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Self-Organizing Maps-based ocean 
currents forecasting system
Ivica Vilibić1, Jadranka Šepić1, Hrvoje Mihanović1, Hrvoje Kalinić1,2, Simone Cosoli3,4, 
Ivica Janeković4,5, Nedjeljka Žagar6, Blaž Jesenko6, Martina Tudor7, Vlado Dadić1 & 
Damir Ivanković1

An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network 
algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) 
products, has been developed for a coastal area of the northern Adriatic and compared with operational 
ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, 
being based on either unsupervised learning techniques or ocean physics. To compare performance 
of the two methods, their forecasting skills were tested on independent datasets. The SOM-based 
forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with 
potential for further improvement when data sets of higher quality and longer duration are used for 
training.

Ocean and environmental forecasting at regional or basin-wide scales1 can be done in different ways, depending 
on the processes to be investigated, and the time and spatial scales of interest2. The most common approach at 
regional scales and for short-term forecasts (up to a week), is to use regional ocean models driven by mesos-
cale atmospheric model outputs. Forcing is usually carried out through one-way coupling, using multiple nest-
ing techniques and with lateral boundary conditions coming from larger or global models3. Other approaches, 
developed in recent decades, include multi-ensemble methodologies, different data assimilation techniques4, 
hybrid modeling5 and neural network modeling6. The latter is often based on the Self-Organizing Maps (SOM) 
algorithm7.

Since the 2000s the Self-Organizing Maps method has been introduced more extensively in atmospheric and 
ocean sciences8, above all for mapping of: climate and atmospheric processes9, remote sensing data10, and ocean 
modeling data11. The method performs best on comprehensive and long time series, and it is particularly suita-
ble for mapping surface current fields from moored current-meters and high-frequency (HF) radars in coastal 
areas12–14. However, a SOM-based operational forecasting method has not been implemented yet in any opera-
tional oceanography network, in spite of the fact that a similar approach, in combination with other techniques, 
is already used for instance in energy systems15, and hydrology16. This paper documents the architecture of a 
SOM-based forecasting system, specifically designed for surface currents, and its evaluation vs. more conven-
tional ocean forecasting tools (specifically, the ROMS ocean model). The system is based on numerical weather 
prediction (NWP) from the atmospheric model ALADIN/HR, on HF radar data and on an unsupervised SOM 
training. Skill assessment for such system is done and relevant metrics are estimated. System performance is com-
pared to the existing operational ocean forecasting system based on the ROMS ocean model, which is coupled 
with the same ALADIN/HR NWP model.

 
The SOM-based forecasting system and the operational ROMS setup. The SOM-based opera-
tional system was developed with the purpose of providing surface current forecasts (up to 72 h) in the northern 
Adriatic Sea (Fig. 1) as part of the NEURAL project (http://jadran.izor.hr/neural). The system is based on the 
assumption that local wind is the major driver of near-surface circulation in the region. The temporal extent of 
the ocean current forecast window is dictated by the available NWP weather forecast, which extends to 72 hours. 

1Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia. 2University of Split, Faculty 
of Science, Teslina 12, 21000 Split, Croatia. 3Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo 
Grotta Gigante 42/c, 34010 Sgonico, Trieste, Italy. 4University of Western Australia, School of Civil, Environmental 
and Mining Engineering, 35 Stirling Highway, Crawley WA 6009, Australia. 5Ruđer Bošković Institute, Bijenička 
cesta 54, 10000 Zagreb, Croatia. 6Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 
Ljubljana, Slovenia. 7Meteorological and Hydrological Service, Grič 3, 10000 Zagreb, Croatia. Correspondence and 
requests for materials should be addressed to I.V. (email: vilibic@izor.hr)

received: 11 January 2016

accepted: 24 February 2016

Published: 16 March 2016

OPEN

http://jadran.izor.hr/neural
mailto:vilibic@izor.hr


www.nature.com/scientificreports/

2Scientific RepoRts | 6:22924 | DOI: 10.1038/srep22924

The system is based on training and forecast phases (Fig. 2). The main goal of the training phase is to find a robust 
link between ocean surface currents and surface wind fields. In order to do so, the following steps are undertaken:  
(1) surface currents in the area are measured using HF radars during a prolonged time interval; (2) sea-sur-
face wind fields are obtained from a high-resolution mesoscale atmospheric model; (3) the characteristic surface 

Figure 1. (a) The domain of the SOM-based operational forecasting system in the northern Adriatic with 
marked HF radar stations (BIB – Bibione, AUR – Aurisina, SAV – Savudrija, ZUB – Zub). Operational coverage 
of hourly surface currents over the predefined Cartesian grid during testing periods is given in percent, while 
spatial coverage of the Aladin/HR model used for training and forecasting is denoted by the red rectangle. 
Operational coverage at the same Cartesian grid during testing period was higher than 60%. (b) HF radar 
operability between 2007 and 2010 with marked training (blue rectangle) and testing (red rectangles) periods. 
The figure has been created using MATLAB (www.mathworks.com) and CorelDRAW (www.corel.com) software.

Figure 2. The architecture of the SOM-based operational forecasting system. The figure has been created 
using CorelDRAW (www.corel.com) software.
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current patterns are extracted from HF radar data using the SOM method; (4) joint surface current and wind 
patterns are extracted from wind and surface currents using the SOM method; (5) then, optimal SOM parameters 
are estimated and the method applicability is tested on available data. The forecasting phase is based on: (1) fore-
casting surface winds with a high resolution mesoscale atmospheric model; (2) recognizing characteristic SOM 
patterns (as determined during the training phase) in the surface wind forecast by searching for the minimum 
Euclidian distance between characteristic patterns and the NWP-forecasted surface winds; and (3) assigning the 
corresponding surface current pattern as the surface current forecast.

For this study HF radar data were acquired from four SeaSonde radar systems, located at Bibione (BIB), 
Aurisina (AUR), Savudrija (SAV) and Zub (ZUB) (Fig. 1), that were operational from 2007 to 2010. Radars 
worked at 25 MHz, were set up with 512 fft points, 2 Hz sampling rate and a bandwidth of 100 kHz, corresponding 
to a radial resolution of 1.5 km in range, and 2.3 cm/s in radial velocity. Angular resolution was 5°, and the maxi-
mum operating range was 50 km. Hourly surface currents were estimated on a predefined 2 km ×  2 km Cartesian 
grid (Fig. 1) by applying a least-squares algorithm17. Radial currents were quality-checked to remove Doppler 
lines that were either poorly constrained by signal-to-noise (SNR) ratio or had insufficient spectral quality fac-
tor18. Total vectors were also checked for spikes19 and spatial gaps were filled using a Gaussian-weighted spatial 
interpolation. The period with the best temporal coverage (operational coverage from 60% at the distant points 
up to 100% in the center of the radar domain) and having the highest quality of data was the period between 
February and November 2008, so this dataset was used for the SOM training phase.

High-resolution surface wind fields (2 km ×  2 km) obtained with the ALADIN (Aire Limitée Adaptation 
Dynamique Développement Inter National) mesoscale NWP model20, have been used both in training (jointly 
with surface currents data in the period February-November 2008) and forecast phase. The ALADIN/HR ver-
sion of the NWP model which has been used for the Adriatic Sea has 37 levels in the vertical, 2 km resolution 
in horizontal, and a full set of physics parameterizations, including prognostic TKE (turbulent kinetic energy), 
microphysics and a prognostic convection scheme21. Hourly files were used for the training.

Both surface currents and surface winds were preprocessed with a 33-h low-pass filter, to remove tides 
and high-frequency atmospheric and ocean processes from the data. Then, current data in the training period 
(February-November 2008) were introduced to the 4 ×  5 SOM of the sheet type and 20 characteristic surface 
current patterns were mapped. Next, a joint set of surface currents and surface winds was introduced, again to 
the 4 ×  5 SOM of the sheet type and another 20 characteristic joint surface currents surface wind patterns have 
been obtained. Complex correlations coefficients with values from 0.880 to 0.999 between SOM patterns based on 
surface current data only and patterns based on the joint surface current and surface wind data were estimated22. 
High correlation between these two sets of SOM patterns is a prerequisite for creating SOM ocean surface cur-
rents based on wind forecasts.

Following the testing phase, three distinct periods, 1: July-September 2009, 2: January-February 2010, and 
3: April-July 2010, were used for testing reliability of the SOM-based operational forecast (Fig. 1). BIB and AUR 
stations were largely out of operation during the three testing periods, therefore operational coverage was as low 
as 20% at some grid points (Fig. 1), much lower than operational coverage during the training phase (at least 60% 
at the same Cartesian grid). A forecast of surface currents was verified on measured data and standard metrics 
(RMSE) were computed. The 4 ×  5 SOM matrix was chosen for the forecasting system, resulting in 20 patterns 
of forecast surface currents, as this choice provides the minimum root-mean-square error (RMSE) between the 
measured and forecast surface current patterns when compared to other tested sets of SOM matrices (from 2 ×  2 
to 16 ×  12 SOM).

The parallel ocean forecasting system, based on the ROMS ocean model (Regional Ocean Modeling System23), 
is operational in the Adriatic Sea since 2008. The Adriatic ROMS model has a 2 ×  2 km horizontal resolution, 20 
sigma layers in the vertical; it is forced by the ALADIN/HR NWP fields at the surface. Lateral boundary condi-
tions come from the larger AREG model24 and river climatology25. Further details of the modeling system can be 
found in this paper25. Modeled ROMS surface current data filtered with a 33-h low pass filter were recomputed 
over the HF radar grid for the three testing periods to allow comparison with the SOM-based surface current 
forecast.

Evaluation of the SOM-based forecast. Average RMSE from the SOM-based forecast is 9.4 cm/s for 
period 1, 7.7 cm/s for period 2 and 8.4 cm/s for period 3. The best metrics are estimated during the winter period 
(period 2), while they are much larger during summer and spring periods (periods 1 and 3, respectively). The 
respective ROMS-based metrics have a similar level of quality, with slightly higher RMSE values during sum-
mer (period 1: 10.0 cm/s) and spring (period 3: 9.8 cm/s) and lower during winter period (period 2: 7.5 cm/s). 
Averaged over all testing periods, the ROMS-based forecast is 8.7% worse than the SOM-based forecast.

We have further estimated both ROMS and SOM forecast system skill changes over different SOM solutions 
(Fig. 3). For any given SOM pattern we computed: (1) RMSE between the current field characteristic for that 
pattern and the surface current field obtained from measurements; (2) RMSE between ROMS currents and the 
surface current field obtained from measurements; both (1) and (2) were computed for those times for which 
a particular SOM pattern was forecasted. The pattern BMU16, associated to strong bora wind (Fig. 4), has the 
largest RMSE values. During wintertime (period 2), this pattern appears more frequently than during other inves-
tigated periods (9% in period 2, 1.5% in period 1 and 5% during period 3) and is slightly better forecast by the 
ROMS than by the SOM forecast system (Fig. 3). On the other hand, it is better forecast by the SOM during 
periods 1 and 3, but its representation in all patterns is smaller (1.5 and 5%, respectively). Another important 
extreme wind pattern, BMU20, is associated with the sirocco wind blowing from the south (Fig. 4). This pattern 
has a much lower frequency (up to 3%) during testing periods (Fig. 3). Its SOM-based forecast also provides 
larger errors than the ROMS forecast during periods 1 and 2, but smaller errors in period 3 when the pattern 
BMU20 is slightly more frequent. The overall shape of the RMSE distribution over the BMUs (Fig. 3) shows more 
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resemblance between periods 1 and 3, which are characterized by vertical stratification in the sea, than in period 
2, when the sea is usually homogenized26. Also, RMSE is much smaller during period 2 than during periods 1 and 
3. Therefore, baroclinicity introduces additional error to both SOM- and ROMS-based forecasts.

SOM and ROMS forecast for BMU 16 and BMU 20 are analyzed in more detail. The BMU16 is a result of 
extreme bora conditions. The bora wind is strongly horizontally variable over a kilometer spatial scale in the 
northern Adriatic27, and it might not be properly represented by the 2-km resolution ALADIN/HR mesoscale 
model. Mesoscale atmospheric models tend to largely underestimate energies at high frequencies28, thus implying 
that higher resolution is needed in the model to fully describe the bora wind dynamics.

For that reason surface currents forecast by the SOM-based operational system – which are based on real 
measurements – are more intense and reliable during extreme events than surface currents forecast by ROMS. 
As seen in Fig. 4, the SOM-forecasted surface currents are much stronger (30–40%) than ROMS-forecasted 
values. Also, ROMS-forecasted fields corresponding to BMU16 wind conditions contain a northward current 
in the southern part of the domain, being a part of the cyclonic circulation known to occur in the area of the 

Figure 3. Distribution of root-mean-square error (RMSE) between SOM- and ROMS-derived forecast 
of surface currents and the respective measurements per BMU and for three testing periods. Percentage 
of situations ascribed to a particular BMU is also shown. The figure has been created using MATLAB (www.
mathworks.com) software.

Figure 4. Surface currents obtained by the SOM-based forecasting system, the respective average surface 
currents obtained by ROMS forecasting system, and the RMSE between SOM-based and ROMS-based forecast 
of surface currents and the measurements, computed for (a) BMU16 (associated with strong bora wind), and (b) 
BMU20 (associated with sirocco wind). Encircled area includes grid points with at least 60% operational coverage 
during the testing period. The figure has been created using MATLAB (www.mathworks.com) software.

http://www.mathworks.com
http://www.mathworks.com
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northern Adriatic during strong bora forcing29. By contrast, the SOM-based forecast has very weak currents in 
the southern part of the domain associated with the BMU16 pattern, followed by a lower RMSE than the one of 
the ROMS-based forecast (Fig. 4). Two alternative explanations for the discrepancy are feasible: (i) ALADIN/HR 
wind forcing during wintertime extreme bora wind creates an artificial strengthening of the cyclonic gyre in the 
area of the northern Adriatic, frequently reproduced by ocean numerical models which use atmospheric mesos-
cale models30, or (ii) HF radar measurements are of lower quality at the southernmost part of the domain, which 
is covered by two HF radars only.

The difference between the SOM- and ROMS-based forecasts is also evident during intervals represented by 
other patterns, like the BMU20 (Fig. 4), which is representative of the second dominant wind in the northern 
Adriatic, the sirocco31. Although currents are not as strong as during strong bora episodes, the SOM-based fore-
cast still gives 20–40% stronger currents than the ROMS-based forecast. In addition, there is a 10–30% clockwise 
offset in ROMS-forecasted current direction.

The spatial distribution of RMSE during periods corresponding to BMU16 and the BMU20 patterns (Fig. 4) 
reveals that both SOM- and ROMS-based forecasting systems reproduce mean current field relatively well (small 
RMSE in area with temporal coverage higher than 60%). On the other hand, very high RMSE values in areas with 
relatively low temporal coverage reveal that variability of the measurements is much higher than variability of 
both SOM and ROMS forecasts and that this variability is not adequately reproduced by either of the two forecast 
models.

Discussion and perspectives. Both SOM- and ROMS-based forecasting systems perform short-term 
(72 h) forecasting of surface currents in the northern Adriatic with similar skill and quality. However, a limited 
dataset used for training of the SOM-based forecast, including only 10 months of HF currents in the northern 
Adriatic, presumably lower the quality of the SOM-based forecast. An increase of the training dataset to several 
years would likely improve the skill of the forecast, allowing for better and more reliable selection of an optimal 
number of SOM patterns. Such datasets are now available from HF radar measurements in numerous other 
regions of the World Ocean32, so this approach can be easily tested.

There are several advantages when using SOM-based neural networks for forecasting ocean parameters, in 
our case surface currents. The first is that the system is based on real data, with a much simpler model learning 
approach than in other techniques based on real data, such as data assimilation33. Another advantage is that, after 
HF radar time series of sufficient length are collected and a SOM-based forecasting system for an area has been 
created, HF radars can be redeployed in other coastal areas, potentially allowing for a spatial extension of the 
SOM-based operational forecasting. Finally, the required time for execution of the SOM-based forecast is much 
smaller, an order of magnitude, than for forecasts provided by ocean numerical models.

On the other hand, a prerequisite for the proposed forecasting system is a high correlation between predictor 
and predictand, in our case between wind and surface currents. However, such a high correlation is common 
for coastal areas34, widening application of a SOM-based forecasting system for surface currents at a number 
of coastal regions where HF radar measurements are available. Another problem is an under-representation of 
extreme situations in the forecasting system - and forecasting of extremes has much more practical use than 
forecasting of mean situations - if not trained by a satisfactorily number of BMU patterns. Such a problem may 
be overcome by a two-step SOM, i.e. by first training it on all measured current fields and then by re-training it 
only on those current fields which are representative for extreme conditions (e.g., BMU16 and BMU20 in our 
case). This would downscale the training process through use of a number of BMU solutions instead of one 
representative for extreme conditions. However, this should be accompanied with an increasing resolution of 
atmospheric numerical models - enabling them to recognize more variable wind fields. Also, a use of supervised 
neural network algorithms35 with prescribed patterns in predictands might be a solution for improving the skill 
of the SOM-based forecasting system.

The evaluated SOM-based forecasting system in the northern Adriatic is performed on low-pass (33 h) filtered 
ocean currents and winds, and therefore it does not account for tides and other processes over hourly timescales, 
such as inertial oscillations or mesoscale phenomena originating outside of the domain. These processes might be 
significant in marginal seas (tidal currents are about 10 cm/s in the area36). For that reason, we tested both SOM 
and ROMS-based forecasting systems without preprocessing (low-pass filtering) on the same training and testing 
dataset, resulting in RMSE increase for about 60% for both forecasting systems compared to the computations 
with preprocessing. Nevertheless, the RMSE of the SOM forecast is on average about 9.5% smaller than the RMSE 
of the ROMS forecast. However, the increase of the RMSE in the SOM-based forecasting system might be lowered 
by removing tides prior to the SOM analyses and re-adding them later to the forecast patterns. Also, a significant 
increase of the testing dataset might allow for use of much more SOM patterns than used here (20 patterns), 
which, in the end, might result in more reliable reproduction of all processes appearing in a domain.

The proposed SOM-based forecasting system may be particularly applicable for areas with heavy marine 
traffic, harbors, touristic areas, etc., where forecasting of surface currents may be essential for preventing and 
mitigating impacts of marine accidents (e.g., oil spill, rescue at sea, safety of navigation). A similar architecture 
of the forecasting system could also be appropriate for forecasting different parameters in marine systems (in 
biogeochemistry, trophic relations, fisheries37) which are too complex for “classical” forecasting tools based on 
numerical models.
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