
1Scientific RepoRts | 6:23033 | DOI: 10.1038/srep23033

www.nature.com/scientificreports

Influence of an embedded quantum 
dot on the Josephson effect in 
the topological superconducting 
junction with Majorana doublets
Wei-Jiang Gong, Zhen Gao, Wan-Fei Shan & Guang-Yu Yi

One Majorana doublet can be realized at each end of the time-reversal-invariant Majorana nanowires. 
We investigate the Josephson effect in the Majorana-doublet-presented junction modified by different 
inter-doublet coupling manners. It is found that when the Majorana doublets couple indirectly via a non-
magnetic quantum dot, only the normal Josephson effect occurs, and the fermion parity in the system 
just affects the current direction and amplitude. However, one magnetic field applied on the dot can 
induce the fractional Josephson effect in the odd-parity case. Next if the direct and indirect couplings 
between the Majorana doublets coexist, no fractional Josephson effect takes place, regardless of the 
presence of magnetic field. Instead, there almost appears the π-period-like current in some special 
cases. All the results are clarified by analyzing the influence of the fermion occupation in the quantum 
dot on the parity conservation in the whole system. We ascertain that this work will be helpful for 
describing the dot-assisted Josephson effect between the Majorana doublets.

Topological superconductor (TS) has received considerable experimental and theoretical attentions because 
Majorana zero-energy modes appear at the ends of the one-dimensional TS which can potentially be used for 
decoherence-free quantum computation1–3. In comparison with the conventional superconductor, the TS system 
shows new and interesting properties4,5. For instance, in the proximity-coupled semiconductor-TS devices, the 
Majorana zero modes induce the zero-bias anomaly6,7. A more compelling TS signature is the unusual Josephson 
current-phase relation. Namely, when the normal s-wave superconductor nano-wire is replaced by a TS wire with 
the Majorana zero modes, the current-phase relation will be modified to be φ

~I sinJ 2
 and the period of the 

Josephson current vs φ will be 4π (φ is the superconducting phase difference). This is the so-called the fractional 
Josephson effect8–12. Such a result can be understood in terms of fermion parity (FP). If the FP is preserved, there 
will be a protected crossing of the Majorana bound states at φ =  π with perfect population inversion. As a result, 
the system cannot remain in the ground state as φ evolves from 0 to 2π adiabatically13,14.

Recently, the time-reversal invariant TSs, i.e., the DIII symmetry-class TSs15–19, have attracted extensive atten-
tions20–22. In such TSs, the zero modes appear in pairs due to Kramers’s theorem, which is different from the chiral 
TSs. Consequently, for the time-reversal-invariant TS nanowire, two Majorana bound states will be localized at 
each end of it and form one Kramers doublet23,24. Since the Kramers doublet is protected by the time-reversal 
symmetry, it will drive some new and interesting transport properties, compared with the single Majorana zero 
mode. Up to now, many schemes have been proposed to realize the time-reversal-invariant Majorana nanow-
ires, by using the proximity effects of d-wave, p-wave, s ±  -wave, or conventional s-wave superconductors25–30. 
Meanwhile, physicists have begun to pay attention to quantum transport phenomena contributed by the Kramers 
doublet, and some important results have been reported31,32. For instance, in the Josephson junction formed by 
the Majorana doublet, the Josephson currents show different periods when the FP in this system is changed32. 
This exactly means the nontrivial role of the Majorana doublet in manipulating the quantum transport. However, 
for completely describing the transport properties contributed by the Majorana doublet, any new proposals are 
desirable.

In this work, we aim to investigate the influence of an embedded quantum dot (QD) on the current properties 
in the Josephson junction contributed by the Majorana doublets. Our motivation is based on the following two 
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aspects. Firstly, QD is able to accommodate an electron and the average electron occupation in one QD can be 
changed via shifting the QD level. Thus, when one QD is introduced in the TS junction, the FP can be re-regulated 
and the fractional Josephson current can be modified33. Moreover, some special QD geometries can induce the 
typical quantum interference mechanisms, e.g., the Fano interference34, which are certain to play an important 
role in adjusting the fractional Josephson effect. Secondly, one QD can mimic a quantum impurity in the practical 
system, which is able to provide some useful information for relevant experiments. Our calculations show that 
when the Majorana doublets couple indirectly via a non-magnetic QD, only the normal Josephson effect takes 
place, irrelevant to the FP change. As finite magnetic field is applied on the QD, the fractional Josephson effect 
comes into being in the odd-FP case. On the other hand, when the direct and indirect couplings between the 
Majorana doublets coexist, no fractional Josepshon effect occurs despite the application of magnetic field on the 
QD, but in the odd-FP case, the current oscillation manner undergoes discontinuous change following the shift 
of QD level. The results in this work will be helpful for describing the QD-assisted Josephson effect between the 
Majorana doublets.

Model
The Josephson junction that we consider is formed by the direct coupling between the Majorana nanowires and 
their indirect coupling via a QD, as illustrated in Fig. 1. The particle tunneling process in this junction can be 
described by Hamiltonian HT with

∑= + + .
α

α
=

H H H H
(1)

T
L R

M T TI
,

0

HαM denotes the particle motion in the two Majorana nanowires. With the proximity-induced p-wave and s-wave 
superconducting pairs, the effective tight-binding Hamiltonian in the α-th nanowire can be written as32
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α σ
†c j,  and cα,jσ (σ =  ↑ ,↓  or ± 1) are the electron creation and annihilation operators for the j-th site in the α-th 

nanowire. tjα is the inter-site hopping energy and tα,so represents the strength of spin-orbit coupling. Δαp and Δαs 
denote the energies of the p-wave and s-wave superconducting pairings, respectively. μα is the chemical potential 
in the α-th nanowire. Note that the hopping coefficients and the chemical potential are generically reonormalized 
by the proximity effect. The second term HT0 denotes the direct coupling between the two Majorana nanowires, 
which can be expressed as

∑= ϒ + . .
σ

σ σ
†H c c H c ,

(3)T L N R0 , ,1

where ϒ is the direct coupling coefficient. Next, HTI is to express the indirect coupling between the two Majorana 
nanowires due to the presence of an embedded QD (or a quantum impurity). Its expression can be given by

∑
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Here σ
†d  and dσ are the electron creation and annihilation operators in the QD, and ε0 is the QD level. R denotes 

the strength of an effective magnetic field applied on the QD, and U denotes the intradot electron interaction with 
=σ σ σ

†n d dd . In addition, Vα is coupling coefficient between the QD and the α-th Majorana nanowire.

Figure 1. Schematic of Josephson junction formed by the direct coupling between the Majorana doublets 
and their indirect coupling via a QD. 
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In order to discuss the Josephson effect in this junction, we have to deduce an effective Hamiltonian that 
reflects the direct and indirect couplings between the Majorana doublets. For this purpose, we define the 
Majorana operators
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where cαj =  s1cα,j↑ +  s2cα,j↓ is the new and spinless electron operator at the j-th site in the α-th site with 
 =α α

−c̃ cj j
1. Using the above formulas, we can solve the electron operators in terms of Majorana and 

nonzero-energy quasiparticle operators. Reexpress the quasiparticles in terms of electron operators, we can inter-
pret cLN, c̃LN , cR1, and c̃R1 by
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in which the normalization factor has been neglected. Besides, aαj, αa j and bαj, αb j are expansion coefficients, 
originated from the quasiparticle operators other than the corresponding Majorana mode. Next, substitute Eq. (6) 
into the expression of HT, we can obtain the low-energy effective Hamiltonian of HT in the case of infinitely-long 
nanowires, which is divided into two parts. The first part is
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The relevant parameters here are defined as follows: µ µΓ = ϒ2 LN R0
(2)

1
(1) , µ=W VL L LN

(2) , and µ=W VR R R1
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For the second part, when the highest-order terms are neglected, it can be approximated as
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We would like to emphasize that since the s-wave pairing is present in the quantum wires, the electrons cα and αc̃  
will form a Cooper pair and condense. This process leads to an effective coupling between Majorana zero modes 
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localized at the same end and the finite coupling between the Kramers doublet in the QD. Therefore, up to the 
second-order perturbation in the tunneling process, we can express T

(1)  as

µ µ γ γ
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time-ordered integral. This process arises from the fact that the second-order perturbation can be treated as a 
Green function from the Lehnmann’s representation viewpoint or equivalently handled by the path-integral 
approach with defining one propagator. More detailed deduction can be referred in the previous works31,32,35. In the 
case of uniform superconducting pairings in the Majorana nanowires, α  can be further deduced as 
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in which µΓ = ϒL LN R1
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, and Γ =α α αV2

1
2

2  . Up to now, we have gotten the 
low-energy effective Hamiltonian of such a structure. Noted, additionally that though there could be an addi-
tional coupling via the bulk superconductor to which both wires are proximity-coupled, such term is avoidable if 
wires are placed on two different superconductors36.

The phase difference between the two Majorana wires will drive finite Josephson current through them, which 
can be directly evaluated by the following formula37
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temperature. It is certain that solving the Josephson current is dependent on the diagonalization of T.
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where Γ 1α is supposed to be Γ 1. Next, T  can be expressed in the normal fermion representation by suppos-
ing γ1 =  (f +  f †), γ2 =  i(f † −  f  ) and γ = −



 

†
i f f( )1 , γ = +
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f f( )2  where f †, 

†
f  and f, f  are the fermionic crea-

tion and annihilation operators. Accordingly, the matrix form of T can be deduced on the basis of | 〉
˜n n n ns s f f  

where nf =  f †f and = 


†
n f ff . Note that in the system with Majorana bound states, only FP is the good quantum num-

ber, so we should build the Fock state according to FP. First, in the case of even FP, the Fock state can be 
written as Ψ = + + + + + + +a a a a a a a a0000 0011 0101 1001 0110 1010 1100 1111e 1 2 3 4 5 6 7 8 .  
As a result, the matrix form of T

e( )  can be given by
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For the extreme case of strong magnetic-field limit, if εs̃ is in the finite-energy region, εs will be empty, and 
then only one level contributes to the Josephson effects, respectively. Accordingly, in such a case, the matrixes of 
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With the help of the above analysis, we know that the Josephson current should be evaluated by calculating the 
free energy according to FP, i.e., =

φ
∂

∂
IJ

e o e F( / ) 2 e o( / )


. In the zero-temperature limit, the Josephson current in this 

structure will get its simplified form as
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in which EGS
e o( / ) are the ground-state (GS) energies in the even- and odd-FP cases, respectively.

Numerical Results and Discussions
Following the derivation in the above section, we begin to perform the numerical calculation to discuss the 
detailed properties of the Josephson current through such a system. For describing the Josephson effect governed 
by Majorana doublets, the parameter order should be much smaller than the superconducting gap ΔTS, hence we 
assume the parameter unit to be 0.1ΔTS without loss of generality. In addition, for temperature, we will set it to be 
zero in the context.

Let us first review the Josephson effect in the case of Vα =  0. In such a case,  = Γ +φ( cosT 0 2
 

φ φΓ − + Γ − Γ −φ


n nsin )(2 1) ( cos sin )(2 1)f f1 0 2 1 , and 


n nf f f
 are the eigenstates of T . The two 

even-FP eigenstates are 00 f
 and 11 f

, and their corresponding GS energies are = Γ φ
E 2 cosGS

e( )
0 2

. Contrarily, 
the odd-FP eigenstates are 10 f

 and 01 f
 with the GS energies φ= ± ΓE 2 sinGS

o( )
1 . Just as concluded in the pre-

vious works32, the fractional Josephson effect occurs in the situation of even FP, otherwise only the normal 
Josephon effect is observed.
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In Fig. 2 we suppose Γ 0 =  Γ 1 =  0 and choose Wα =  0.25 and Γ 2α =  0.05 to investigate the Josephson effect in 
the case where the Majorana doublets couple indirectly to each other via a QD. The results are shown in Figs 2–3: 
Fig. 2 corresponds to the noninteracting results, and Fig. 3 describes the influences of the intradot Coulomb 
interaction on the Josephson effects in different FPs when U =  2.0. First, in Fig. 2(a,b) we find that when a 
non-magnetic QD is taken into account, it induces the occurrence of normal Josephson effects, and the departure 
of ε0 from zero weakens the current amplitudes, irrelevant to the FP difference. In addition, FP is an important 
factor to affect the Josephson effects. To be concrete, the Josephson currents in different FPs flow in the opposite 
directions for the same φ, and the amplitude of IJ

o( ) is about one half of that of IJ
e( ). Moreover when |ε0| >  0.5, IJ

o( ) 
gets close to zero. The other result is that at the points of φ =  (2m −  1)π (m ∈  Integer), in the even-FP case the 
discontinuous change of the Josephson current is more well-defined compared with the odd-FP case. Next, when 
finite magnetic field is applied on the QD, the even-FP current shows little change except that its amplitude 
becomes less dependent on the QD-level shift. However, in the odd-FP case, the current changes completely. It 
can be clearly found that with the strengthening of magnetic field, the original current oscillation is suppressed. 
Especially in the vicinity of φ =  4mπ, the current amplitude tends to disappear when R increases to 0.5. Thus, it is 
certain that in the case of odd FP, applying magnetic field on the QD can induce the occurrence of fractional 
Josephson current. In addition to this, the increase of R enhances the current oscillation around the points of 
φ =  (2m −  1)π when ε0 departs from zero. Up to now, we can conclude that when the Majorana doublets are cou-
pled by a magnetic QD, the fractional Josephson effect has an opportunity to take place, but its property is differ-
ent from the case of only the direct coupling between Majorana doublets32.

Coulomb interaction is a key factor to influence the characteristics of QD. In Fig. 3 we consider the intradot 
Coulomb interaction and investigate the effect of the magnetic QD on the Josephson currents in the case of 
U =  2.0. In Fig. 3(a,b) we first find that in the even-FP case with a non-magnetic QD, the Coulomb interaction 
benefits the Josephson effect, since in the region of − 2.5 <  ε0 <  0.5 the current amplitude is relatively robust and 
weakly dependent on the shift of QD level. In contrast, for the odd-FP case, the intradot Coulomb interaction 
only moves the current maximum to the point of ε0 =  − 1.0, but it does not vary the current oscillation manner 
compared with the noninteracting case. Hence, the Coulomb interaction only adjusts the effect of QD level on the 
Josephson effects but does not modify the current oscillation manner with the change of φ. Next, Fig. 3(c,h) show 
that regardless of the FP difference, the current amplitudes are suppressed by the application of magnetic field on 
the QD. In the even-FP case, the current amplitude around the point of ε0 =  − 1.0 undergoes a relatively-apparent 
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Figure 2. Josephson current spectra in the case where the Majorana doublets couple indirectly via a QD. 
The structural parameters are taken to be Wα =  0.25 and Γ 2α =  0.05. The left and right columns correspond to 
the even-FP and odd-FP results, respectively. (a,b) The case of the non-magnetic QD. (c,d) The case of finite 
magnetic field on the QD with R =  0.1. (e,f) R =  0.3. (g,h) R =  0.5.
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suppression. For the odd-FP case, except the suppression of the current amplitude, the fractional Josephson effect 
becomes weak but can still be observed.

According to the results above, when Majorana doublets couple indirectly via a magnetic QD, the fractional 
Josephson effect comes into being in the odd-FP case. In order to explain this phenomenon, we would like to 
compare the case of ϒ ≠  0 and Vα =  0 with that of ϒ  =  0 and Vα ≠  0. In the former case, the Josephson effects are 
only determined by the FP of state | 〉



n nf f f . And then, when the system is located at states 00 f
 or 11 f

, the frac-
tional Josephson effect takes place. However, when Majorana doublets couple indirectly via one QD, the Fock 
space defined by | 〉



n nf f f  just becomes a subspace of the Fock space formed by | 〉
˜n n n ns s f f , and then 00 f

 and 11 f
 

appear simultaneously in the expressions of Ψo
GS . This means that when their contributions are different, frac-

tional Josephson effect will have an opportunity to take place. It can be found that in the odd-FP case, this condi-
tion can be satisfied in the case of nonzero magnetic field. The reason is as follows. Firstly, magnetic field on the 
QD can cause the occupation of opposite-spin electrons to be different, e.g., . > > . > >˜n n1 0 0 5 0s s  in the case 
of ε0 =  0. This will effectively enhance the amplitudes of b3 and b5 and the contribution of states 0100  and 0111 . 
Secondly, Eq. (14) shows that these two states couple to any other state in an asymmetric manner. As a result, if 
finite R is considered, 00 f

 and 11 f
 make different contributions to the Josephson effect, leading to the fractional 

Josephson effect. Surely one can find that the asymmetric coupling manner between the basis states weakens the 
quantum coherence and suppresses the current amplitude to some degree. Next in the presence of Coulomb 
interaction, the QD is half-occupied at the point of ε0 =  −U2, so the fractional Josephson effect occurs in the case 
of ε0 =  − 1.0 when U =  2.0. With the similar analysis method, one can understand the Jopsephson effect in the 
even-FP case, and its noninteracting picture can only be doubled when the Coulomb interaction is taken into 
account.

We next proceed to pay attention to the Josephson effect in the case where the direct and indirect couplings 
between the Majorana doublets coexist. The results are shown in Figs 4 and 5 where Γ 0 is taken to be 0.5 with 
Γ 1 =  0.1. The noninteracting results are presented in Figs 4 and 5 describes the case of U =  2.0. In Fig. 4, we find 
that for any ε0, the opposite-FP Josephson currents show dissimilar oscillations with the change of superconduct-
ing phase difference. In the even-FP case with R =  0, when ε0 gets approximately close to 0.25, the amplitude of 
Josephson current decreases, otherwise, the Josephson effect will be enhanced and then holds. In such a process, 
the current oscillation manner does not change [See Fig. 4(a)]. Next, in Fig. 4(b) where R =  0.3, we can see that 
the only effect of the magnetic field is to suppress the minimum of the Josephson current. Such a result is similar 
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Figure 3. Josephson current in the case where the Majorana doublets couple indirectly via a QD of finite 
Coulomb interaction. The Coulomb strength is U =  2.0 and the others are the same as those in Fig. 2. The 
left and right columns correspond to the even-FP and odd-FP results, respectively. (a,b) The case of the non-
magnetic QD. (c,d) The case of finite magnetic field on the QD with R =  0.1. (e,f) R =  0.3. (g,h) R =  0.5.
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to the case of Γ 0 =  0. On the other hand, for the odd-FP case, Fig. 4(c) shows that in the region of ε0 <  − 1.0, the 
Josephson current tends to oscillate more seriously. And when the QD level increases to be ε0 =  − 1.0, the current 
period seems to experience the discontinuous (π →  2π)-like transition followed by the current disappearance 
near the points of φ =  2mπ. Next, in the region of − 1.0 <  ε0 <  1.0, the Josephson current oscillates weakly with 
the change of φ, and its maximum appears in the vicinity of ε0 =  0. When ε0 further increases from 1.0, the 
Josephson current recovers its form of ε0 <  − 1.0 gradually. Figure 4(d) presents the effect of the magnetic field 
on the QD in odd-FP case. It seems that in such a case, the magnetic field cannot induce the fractional Josephson 
effect, but it tends to enhance the current amplitude in the region of − 1.0 <  ε0 <  1.0, which is exactly opposite to 
the case of Γ 0 =  0.

Following the above result, we present the influence of the magnetic field on the case of finite Coulomb inter-
action. The results are displayed in Fig. 5, where the Coulomb strength is also taken to be U =  2.0. Firstly, Fig. 5(a) 
shows the even-FP result with the non-magnetic QD. We can find that in such a case, the current minimum shifts 
to the position of ε0 ≈  − 0.25. Besides, the Coulomb interaction efficiently weakens the Josephson effect, since 
increasing ε0 from − 2.0 begins to eliminate the current amplitude gradually. Next when magnetic field is applied 
on the QD with R =  0.3, it further suppresses the minimum of the Josephson current, similar to the noninteract-
ing case [See Fig. 5(b)]. The odd-FP results are shown in Fig. 5(c,d) with the magnetic field strength being zero 
and 0.3, respectively. In Fig. 5(c), we see that differently from the noninteracting result, the 2π-period oscillation 
of the current occurs from ε0 =  − 3.0. In the region of − 3.0 <  ε0 <  1.0, the Josephson current varies in period 2π 
with its maximum in the vicinity of ε0 =  − 1.0. Besides, it can be noted that Coulomb interaction enhances the 
amplitude of the Josephson current, in comparison with the noninteracting results. For the effect of magnetic field 
in the odd-FP case, as shown in Fig. 5(d), it is analogous to that in the noninteracting case. Namely, it tends to 
enhance the current amplitude in the region of − 3.0 <  ε0 <  1.0 but does not induce the appearance of fractional 
Josephson effect.

The results in Figs 4 and 5 can be explained following the discussion about Figs 2 and 3. In the case of nonzero 
ϒ, the underlying physics that governs the Josephson effects certainly becomes complicated. The reason arises 
from two aspects. Firstly, the fermion occupation in the QD re-regulates the FP of | 〉



n nf f f  for conserving the FP 
of the whole system. Secondly, the Fano interference can be induced due to the direct and indirect couplings 
between the Majorana doublets. We notice that in the even-FP case without magnetic field, when the QD level is 
away from the energy zero point, both ns and ˜ns will be close to 1 or 0 simultaneously. This causes the even-FP 
states of  | 〉



n nf f f , i.e., 00 f
 and 11 f

, to co-contribute dominantly to the Josephson effect. It is known that at these 
two states, the 4π-periodic currents are direction-opposite, so the normal Josephson effect appears in Fig. 4(a) 
where the current amplitude is proportional to Γ 0. Alternatively, in the odd-FP case with |ε0| >  1.0, states 10 f
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and 01 f
 will make leading contribution to the Josephson effect. Thus, the π-period-like current arises with its 

amplitude related to Γ 1. However, after observing the result in Fig. 6(a,b), one can find that the period of the 
odd-FP current is still 2π even in the case of ε0 ≤  − 1.0, because the current profiles near the point φ =  π and 
φ =  2π are different. On the other hand, when the QD level gets close to the energy zero point, it will become 
half-occupied. In such a situation, 10 f

 and 01 f
 contribute to the even-FP Josephson current, whereas 00 f

 and 
|11〉 f devote themselves to the odd-FP current. However, due to Γ 1 ≪  Γ 0, the suppression of IJ

e( ) only appears in a 
narrow region near the point of ε0 =  0, while the 2π-periodic oscillation of IJ

o( ) distributes in a wide region accom-
panied by its enhanced amplitude [See Fig. 4(a,c)]. In what follows, in the presence of intradot Coulomb interac-
tion, εs splits into two, i.e., εs and εs +  U. As a consequence, in the energy region of − U <  εs <  0, the fermion in the 
QD is changeable between 0 and 1, which magnifies the transformation of the Josephson effect caused by the shift 
of QD level. Since the magnetic field and Coulomb interaction play similar roles in affecting the fermion occupa-
tion in the QD, their influences on the Josephson current are also analogous to each other. In addition, it is worth 
noticing that the Fano interference induces the asymmetric spectra of the Josepshon currents vs ε0.

At last, we focus on the extreme case of strong magnetic field where only one level (i.e., εs̃) contributes to the 
Josephson effects. In such a case, the matrix dimension of T

e( )  and T
o( ) will be halved, as discussed in the above 

section. The corresponding numerical results are shown in Fig. 7. In Fig. 7(a,b) we can see that in the case of 
Γ 0 =  0, the Josephson currents in different FPs are the same as each other, with their period 2π. On the other 
hand, when the direct coupling between the Majorana doublets is considered, the Josephson currents become 
dependent on FP. As shown in Fig. 7(c), in the even-FP case, increasing εs̃ can change the current oscillation with 
the clear transition region near ε ≈ − .˜ 1 0s . Instead, in the odd-FP case, similar result occurs when εs̃ decreases. 
These results can certainly be clarified by discussing the influence of the fermion number in the QD on the FP of 
states | 〉



n nf f f . Additionally, in Fig. 7(c,d) we find that the Fano interference leads to the dissimilar transition 
behaviors of the Josephson currents for different FPs.

Summary
In summary, we have investigated the Josephson effect contributed by the Majorana-doublets via considering 
the different inter-doublet coupling manners. It has been found that an embedded QD in this junction plays a 
nontrivial role in modifying the Josephson currents, since the tunable fermion occupation in the QD re-regulates 
the FP of the Majorana doublets for conserving the FP in whole system. As a result, the 4π-period, 2π-period, 
and π-period-like Josephson currents have opportunities to come into being, respectively, following the change of 
structural parameters. To be concrete, when the Majorana doublets couple indirectly via a non-magnetic QD, the 
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normal Josephson effects occur, and the FP change just leads to the reversal of current direction and the variation 
of current amplitude. With the application of magnetic field on the QD, the fractional Josephson effect comes into 
being in the situation of odd FP. On the other hand, when the direct and indirect couplings between the Majorana 
doublets coexist, no fractional Josephson effect takes place, regardless of finite magnetic field on the QD. Instead, 
there almost emerges the π-period-like current with the shift of QD level in the odd-FP situation. In addition to 
the above results, it showed that compared with the magnetic field and inter-doublet coupling manner, the effect 
of Coulomb interaction on the Josephson current is relatively weak. All the results have been clarified by analyz-
ing the contributions of respective basis in the Fock space. We believe that this work will be helpful for describing 
the QD-assisted Josephson effects between Majorana doublets.

We also would like to emphasize the experimental feasibility of our considered Josephson junction. Firstly, 
according to the experimental and theoretical progresses, the one-dimensional DIII-class TS can be fabricated in 
different ways23,38–40. This is very important for the achievement of such a junction. Secondly, the QD fabrication 
is very sophisticated, and the QD-related parameters can be well controlled by adjusting the gate voltage and 
QD size41. Therefore, we consider that the main results in this work can be experimentally realized with high 
feasibility.

Figure 6. Odd-FP Josephson current in the presence of direct and indirect couplings between Majorana 
doublets. In (a) ε0 =  − 1.0, − 1.5, − 2.0, and ε0 =  1.0, 1.5, 2.0 in (b). The other parameters are the same as those 
Fig. 4.

Figure 7. Josephson currents in the limit of strong magnetic field on the QD. The left and right columns 
describe the even and odd FP results. (a,b) The cases of Γ 0 =  0. (c,d) Results of Γ 0 =  0.5.
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