposed15–17. Such methods rely on imaging information from structural 
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MRI (usually native T1 weighted (T1w), T1w gadolinium enhanced, T2w and FLAIR sequences) and machine 
learning techniques for data analysis10,18.

The majority of studies assessing the potential of computer-assisted segmentation methods for brain tumor 
volumetry have so far focused on preoperative segmentation. In the study of Porz et al.19 the segmentation results 
of an automatic method were compared with manually acquired ground truth data of two expert raters for 25 
glioblastoma (GBM) patients. The comparison was performed for the complete tumor (including all four tumor 
compartments), the tumor core (including necrosis, contrast-enhancing and non-enhancing tumor) and the 
contrast-enhancing tumor. The study of Steed et al.20 draws a comparison between automatically and manu-
ally segmented patient cases extracted from The Cancer Imaging Archive (TCIA). The authors evaluated their 
method for the segmentation of the enhancing part of the tumor and the FLAIR hyperintensity volume. Both 
studies found a good agreement between manual and automatic results. Regarding longitudinal segmentation, 
Weizman et al.21 proposed a semi-automatic method capable of subdividing low-grade brain tumors into cystic, 
solid and enhancing regions and tracking of the volumetric evolution of these subcompartments over time. The 
authors applied their method to 10 patients, comprising a total of 40 MRI scans, and found it to be accurate when 
compared to manual segmentations. The study of Liberman et al.22 is methodologically the closest to the study at 
hand. The authors evaluated an automatic segmentation method on 59 longitudinal MR scans of 13 patients with 
recurrent GBM undergoing bevacizumab therapy. The method performs a segmentation of the tumor volume 
into enhancing tumor volume, peri- and non-peri-tumoral edema. The focus of the study was on improving 
accuracy in therapy response assessment defined by the MacDonald’s criteria23 and manual volumetry. In contrast 
to the study of Liberman et al.22, our study was performed explicitly in a prospective setting, uses data of patients 
with newly diagnosed GBM and provides a comparison between the volumetric trend of tumor compartments as 
estimated by automatic and manual segmentation.

Motivated by the recent developments, we hypothesise that the volumetric trend of tumor compartments in 
high-grade glioma as captured by an automatic segmentation method is comparable to the trend estimated by 
time-consuming manual segmentation.

Following previous work, we employ a fully-automated method17,19 called BraTumIA (Brain Tumor Image 
Analysis). The aim of our study is to investigate the potential of BraTumIA for longitudinal brain tumor volume-
try by comparing the automatically estimated volumes with ground truth data acquired by manual segmentation.

Materials and Methods
Data selection. Manual and automatic segmentations were performed on the longitudinal MRI data of 14 
consecutive patients selected from two ongoing, prospective clinical trials in our institution. Imaging data of 64 
independent MR acquisitions (each encompassing T1w, T1w gadolinium enhanced, T2w and FLAIR sequences, 
three to six acquisitions per patient), resulting in a total of 256 different MRI images, was analysed. Only patients 
with newly diagnosed and histologically confirmed glioblastoma multiforme were eligible for inclusion. The 
same, standardised MR protocol was performed for all patients. The aim of the clinical trials is to improve the 
reliability of tumor progression evaluation with MRI and MR Spectroscopy (MRS) before, during and after ther-
apy with neurosurgery, radiotherapy, chemotherapy and/or anti-angiogenic therapy. Seven of the 14 patients 
received a first line therapy with Bevacizumab in combination with radiotherapy. The main exclusion criteria 
were incomplete MRI data acquisition, previous cranial neurosurgery, Karnofsky perfomance status lower than 
70% and pathological organ function (liver, kidney, impaired hematological function). An overview of the patient 
data is presented in Table 1. The studies were approved by the Local Research Ethics Commission (Kantonale 
Ethikkommission Bern) and all methods were carried out in accordance with the approved guidelines. All 
patients provided written informed consent.

MR Acquisition. We performed a standardised MR protocol for all patients. All sequences were acquired on 
a 1.5T MR scanner from Siemens (Siemens Avanto and Siemens Area, Siemens, Erlangen/Germany). For manual 
and automatic segmentation the following sequences were used: i) 2D T2w MRI sequence with fluid-attenuated 
inversion recovery impulse (T2w FLAIR) in axial acquisition, TE =  80 ms, TR =  8000 ms, FOV =  256 ×  256 mm2, 
FA =  120°, anisotropic voxel size of 1 mm ×  1 mm ×  3 mm; ii) 3D T2w SPACE in sagittal acquisition, TE =  380 ms, 
TR =  3000 ms, FOV =  256 ×  256 mm2, FA =  120°, isotropic voxel size of 1 mm ×  1 mm ×  1 mm; iii) 3D T1w MPR 
without contrast enhancement in sagittal acquisition, TE =  2.67 ms, TR =  1580 ms, FOV =  256 ×  256 mm2, 
FA =  8°, isotropic voxel size of 1 mm ×  1 mm ×  1 mm; iv) 3D T1w with gadolinium contrast enhancement 
in sagittal acquisition, TE =  4.57 ms, TR =  2070 ms, FOV =  256 ×  256 mm2, FA =  15°, isotropic voxel size of 
1 mm ×  1 mm ×  1 mm.

Manual Segmentation. The different MR sequences were skull-stripped24 and co-registered on the T1w 
gadolinium enhanced sequence using a rigid transformation. This step is part of the BraTumIA software and 
facilitated the comparison to the automatic segmentations which were generated from the same co-registered 
images. After that, the images were manually segmented by two human raters blinded to clinical history and diag-
nosis. The raters used all four MR sequences (T1w, T1w gadolinium enhanced, T2w and FLAIR) simultaneously to 
annotate a data set. The images were strictly segmented according to their timing, starting with the preoperative 
image, and independent of the other MR acquisitions of the same patient (i.e. in a prospective fashion). Both 
raters adhered to a predefined segmentation protocol25 and used 3D Slicer26 for generating a manual segmenta-
tion of the complete tumor into necrosis, edema, non-enhancing and enhancing tumor. Rater-1 is an experienced 
neuroradiologist with several years of experience in brain tumor image analysis, whereas Rater-2 is a M.D. master 
student previously trained in neuroimaging with initial experience in the field. In two out of the total 64 MR 
acquisitions the automatic skull-stripping failed and a manual correction was applied.
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Fully-automatic Segmentation. For the purpose of automatic segmentation we employed the software 
BraTumIA15,17. BraTumIA allows the user to load four standard MRI sequences (T1w, T1w gadolinium enhanced, 
T2w and FLAIR images) that constitute a neurooncological MR protocol according to the RANO criteria27. The 
processing of the imaging information starts with the generation of a brain mask used for automatic skullstrip-
ping. This step is followed by a multimodal rigid registration where the T1w gadolinium enhanced image serves 
as template (i.e. all images are aligned to this image). Finally, a bias-field correction28 is applied and the image 
intensities are normalised29.

After preprocessing, a machine learning-based framework is used for performing segmentation via voxel-wise 
tissue classification. BraTumIA classifies every voxel into either one of three unaffected tissue classes (gray mat-
ter, white matter and cerebrospinal fluid) or into either one of four different tumor classes (necrosis, edema, 
non-enhancing and enhancing tumor). To perform this classification, the software starts with the extraction 
of voxel-wise feature vectors composed of appearance-sensitive features (multisequential intensities and inten-
sity differences, first-order and gradient textures) and context-sensitive features (atlas-normalised coordinates, 
multi-scale symmetry features and ray features)17. Based on this feature vector, every voxel is classified by a deci-
sion forest30,31 into one of the tissue classes. The strengths of the decision forest classifier are that it can handle 
high-dimensional input data (BraTumIA employs a 237-dimensional feature vector), it can handle multi-label 
classification problems (BraTumIA performs a segmentation into seven different tissue classes) and its output is a 
probability distribution over the different tissue classes. The predicted tissue class for a particular voxel is chosen 
to be the one with the highest probability. In a final step, the label map generated by the decision forest is refined 
by a regularisation, which enforces spatial consistency of classified voxels with respect to their neighborhood 
through a conditional random field based optimisation15.

In contrast to Porz et al.,19 the training data of 36 preoperative patient cases for BraTumIA was enlarged with 
longitudinal imaging data sets. For a subset of nine patients, we obtained nine immediate postoperative images. 
Moreover, for four out of these nine patients we obtained additional nine follow-up images (acquired within one 
to six months after surgery). This led to a total of 54 imaging data sets of 36 different patients used for training.

Statistical Analysis. The statistical analysis was targeted at the two morphologically most discriminative 
tumor compartments, which are the contrast-enhancing tumor (CET) and the non-enhancing T2-hyperintense 
part (NCE-T2) of the tumor following the modified RANO recommendations1,27. In our analysis, the latter 
encompasses the segmentation of the non-enhancing tumor and edema. We did not include necrosis due to the 
fact that this compartment is usually completely resected and reappears often late after surgery showing initially 
a small volume.

Our statistical analysis followed a descriptive approach. Absolute and relative volumes were plotted against 
time. Based on the imaging protocol, we defined seven different time points: tpre (preoperative image), tpost (imme-
diate postoperative image), t1 (one month follow-up), t3 (three months follow-up), t6 (six months follow-up), t9 
(nine months follow-up), t12 (12 months follow-up). Absolute volumes measured by a particular rater were 
expressed relative to the preoperative volume 
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using the Dice-coefficient. Tumor volumes smaller than 90 mm3 were not considered for computing the 
Dice-coefficient due to the Dice-Coefficient being overly sensitive for changes in small volumes.

Patient tpre tpost t1 t3 t6 t9 t12 Total:

4 a) ✓ ✓ – ✓ – – – 3(2)

4 b) ✓ – ✓ ✓ – – – 3(2)

4 c) ✓ ✓ ✓ ✓ – – – 4(3)

4 d) ✓ ✓ ✓ ✓ ✓ – – 5(4)

4 e) ✓ ✓ – ✓ ✓ ✓ ✓ 6(5)

4 f) ✓ ✓ – ✓ ✓ ✓ ✓ 6(5)

4 g) ✓ ✓ ✓ ✓ ✓ – – 5(4)

4 h) ✓ ✓ – ✓ ✓ – ✓ 5(4)

4 i) ✓ ✓ – ✓ ✓ ✓ ✓ 6(5)

S1 a) ✓ – ✓ ✓ – – – 3(2)

S1 b) ✓ ✓ ✓ – – – – 3(2)

S1 c) ✓ ✓ ✓ ✓ – – – 4(3)

S1 d) ✓ ✓ ✓ ✓ ✓ – – 5(4)

S1 e) ✓ ✓ ✓ ✓ ✓ ✓ – 6(5)

Total: 14 12 9 13 8 4 4 64(50)

Table 1.  Longitudinal patient data used for evaluation. Patients are referred to via figure numbers. The 
check mark indicates if a particular Magnetic Resonance (MR) acquisition was performed for a given patient. 
Every patient has a preoperative MR acquisition (tpre) and several postoperative MR acquisitions, where tpost 
refers to the immediate postoperative scan and the index i in ti refers to the month after surgery in which the 
MR acquisition was performed. There is a total of 64 MR acquisitions yielding 50 time differences between 
subsequent scans (shown in parentheses). Notice that this data is independent from the data used for training, 
which is described in subsection “Fully-automatic Segmentation”.
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To quantify the agreement between raters regarding tumor volume progression, the slope between consecutive 
time points was first measured for each rater −

∆
−( )asV V

t
t t 1 . Negative and positive slopes then correspond to 

shrinking and growing of tumor volumes, respectively. A different sign (negative or positive) between raters is 
regarded as a disagreement. The total number of disagreements is then used to characterise the disagreement on 
the complete longitudinal tumor volume progression. Furthermore, we computed the relative increase or decrease 
of a particular volume measured between two consecutive time points for each rater: ∆ =

−( )rel
V

V
t

t 1
. For visualis-

ation, we computed the decimal logarithm of this ratio. We refer to this simply as disagreement plot. A stable vol-
ume measured from one to another time point would yield a value of zero. A disagreement between raters would 
result in one or more data points lying on different sides with respect to the zero line. If such a disagreement 
occurs, we measure the absolute difference (along the y-axis) between the disagreeing raters. This analysis was 
performed for all possible pairs of raters over the complete data set. The results can then be summarised in what 
we refer to as a disagreement matrix. Every entry of the matrix corresponds to the total sum of all measured disa-
greements (differences). This yields more information about the extent to which two raters are disagreeing with 
each other. The matrix is symmetric due to the fact that we measure the absolute difference.

In the remainder of this paper, we refer to BraTumIA (B) as well as the human raters (R1 & R2) simply as raters 
for the sake of clarity, but make a distinction between automated and manual results when appropriate. For the 
statistical analysis, we used the R software package (R Development Core Team).

Results
An exemplary segmentation of a particular patient over time for each BraTumIA, Rater-1 and Rater-2 is shown 
in Fig. 1. Note that the segmentation result of BraTumIA indicates the same volume progression as the manual 
segmentations. From a total of 64 MR acquisitions, tumor volumes were obtained and corresponding volume dif-
ferences (n =  50) computed. In Fig. 2 absolute volumes and volume differences between consecutive time points 
as measured by BraTumIA were plotted against the estimates of Rater-1 and Rater-2. Strong significant correla-
tions (r-values ranging from 0.83 to 0.96, p <  0.001) were observed between all estimates of BraTumIA and of 
each of the raters. The measured Dice-coefficients between BraTumIA and each of the human raters are reported 
in Table 2.

Segmentation Tendencies. In Fig. 3 the volumetric trend lines of a representative patient as defined by 
the different raters are shown. For the NCE-T2 compartment, BraTumIA tended to yield a larger postoperative 
absolute volume than the human raters. For the contrast-enhancing tumor, one can note a larger absolute vol-
ume in case of the preoperative, the immediate postoperative measurement and one month follow-up, whereas 
for the remaining follow-up images the volumetric estimates of BraTumIA were located between the estimates 
of the human raters. When computing the relative over- or underestimation of BraTumIA with respect to each 
human rater and of all patients, a similar trend as for the patient shown in Fig. 3 can be observed. Table 3 gives 
an overview of the tendencies of BraTumIA with respect to the human raters. A consistent overestimation for all 
postoperative time points in the case of the NCE-T2 compartment as well as for the preoperative and immedi-
ate postoperative CET volumes was observed. For the segmentation of CET in the remaining follow-up images 
BraTumIA yielded absolute volumes within the range of volumes defined by both human raters.

Longitudinal Volumetry. The volumetric estimates for the NCE-T2 compartment and CET were normal-
ised with respect to the first measurement (i.e. tpre). This way, the individual tendencies shown before can be miti-
gated and differences in the volumetric trend between raters can be pointed out more easily. In Fig. 4, the relative 
volumetric curves for nine patients are shown. For the first six patients, a general agreement between all three 
raters on the trend of the NCE-T2 compartment as well as contrast-enhancing tumor was observed. For patient 
“g”, the occurrence of a lamellar enhancement close to the resection site of the primary tumor led to a higher 
increase in CET volume computed by BraTumIA and Rater-2 compared to Rater-1. For patient “h”, a diffuse and 
weak tumor enhancement occurred, which was only detected by Rater-1 (at t3). For patient “i”, we can observe 
disagreements between all three raters for small NCE-T2 volume changes occurring after surgery. From a quali-
tative point of view, 11 out of 14 patients showed a good agreement among all three raters. Three patients (two of 
them depicted in Fig. 4) showed a (clinically) significant deviation between the raters, whereas one case (depicted 
in supplementary Fig. S1 “a”) was a patient undergoing biopsy instead of surgical resection. A complete overview 
of the longitudinal volumetric curves for all 14 patients is given by Figs 4 and S1.

Inter-rater Disagreement. In total, there are 64 individual time points wherein a segmentation was per-
formed. This yielded a total of 50 transitions from one time point to the next, where potentially a disagreement 
can occur. When comparing the trend lines of BraTumIA against Rater-1 for all 50 transitions, a disagreement 
for the trend of the NCE-T2 compartment was found in 11 transitions (22%) and in four transitions (8%) for the 
contrast-enhancing tumor. When comparing BraTumIA against Rater-2, a disagreement was detected for the 
NCE-T2 compartment in 12 occurrences (24%), and in two transitions (4%) for the contrast-enhancing tumor. 
For the two human raters, a disagreement for the NCE-T2 compartment occurred in 13 transitions (26%) and in 
four transitions (8%) for the contrast-enhancing tumor. An agreement on the trend line between both human 
raters but a disagreement of BraTumIA was found in six transitions out of 50 (12%) for the NCE-T2 tissue (three 
of which are located in the patient shown in Fig. 3), however, did not occur for the contrast-enhancing tumor. 
The disagreement plot for an exemplary patient is shown in Fig. 5. Figures 6 and 7 present the disagreement 
matrices for NCE-T2 tissue and CET, respectively. When comparing the two matrices, one can observe that if 
a disagreement between raters (as defined in section 2.5) occurs, it is larger for the contrast-enhancing volume 
than for the NCE-T2 tissue. In general, BraTumIA disagreed less with Rater-2 than with Rater-1. For the NCE-T2 
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compartment the total disagreement between BraTumIA and either one of the two human raters (3.17 and 2.74) 
was smaller than the disagreement between the two human raters (3.43). For the contrast-enhancing tumor 
the total disagreement between BraTumIA and Rater-1 (7.8) was larger than the disagreement between the two 
human raters (7.35).

Figure 1. Segmentation of necrosis (red), edema (green), enhancing tumor (yellow) and non-enhancing 
tumor (blue) in patient “d”. From top to bottom, consecutive time points are shown. From left to right: T1 
post-contrast-weighted image, FLAIR-weighted image overlayed with segmentation generated by BraTumIA, 
segmentation generated by Rater-1 and segmentation generated by Rater-2.
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Figure 2. Volumes (n = 64) and volume differences (n = 50) as measured by BraTumIA are plotted against 
estimates of Rater-1 (circles, blue line) and of Rater-2 (crosses, violet line). 

Comparison tpre(n = 14) tpost(n = 12) t1(n = 9) t3(n = 13) t6(n = 8) t9(n = 4) t12(n = 4)

B vs. R1 (NCE-T2) (0.746, 0.319) (0.673, 0.716) (0.408, 0.778) (0.589, 0.803) (0.467, 0.549) (0.586, 0.573) (0.729, 0.246)

B vs. R2 (NCE-T2) (0.739, 0.376) (0.633, 0.484) (0.424, 0.551) (0.592, 0.815) (0.495, 0.483) (0.508, 0.571) (0.71, 0.166)

R1 vs. R2 (NCE-T2) (0.792, 0.45) (0.747, 0.657) (0.596, 0.731) (0.652, 0.701) (0.603, 0.483) (0.619, 0.258) (0.787, 0.389)

B vs. R1 (CET) (0.661, 0.647) (0.183, 0.349) (0.398, 0.489) (0.205, 0.746) (0.419, 0.589) (0.579, 0.224) (0.435, 0.779)

B vs. R2 (CET) (0.687, 0.69) (0.239, 0.347) (0.35, 0.605) (0.279, 0.827) (0.295, 0.732) (0.433, 0.222) (0.403, 0.695)

R1 vs. R2 (CET) (0.74, 0.34) (0.116, 0.345) (0.464, 0.454) (0.551, 0.549) (0.502, 0.426) (0.567, 0.417) (0.752, 0.176)

Table 2.  Dice-coefficients for non-enhancing T2-hyperintense tissue (NCE-T2) and contrast-enhancing 
tumor (CET) as tuple (median, range) generated by BraTumIA (B) with respect to either one of two human 
raters (R1/R2). Number of patients having a particular acquisition is denoted by n.

Figure 3. Volumetric evolution of non-enhancing T2-hyperintense tissue (NCE-T2, solid line) and contrast-
enhancing tumor (CET, dashed line) over time for BraTumIA (red), Rater-1 (blue) and Rater-2 (violet) 
shown for one patient. 
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Discussion
The study at hand provides evidence for the capability of a fully-automatic segmentation method for longitudinal 
brain tumor volumetry via comparison of its performance against two expert raters. Brain tumor segmenta-
tion is routinely needed in radiation oncology, where it plays a crucial role in the planning of radiotherapy. The 
output of a tumor segmentation yields information about its volume as well as its position relative to neigh-
boring and potentially eloquent anatomical structures. Manual segmentation is inherently subjective, thus the 
estimated volumes show large variability when compared between different raters8. In radiotherapy, the plan-
ning is greatly influenced by an accurate estimation of the target volumes, which means that segmentations of 
different raters can lead to different treatment plans. Early on, researchers in radiation oncology investigated 
computer-assisted methods to relieve clinicians from the time-consuming burden of manual segmentation as well 
as generate more consistent volumetric estimates32. The potential areas of applications for brain tumor volumetry 
span well beyond radiotherapy and include neurooncology (response assessment6,27,33–36), neurosurgery37–39 and 
radiogenomics12,40,41.

BraTumIA is a fully-automatic, machine learning-based segmentation model capable of subdividing a glioma 
into its compartments (necrosis, edema, enhancing and non-enhancing tumor). The performance of BraTumIA was 
compared against alternative approaches in the MICCAI BraTS Challenges10,17, where it proved to be one of the best 
performing as well as fastest methods. Moreover, BraTumIA was evaluated prospectively on clinical data sets for 
preoperative brain tumor segmentation in the past19. Strong correlations were observed between automatically and 
manually generated tumor volumes. Furthermore, the estimated tumor volumes of BraTumIA were recently shown 
to be associated with patient survival42. The software is equipped with a Graphical User Interface (GUI), which 
facilitates its use by clinicians. In addition, it has been made publicly-available (https://www.nitrc.org/projects/bra-
tumia/). This led us to the decision to employ BraTumIA for performing automatic longitudinal tumor volumetry.

Comparison tpre(n = 14) tpost(n = 12) t1(n = 9) t3(n = 13) t6(n = 8) t9(n = 4) t12(n = 4)

B vs. R1 (NCE-T2) 0.969 1.528 1.27 1.188 1.71 1.539 1.098

B vs. R2 (NCE-T2) 1.023 1.763 1.243 1.282 1.103 1.194 1.142

R1 vs. R2 (NCE-T2) 1.011 1.077 0.941 1.018 0.845 1.27 0.944

B vs. R1 (CET) 1.357 9.904 1.605 1.326 1.429 1.344 1.123

B vs. R2 (CET) 1.055 6.578 0.726 0.882 0.545 0.520 0.979

R1 vs. R2 (CET) 0.719 1 0.495 0.765 0.646 0.363 0.926

Table 3.  Relative over- or underestimation of the volumes for non-enhancing T2-hyperintense tissue 
(NCE-T2) and contrast-enhancing tumor (CET) as median values generated by BraTumIA (B) with respect 
to either one of two human raters (R1/R2). Number of patients having a particular acquisition is denoted by n.

Figure 4. Volumetric evolution of relative values with respect to preoperative volume of non-enhancing 
T2-hyperintense tissue (NCE-T2, solid line) and contrast-enhancing tumor (CET, dashed) over time for 
BraTumIA (red), Rater-1 (blue) and Rater-2 (violet). The figures “a” to “i” are different patients.

https://www.nitrc.org/projects/bratumia/
https://www.nitrc.org/projects/bratumia/
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Figure 5. Disagreement plot for the patient shown in Fig. 3. Measurements for non-enhancing  
T2-hyperintense tissue (NCE-T2) are indicated with circles, for contrast-enhancing tumor (CET) with crosses. 
Estimates of Bratumia are shown in red, of Rater-1 in blue and of Rater-2 in violet. The logarithm is used to 
facilitate visualisation. The zero line indicates a stable volume (i.e. Δrel =  1) from one time point to the next one. 
A positive value indicates a volume increase, whereas a negative value indicates a volume decrease between 
consecutive time points. Estimates of two raters which lie on different sides of the zero line are regarded as a 
disagreement between the two raters.

Figure 6. Disagreement matrix for non-enhancing T2-hyperintense tissue (NCE-T2). Each entry reflects 
the total amount of disagreement between two raters. A disagreement is measured as the absolute difference 
between the estimates of two raters. It is measured if the estimates lie on different sides of the zero line in the 
disagreement plot (Fig. 5). The total amount of disagreement is the sum of disagreements over all patients.

Disagreement matrix (Enhancing Tumor)

B
R
2

R
1

R1 R2 B

7.8 3.94 0
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Figure 7. Disagreement matrix for contrast-enhancing tumor (CET). Each entry reflects the total amount of 
disagreement between two raters. A disagreement is measured as the absolute difference between the estimates 
of two raters. It is measured if the estimates lie on different sides of the zero line in the disagreement plot 
(Fig. 5). The total amount of disagreement is the sum of disagreements over all patients.
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The agreement between the segmentation result of BraTumIA and the estimates of the two human raters 
was assessed via computing Dice-coefficients. Looking at Table 2, it is evident that the preoperative segmenta-
tion task seems to be the easiest both for BraTumIA and the human raters. Notice that the measured preopera-
tive Dice-coefficients are comparable to the values reported during the MICCAI BraTS 2012/2013 challenges10. 
Furthermore, the segmentation of residual CET after surgery is extremely challenging, which is confirmed by 
the low Dice-coefficients for all pairings of raters. However, overlap measures such as the Dice-coefficient are 
overly sensitive if the segmented image regions are small in size. This is the case for residual CET in postoperative 
images. The segmentation of both NCE-T2 tissue and CET appears to be challenging in the one month follow-up 
image acquisition. The reason is the emergence of changes in image appearance at that time similar to patholog-
ical changes (e.g. benign contrast-enhancement) but in fact they are induced by the treatment. A reason for the 
decrease in volumetric overlap between the estimates of BraTumIA and the two human raters for postoperative 
images could be the fact that a major part of the available training data (i.e. 36 data sets) were preoperative images. 
The addition of more postoperative images would likely improve the performance of BraTumIA for segment-
ing later time points. A thorough comparison of the segmentation performance of BraTumIA to several other 
segmentation techniques is provided by Menze et al.10 based on the results of the MICCAI BraTS challenges 
2012/2013 (in this publication BraTumIA is referred to as the approach proposed by Meier et al.17).

BraTumIA proved to effectively capture the volumetric trend of the NCE-T2 compartment and CET over 
time. A trend towards overestimation after surgery with respect to both human raters for the NCE-T2 tissue was 
observed. This corresponds to a relatively stable bias of the volumetric trend curve as generated by BraTumIA. 
In neurooncology, criteria for assessing response to therapy rely on relative changes in tumor size between a 
given point in time and a baseline27. Thus, a decision on response to therapy is not affected by a constant bias of 
the chosen measurement method. For the CET volume measured immediately after surgery, BraTumIA tends 
to oversegment the residual tumor volume and in case of complete resection rarely segmented a volume of zero 
mm3. Thus, the high values reported in Table 3 for immediate postoperative CET volumes are due to the fact 
that seven out of 14 patients underwent complete resection. Residual tumor volumes are usually small and often 
rated as unmeasurable by the current response assessment criteria. In order to employ BraTumIA for response 
assessment, it is crucial to study the effect of changing non-measurable lesions to measurable lesions. This effect 
may be emphasised due to the overestimation of residual volumes when compared with manual volumetry. More 
specialised algorithms developed specifically for the assessment of residual tumor volume after surgery have been 
proposed7,43,44 and may yield an improved performance over general segmentation methods like BraTumIA.

Our results show that the longitudinal volumetry of the CET generated by BraTumIA is closer to Rater-2 
than Rater-1. In general, BraTumIA as well as Rater-2 tend to segment CET more aggressively than Rater-1. This 
is clearly visible in their oversegmentation of CET compared to Rater-1. This can potentially lead to false pos-
itives as for example in case of patient “g”, where both BraTumIA and Rater-2 marked a lamellar enhancement 
appearing at the border of the resection cavity (one month after surgery) as contrast-enhancing tumor. Follow-up 
images revealed that the enhancement was a consequence of the applied treatment regime. However, for patient 
“h” BraTumIA and Rater-2 failed to recognise a subtle contrast-enhancing tumor (at t3). Rater-1 was an experi-
enced neuroradiologist, whereas Rater-2 was a M.D. student with initial experience in the field. Consequently, 
one can argue that Rater-1 relied in both situations on his experience as well as knowledge about the patient’s 
history and applied treatment regime to either rule in or rule out the presence of contrast-enhancing tumor. 
However, BraTumIA is segmenting every patient image individually and does not include information extracted 
from previous scans of the same patient. Hence, we think that a possibility for improving BraTumIA might be 
a more explicit inclusion of past imaging information of a patient45 as well as information from clinical varia-
bles about the applied treatment regime (e.g. radiotherapy yes/no). This may enable BraTumIA to better rule 
out non-tumorous contrast-enhancements as well as to detect subtle changes within a patient. Furthermore, we 
observed that for the NCE-T2 compartments, disagreements occurred predominantly for small relative changes 
in volume (e.g. for patient “i”). In the context of response assessment, such changes would likely be rated as stable 
disease.

The analysis of disagreements between raters was driven by the importance of the relative change in tumor 
size for tumor response assessment1,27. BraTumIA showed a disagreement with two expert raters that lied in the 
range of the disagreement between the human raters themselves. Bi-dimensional measures used for response 
assessment have well known limitations. Wen et al.27 suggested that a main obstacle for the inclusion of volumet-
ric information in response assessment is the lack of standardisation in volumetric imaging. In addition, the nec-
essary time to manually acquire volumetric information renders its clinical use unfeasible. BraTumIA was trained 
on imaging data that is not part of this study and which was acquired following different acquisition protocols. 
The software is capable of generalising imaging patterns of CET and NCE-T2 compartments learned from train-
ing data to unseen patient data. Moreover, BraTumIA can provide volumetric information fully-automatically for 
tumor compartments within five minutes (average computation time per patient).

We proposed disagreement plots and matrices for evaluating the disagreement between different raters. An 
alternative method to analyse the disagreement between raters or measurement methods is the Bland-Altman 
plot46, which is widely used (e.g. by Bauknecht et al.47). The main goal of our data analysis was to capture and 
quantify deviations between the volumetric trend for CET and the NCE-T2 compartment estimated by BraTumIA 
and the two raters. A Bland-Altman approach for this issue would require one plot for every transition between 
consecutive time points and every possible pairing of measurement methods or raters. Given the small sample 
size for late postoperative transitions (e.g n =  4 from t6 to t9), the estimation of 95% limits of agreement in the 
Bland-Altman plot would be unreliable. Consequently, we opted for a more descriptive and visual approach in 
form of disagreement plots and matrices. A disagreement plot is patient-specific and retains the complete tem-
poral evolution as well as the entirety of the employed raters. In a next step, a specific feature (e.g. the absolute 
differences between disagreements) of the data can then be summarised among all patients, e.g. in the form of 
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disagreement matrices. Different definitions of disagreements would result in different matrices that may not nec-
essarily be symmetric. For instance, for a larger number of raters, the correlation between disagreement matrices 
could potentially be assessed by a Mantel test48. Weizman et al.21 followed a different approach for assessing the 
agreement between longitudinal volumetric curves. They estimated Pearson’s correlation coefficients between 
two subsequent measurements of two raters. This requires the assumption of a linear relationship between the 
volumetric measurement of two consecutive time points. Furthermore, summarising correlation coefficients over 
a number of samples (= patients) is not straightforward. In contrast, the use of disagreement plots and matrices is 
nonparametric and allows the extraction of different features, which can be summarised over all patients.

There are two limitations of the present study. First, we limited our analysis to the two morphologically most 
discriminative tumor compartments. This restriction was driven by the lack of histologically-confirmed ground 
truth data for postoperative images. However, in clinical practice a radiologist segments the extent of the tumor 
compartment that is visually apparent in MR images. In light of the fact that the postoperative discrimination 
between edema and non-enhancing tumor is very difficult even for expert raters and due to the absence of its  
histological confirmation, we combined the segmentation of edema and non-enhancing tumor in one compartment  
(i.e. the non-enhancing T2-hyperintense tissue). Furthermore, the chosen approach of analysing the non-enhancing 
T2-hyperintense part of the tumor was used previously20,40. Second, a higher number of human raters would have 
allowed us to conduct a more informative assessment of the inter-rater variability of manual segmentations when 
compared with the automatic segmentations generated by BraTumIA. The methodology of employing two human 
raters for segmentation has been used in several studies before, as reported by Bauknecht et al.47.

In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing 
T2-hyperintense tumor compartments comparable to estimates of human raters. Strong correlations between the 
volumetric estimates of BraTumIA and the two raters were observed. The frequency and extent of disagreement 
between BraTumIA and either one of the two human raters was comparable to the values measured between the 
two human raters themselves. This implies that BraTumIA can be used as a substitute for manual volumetric 
follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments over time.
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