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Multistable internal resonance 
in electroelastic crystals with 
nonlinearly coupled modes
Christopher R. Kirkendall & Jae W. Kwon

Nonlinear modal interactions have recently become the focus of intense research in micro- and 
nanoscale resonators for their use to improve oscillator performance and probe the frontiers of 
fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-
clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report 
multistable energy transfer between internally resonant modes of an electroelastic crystal plate and 
use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our 
results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple 
case of two coupled modes generates a host of topologically distinct dynamics over the parameter 
space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic 
motion. 

The advent of micro- and nanotechnology revealed the inherently nonlinear dynamics that can manifest in res-
onant systems at even moderate forcing amplitudes. Consequently, there has been steady interest in exploiting 
nonlinear resonance in new ways. Notable in this regard is the use of bistability and hysteresis: in mechanical res-
onators to increase sensitivity and exceed the detection limit set by thermomechanical noise1–4, and in Josephson 
bifurcation amplifiers for high-speed readout of superconducting qubits5,6. Its presence in nanomechanical oscil-
lators has enabled coherent signal amplification via stochastic resonance7 and the creation of bit storage and flip 
operations for controllable memory8,9. Most recently, thermo-mechanical relaxation oscillations were achieved by 
utilizing hysteresis in a quartz resonator10. However, these examples and much of existing literature employ single 
degree of freedom models that approximate an underlying continuous system11–14.

In this study we exploit nonlinear coupling between modes of an individual resonator driven by a single 
source to create regions of multistability in the frequency response beyond the usual bistability. Studies of cou-
pling between individual resonators15,16 or arrays of them17,18 have introduced a host of nonlinear phenomena 
into the purview of micro- and nanoscale research, but fabrication, interfacing, and measurement of such systems 
offers many challenges. In some cases two driving forces are applied to a single resonator19,20. From an applica-
tions standpoint it would be easier if a single device forced by one source could generate the desired complex 
dynamics. Further innovation will benefit from a deeper understanding of nonlinear modal interactions in indi-
vidual resonators modelled as multiple degree of freedom systems.

Recent experimental work has moved in this direction by exploring coupling between different eigenmodes 
of a single clamped-clamped beam21–23. Accounting for the effect of other modes enables precise determination 
of intra- and intermodal coupling coefficients. The ability to resolve the influence of various modes on the pri-
mary resonance is crucial as demands on nanoscale sensors increase. In many cases, however, the presence of the 
coupled mode does not change the bifurcation topology of the primary mode: the usual bistable Duffing behav-
iour persists. The coupled mode may shift or alter the shape of the primary mode Duffing response, but without 
changing the number of bifurcations or the existence of additional stable/unstable branches. Under proper con-
ditions more complex interactions can arise that modify this basic structure, such as internal resonance. This phe-
nomenon, well-studied in macroscale systems24–27, has received comparatively little attention at the microscale, 
despite its recent use to enhance frequency stability in a clamped-clamped silicon beam28. In part, this is likely due 
to the difficulty of designing devices that reliably exhibit internal resonances and other potentially useful complex 
dynamics – a difficulty compounded by a lack of systematic theoretical methods to quantitatively predict their 
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occurrence. Thus, our understanding of modal interactions is far from complete, especially in systems where 
multiphysics couplings are prevalent (e.g. piezoelectric, thermoelastic).

Therefore, we derive a general model of nonlinear resonance in electroelastic crystals that accounts for both 
material and geometric nonlinearities and their effect on modal interactions. We use the model to explain hereto-
fore unobserved manifestations of modal coupling in a quartz crystal resonator driven into the nonlinear regime. 
In addition to the well-known saddle-node bifurcations associated with Duffing bistability, we show that modal 
interactions can generate other saddle-node delimited, multistable regions that significantly complicate the 
dynamics. Our results indicate that even in the simplest case of two modes the nature of modal interactions can 
vary widely, and strongly depends on the system parameters: changes in the difference between eigenfrequencies 
of the associated linear system, the modal damping ratios, or nonlinear coupling coefficients can lead to topolog-
ically distinct bifurcation structures. This explains the aforementioned difficulty of ‘pinning down’ internal reso-
nance and related effects in real devices. The framework presented here overcomes many problems of accurately 
predicting complex dynamics in electroelastic crystals.

Theoretical Model
We now introduce the analytical-numerical approach to explain this behaviour. The analytical aspect consists in a 
perturbation analysis of the equations of electroelasticity. The result is a system of ordinary differential equations 
(ODEs) in terms of complex modal amplitudes (magnitude and phase of the response). The numerical aspect 
involves pseudo-arclength continuation29 of these modal equations to give the bifurcation structure in terms 
of excitation frequency and amplitude. The ability of continuation methods to quickly identify both stable and 
unstable solutions and their bifurcations, as well as continue periodic solutions arising from Hopf bifurcations, 
makes them instrumental to any study of modal interactions.

More importantly, the effect of a finite sweep rate can mask the underlying static bifurcation structure and 
prevent correct interpretation of both numerical integration and experimental results. As shown below, this is 
especially relevant at higher forcing amplitudes where thermal effects and bifurcation delay cause a number of 
transient behaviours. Numerical continuation allows one to separate these phenomena from the steady state 
dynamics, which are the primary focus of this paper. Lastly, even two coupled modes can generate multiple stable 
solutions that are experimentally inaccessible and difficult to locate numerically without detailed knowledge of 
their basins of attraction. Continuation methods resolve these difficulties, and once the bifurcation structure is 
known numerical integration can probe the dynamics of a given region of parameter space.

The equations of motion for nonlinear electroelasticity, in the absence of a body force, are defined by
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where KLj is the total first Piola-Kirchhoff stress tensor (material plus Maxwell electrostatic), uj is the mechani-
cal displacement and DL, ρ0 and ρE are the electric displacement, mass density and charge density, respectively, 
referred to the reference configuration (see Supplementary Information for exact definitions and details). In the 
restricted case of infinitesimal deformation these reduce to the familiar equations of piezoelectricity, and KLj 
becomes the Cauchy stress tensor. To account for a range of electroelastic interactions (piezoelectric, electrostric-
tive, etc.), constitutive relations for KLj and DL are given in terms of a free energy function, χ. The exact functional 
dependence of χ can be tailored according to the level of generality desired30. Here we choose a simple polyno-
mial dependence31 in terms of the Lagrange strain tensor EKL and rotationally invariant electric variable WL = ϕ,L, 
where ϕ is the electric potential, such that χ =  χ (EKL, WL). Since we are interested in the weakly nonlinear 
dynamics of electroelastic crystals, χ is expanded to cubic order in uj and ϕ (see Supplementary Section 1)32.

The particular crystal symmetry and relevant electroelastic interactions determine further specification of 
the problem. The rotated Y-cut quartz used in experiments exhibits monoclinic symmetry and has negligible 
electrical conductance (ρE ≈  0). Due to the relatively weak piezoelectric coupling of quartz, higher order electro-
elastic coupling terms are omitted from the constitutive relations33. In our experimental samples the longitudinal 
(thickness-stretch) and x3-polarized thickness-shear modes are far removed from the excitation frequency and 
not involved in any internal resonances with the x1-polarized thickness shear mode. Therefore, only the u1 com-
ponent of displacement is considered, hereafter denoted as u. Thickness vibrations induced by a time-harmonic 
voltage applied to both faces of the plate are then governed by the following nondimensional equations and 
boundary conditions (see Supplementary Section 2):
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We proceed to reduce these to a set of amplitude modulation equations via the method of multiple scales34. 
Although equation (2) only has cubic nonlinearities, the general system given by equation (1) can possess quad-
ratic terms as well. In this case, discretization methods can lead to qualitatively erroneous results35. Moreover, the 
presence of nonlinearities in the boundary conditions renders a Galerkin discretization inconvenient. For these 
reasons, the method of multiple scales is directly applied to the governing partial differential system to give equa-
tions of motion describing the time-evolution of coupled modes. One advantage of the multiple scales method is 
its ability to treat internal resonances between an arbitrary number of modes. Here we consider coupling between 
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two thickness shear modes, designated by the indices n and m. The former is directly excited by a periodic signal 
(Ω = ωn + εσ1) and related to the latter by ωm =  3ωn +  εσ2, where ε « 1 and σ1, σ2 are O(1) detuning parameters. 
The solution is sought in the form
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where T0 = t is the fast timescale and T1 =  εt is the slow time-scale on which the complex modal amplitudes vary.
The response, to first-order, is then given by
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where ζn(y), ζm(y), χn(y), and χm(y) are spatial eigensolutions of the linear homogeneous system and c.c. denotes 
complex conjugation. The complex modal amplitudes An and Am determine the bifurcation structure and are 
given by

µ γ γ γ

µ γ γ γ

+ + + + =

+ + + + =

σ σ

σ

−

−

i D A A A A A A A A A e fe

i D A A A A A A A A e

2 ( ) 8 8 8

2 ( ) 8 8 8 0 (5)

n n n nn n n nm m n m n m n
iT iT

m m m mm m m mn m n n m n
iT

1
2

0
2

1
2

0
3

1 2 1 1

1 2

where D1 =  ∂/∂T1 and an overbar means complex conjugation. The undefined coefficients are determined by the 
eigensolutions of the linear system and its adjoint. Equation (5) is converted to a real-valued autonomous system 
of ODEs via the transformation
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The slowly varying modal amplitudes and phases are then given, respectively, by ai =   +p qi i
2 2  and 

βi =  arctan(qi/pi), where i =  n,m (see Supplementary Section 3 for a full derivation).

Results and Discussion
We experimentally verify the model by measuring the signal reflected from the quartz resonator driven near its 
third thickness-shear harmonic (fn =  30.01425 MHz). For driving amplitudes within the nonlinear regime yet 
below a certain threshold only the standard Duffing behaviour occurs, as shown in Fig. 1a. A decrease in the 
experimental reflection parameter |S11| corresponds to an increase in the theoretical modal amplitudes (compare 
Fig. 1a–c). However, even before the onset of more complex multistability the influence of modal coupling is 
apparent from the theoretical plots, in this case with the ninth harmonic at fm =  90.045 MHz. As higher driving 
amplitudes cause more bending in the response of the primary mode (an) the coupled mode amplitude (am) 
grows in turn, though at this point am is practically negligible compared to an (Fig. 1b,c). Numerical continuation 
of equation (5) shows that the lower energy resonance branch begins to deform and eventually splits, generating 
the unstable loop in Fig. 1b,c. Note that the loop does not actually cross itself since each response curve—the 
primary mode an and the coupled mode am—is a projection from four-dimensional space onto each mode (see 
Supplementary Section 4). Although the offshoot is unstable and thus not experimentally observable, this ini-
tial departure from simple Duffing behaviour anticipates the complex multistability witnessed at higher forcing 
amplitudes. Indeed, the small offshoot will later merge into a third stable branch, as detailed below.

It is important to contrast this behaviour with other kinds of modal interactions reported in the literature. 
In many cases the coupled mode has a trivial response until a critical driving amplitude, at which a pitchfork 
bifurcation appears in the upper branch of the bistable region25,27. After this point the coupled mode obtains a 
nontrivial response only over a certain bandwidth and is said to be internally resonant with the primary mode. 
The frequency response remains continuous after the pitchfork bifurcation appears, until finally jumping onto the 
lower branch after the saddle-node bifurcation.

In contrast, for our electroelastic plate model the coupled mode always has a nontrivial response, even if it is 
practically negligible at lower forcing levels as in Fig. 1c. Moreover, unlike the former description of internal res-
onance, higher forcing amplitudes do not lead to pitchfork bifurcations. Rather, we witness the creation of addi-
tional pairs of saddle-node bifurcations and concomitant multistability in the frequency response. Instead of only 
two bifurcation points at least four such points exist, along with a region of three stable solutions nested within 
the previously bistable region. This is the most important prediction of the new model, which we experimentally 
demonstrate in Fig. 2 below. The majority of additional bifurcation points are not experimentally observable, 
however, as they exist on unstable portions of the solution (dashed lines in theoretical plots).

During a frequency sweep, trajectories with an equilibrium on the higher energy resonance branch can switch 
to the new stable branch, as in Fig. 2. In terms of the theoretical plots the primary mode amplitude decreases 
(selecting the middle stable branch in Fig. 3a–c) and a portion of that energy is channelled to the coupled mode 
(selecting the upper stable branch in Fig. 3d–f). This corresponds to an increase in the observed reflection param-
eter |S11| since the resonator stores less vibrational energy. The transition is clearly evident in the reflected signals 
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Figure 1.  Duffing bistability and a precursor of multistability. (a) Experimental reflection parameter |S11| 
of the electroelastic crystal, showing progression from linear resonance to nonlinear Duffing bistability for 
a forward frequency sweep. Higher forcing amplitudes lead to greater bending in the response curve. (b) 
Theoretical response curve of the primary mode obtained by numerical continuation of equation (5). Solid 
(dashed) lines denote stable (unstable) equilibria. The curves correspond to two of the experimental curves in 
(a). The inset is a blow up of the offshoot from the lower branch that is a precursor of multistability at higher 
forcing amplitudes. (c) Same as (b) for the coupled mode amplitude.

Figure 2.  Existence of multistability. (a–c) Experimental reflection parameters for increasing drive voltages 
that demonstrate the existence of a third stable branch. The label L denotes saddle-node bifurcations. 
Transitions between stable branches are indicated by arrows in the direction of the transition. (d–f) Various 
sweep rates cause the system to transition to the third branch at different frequencies for the same drive voltage.
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of Fig. 2. This has implications for potential technologies that exploit internal resonance for the feedback effect of 
the coupled mode on the driven mode, as demonstrated in ref. 28.

The passage from bistable to multistable behaviour is difficult to visualize from experimental data without 
theoretical foresight. When the frequency response is merely bistable, both branches can be reached by perform-
ing either a forward or backward frequency sweep. However, it is less straightforward when more than two stable 
solutions exist. Figure 3g–i shows the basins of attraction at two different frequencies for a number of equilibria 
that belong to the frequency response of Fig. 3a,d. Note that the plots do not represent the full basins of attraction 
since they are necessarily projected from the full space onto a single pair of initial conditions (pm(t0), qm(t0)) for 
the coupled mode. For equilibria in regions with only two stable solutions (Fig. 3g) the basins resemble those of 
a typical Duffing resonator. However, in regions with three stable solutions the basins strongly depend on the 
initial conditions of the coupled mode, as in Fig. 3h,i. In fact, the basin of attraction for an equilibrium point 
may lie entirely outside a plane of (pn(t0), qn(t0)) initial conditions defined by a given (pm(t0), qm(t0)), as occurs for 
the third stable equilibrium in Fig. 3h (triangle marker) and the higher energy one in Fig. 3i (square marker). A 
unidirectional frequency sweep may not be able to access these initial conditions, and thus a given measurement 
may not detect all stable solutions.

The previous observations lend clarity to the experimental reflection parameters in Fig. 2. For example, the 
strong dependence of steady state amplitude on initial conditions translates into a similar dependence on the 
experimental sweep rate. While the main interest of this paper is the steady-state bifurcation structure of the 
system (namely multistability), we now explain why the choice of sweep rate can influence how the system selects 
a given stable solution. We take advantage of this dependence to elicit various responses that corroborate the the-
oretical plots in Figs 3 and 4. In Fig. 2d–f different portions of the third stable branch are mapped out by varying 
the sweep rate. In other words, the response transitions to the third branch at different frequencies in a way that 
depends on the sweep rate. A close inspection of the responses at a given forcing amplitude shows that they begin 
to slightly deviate from each other as the driving frequency increases, before each switching to the third branch 
in turn.

There are two main reasons the system does not behave identically for different sweep rates. On one hand, slow 
Joule heating of the crystal causes the overall response to shift in frequency space, as recently demonstrated10. 
Different sweep rates result in different temperatures at a given frequency, thus explaining the amplitude devia-
tions. These deviations may place the system in different basins of attraction for the same frequency, explaining 

Figure 3.  Passage from bistability to multistability. (a) Frequency response of the primary mode showing the 
existence of an isolated loop that contains a third stable branch. Labels L and H denote saddle-node and Hopf 
bifurcations, respectively. The circle and square magenta markers correspond to those in (g). The black markers 
correspond to those in (h) and (i). (b) At higher drive voltages the isolated branch merges with the offshoot 
from the lower branch. (c) Even higher drive voltages generate another saddle-node delimited, multistable 
region (blown up in the inset). (d–f) Same as (a–c) for the coupled mode. (g–i) Basins of attraction for the 
frequency response in (a,d). The black curves in (g) are trajectories leading to the two stable equilibria at 2 KHz 
offset. Panels (h,i) are at different initial conditions for the coupled mode.
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the different moments at which the switch to the third branch occurs. Importantly, despite the frequency at 
which a transition occurs, afterwards the responses overlap at approximately the same |S11| value. Together with 
the simulated (static) frequency response, this reinforces the interpretation that the reflected signals at different 
sweep rates indeed represent a transition to the same branch. Furthermore, as the forcing amplitude is increased 
from 3.75 V to 4.31 V the bandwidth of the third stable branch likewise increases (Fig. 2), as predicted by the 
theoretical analysis.

On the other hand the theory of dynamic bifurcations plays a role in the observed dependency on sweep 
rate36,37. For a finite sweep rate the experimental frequency responses only approximate those given by the 
static bifurcation diagrams in Fig. 3a–f. The latter assume the response is ‘built up’ by recording a succession of 
steady-state amplitudes at fixed frequencies. However, in the adiabatic limit of a slowly varying frequency the 
system trajectory remains within a small neighbourhood (the slow manifold) of the static bifurcation diagram 
(the critical manifold)38. Dynamic bifurcation theory also predicts a delayed bifurcation during passage through 
a saddle-node point39. Therefore the various sweep rates cause the response to lose stability and jump onto the 
lower energy branch at different points. In reality the exact jump location depends on a combination of Joule 
heating effects and bifurcation delay. For the purpose of the current analysis it is enough the demonstrate the 
existence of the third stable branch as predicted by the static bifurcation diagram.

At this point it is clear that any attempt to interpret experimental manifestations of modal coupling—without 
detailed knowledge of the static bifurcation structure—is prone to ambiguity. Modal interactions elicit a number 
of dynamic and transient effects that are less pronounced in single degree of freedom systems. As an additional 
example, before jumping to the lower branch the reflected signal sometimes exhibits a large, narrow dip (Fig. 2b,f 
and the blue curves in d,e) that has no counterpart in the static frequency response. Therefore, the dips likely 
correspond to transient interactions between the coupled modes that occur when the system loses stability and 
begins to transition to the lower energy branch. Future work will study how Joule heating and bifurcation delay 
complicate the dynamics during loss of stability in modally coupled systems. To separate these effects from phe-
nomena that legitimately reflect the bifurcation structure, such as multistability and quasiperiodic motion due 
to Hopf points, we have systematically mapped out the structure in Fig. 4. The simulated responses in Fig. 3 
indicate the presence of multiple pairs of saddle-node and Hopf points. Numerical continuation of these points 
in two parameters (forcing amplitude and frequency) explains the evolution of the system from bistability to 
multistability.

The analysis reveals three nested loci of saddle-node bifurcations (red, blue and purple curves), two of which 
are connected by a locus of Hopf points (green curve). The red locus of saddle-node points is well-known from 
standard bistable Duffing behaviour while the others are new predictions of our model that account for multista-
bility. The Hopf curve accounts for some of the more complex behaviour observed in Fig. 5. From about 1–3 KHz 
offset from fn in Fig. 4a, the Hopf curve coincides with the blue locus of saddle-node points, which obtain a 

Figure 4.  Bifurcation structure and codimension-two singularities. (a) Full bifurcation diagram in 
frequency-amplitude space. The red, blue, and purple curves are loci of saddle-node bifurcations and the green 
curve a locus of Hopf points. Labels CP, BT, and GH denote cusp, Bogdanov-Takens, and general Hopf (Bautin) 
bifurcations, respectively. The horizontal, dashed lines locate the frequency responses of Fig. 3a–f at their 
corresponding drive voltages in the full bifurcation diagram. (b–d) Same as (a) for different σ 2 values.
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local minimum and maximum that explain the presence of the isolated loop in Fig. 3a,d. At higher frequencies 
(> 3 KHz offset) the two curves begin to increasingly diverge once the forcing amplitude moves past the local 
minimum. This coincides with the gradual lengthening of the stable portion of the isolated loop. Indeed, in 
experiments (Fig. 2) the system begins jumping onto the third branch at around 3.5–4 KHz offset. Once the forc-
ing amplitude exceeds the local maximum, the isolated branch merges with the offshoot from the lower energy 
branch, as in Fig. 3b,e, reducing the total number of saddle-nodes in a frequency response from six to four. At 
even higher amplitudes a third locus of saddle-nodes appears (purple curve in Fig. 4; exhibited by the small loop 
in Fig. 3c,f), although in experiments we did not drive the resonator sufficiently high to observe this.

The ability to observe multistability at feasible drive voltages largely depends on the relationship between fn 
and fm represented by σ 2. A crucial prediction of our model is that for |σ 2| large enough the effect of the coupled 
mode diminishes for realistic forcing amplitudes and the response reverts to standard bistability (for quartz this 
occurs around |σ 2| >  2.5 KHz). In fact, linear piezoelectric theory predicts σ 2 =  27.945 KHz for simple thickness 
modes (infinite plate approximation), but finite dimensions and electrode geometry cause linear coupling with 
lateral eigenmodes that can alter this value. Our crystals exhibit σ 2 ranging between ± 17 KHz and we selected 
crystals with small enough σ 2 to elicit multistability for realistic drive voltages. For crystals with larger |σ 2| we did 
not witness multistability (data not shown). Figure 4a corresponds to our experimental value of σ 2 while b-d show 
what theoretically occurs for even smaller |σ 2|. As |σ 2| decreases below 1.5 KHz the Hopf and blue saddle-node 
curves straighten out, destroying their local extrema and thus the isolated branch of the frequency response as 
well (Fig. 4b–d). In this case the offshoot from the lower energy branch gradually extends to become the third 
stable branch itself. For σ 2 <  0 the Hopf curve disappears entirely.

Besides the cusp points (CP) at which saddle-node curves annihilate, a number of other codimension-two 
bifurcations occur, the most interesting being the Bogdanov-Takens (BT) points that bound the Hopf curve. 
These indicate the presence of homoclinic bifurcations and often foreshadow more complex behaviour40. In 
Supplementary Section 5 we continue periodic solutions emanating from Hopf points and demonstrate the exist-
ence of such homoclinic orbits, along with quasiperiodic motion (periodic solutions for an and am due to Hopf 
points imply quasiperiodic motion of the resonator). Such behaviour occurs in regions of the unstable third/
isolated branch bounded by Hopf points. While the primary focus of this paper is multistability, in Fig. 5 we 
experimentally demonstrate some of the more exotic behaviour predicted by our theoretical model. Note that the 
transient behaviour itself is not directly shown in Figs 3 and 4 but merely implied by the Hopf curve.

For instance, the existence of periodic solutions for an and am due to Hopf points nicely explains the sudden 
dips in |S11| that precede a transition to the third stable branch in Fig. 5d–i, as well as the rapid oscillations in 

Figure 5.  Dynamic effects and quasiperiodic motion. (a–c) Experimental response at different sweep 
rates demonstrating Hopf bifurcations and quasiperiodic motion of the resonator. The driving voltage is low 
enough to preclude the existence of a third stable branch. (d–f) A variety of multistable and transient effects are 
observed. (g–i) Dynamic bifurcation phenomena strongly influence the frequency response at higher sweep 
rates. Throughout, arrows denote transitions between stable branches, and saddle-node and Hopf bifurcations 
are denoted by L and H, respectively.
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Fig. 5b distinctive of quasiperiodic motion, or possibly chaos (see also Supplementary Section 5). Since Hopf 
points exist at amplitudes below which any significant portion of the third branch becomes stable, we should be 
able to evoke this behaviour before a transition can occur experimentally. Figure 5a–c exhibits this scenario for 
different sweep rates. At 6.2 Hz/s the system begins to bifurcate to the lower branch, but encounters an attractor of 
quasiperiodic motion that directs it back to the stable branch before finally bifurcating. By decreasing the sweep 
rate (Fig. 5b) the system undergoes a Hopf bifurcation, evidenced by the sudden dip in |S11|, then loses stability 
and drifts toward a quasiperiodic (or potentially chaotic) attractor. The reduced sweep rate allows multiple oscil-
lations to be captured in the reflected signal before it returns to the stable branch and bifurcates. At 0.94 Hz/s the 
system has sufficient time to settle after losing stability and avoids the quasiperiodic attractor. As predicted, these 
phenomena can occur at lower amplitudes where a transition to the third branch is not yet possible.

Figure 5d–f captures the full range of behaviour, including multistability. After the |S11| dip due to the Hopf 
point, the system returns to the higher energy branch and resides there before transitioning to the third branch. 
Remarkably, the system returns to the higher energy branch once more before bifurcating. One apparent conse-
quence of this is a more violent transition to the low energy branch, as evinced by the rapid modulation of |S11| in 
Fig. 5e,f after passing the final saddle-node point. Lastly, the different locations of the |S11| dip for a given forcing 
amplitude are due to bifurcation delay, which is predicted for Hopf points just as for saddle-nodes41. For high 
enough sweep rates the system transitions directly from the |S11| dip to the third stable branch (Fig. 5g–i).

Conclusion
In conclusion, nonlinear modal interactions in electroelastic crystals can exhibit incredibly rich, multistable and 
even quasiperiodic behaviour. The theoretical analysis developed here is potentially useful for a variety of appli-
cations that exploit multistability in nonlinear systems. Feedback from modal coupling has already been used 
to improve frequency stability28, and the current work provides a systematic framework to quantitatively model 
and exploit the effects of modal coupling in general electroelastic crystals. The multistability demonstrated here 
could potentially be applied in electromechanical memory devices due to the existence of multiple stable states. 
Furthermore, our experimental results provide a convenient platform to advance fundamental studies of dynamic 
bifurcations and thermal effects in nonlinear, multiple degree of freedom systems. In future research we aim to 
more deeply study these interesting transient dynamics.

Methods
|S11| Measurements.  All experimental results were obtained by driving a circular, AT-cut quartz crystal 
resonator (QCR) around its third thickness-shear harmonic (Laptech Precision, Inc., model XL1191–30.0 M). 
The QCR was driven with a sinusoidal voltage from an Agilent N5181A signal generator. The signal from the 
generator was passed through a circulator before reaching the QCR, in order that the reflected signal could be 
collected by a signal analyzer (Agilent N9000A). Additional details and a diagram of the experimental setup are 
given in Supplementary Section 6.

Continuation Analysis.  Numerical simulations of the frequency responses and bifurcation diagrams were 
computed with the AUTO software. The forcing voltage, V, and detuning of the forcing frequency, σ 1, were used 
as the continuation parameters. To generate a frequency response for a given forcing amplitude the governing 
equations were numerically continued from the trivial solution with V =  0 until reaching the desired forcing 
amplitude. Then, starting from the previous point, the system was continued in σ 1 to produce the frequency 
response. To generate the full bifurcation diagram for a given σ 2 (detuning of the 3:1 internal resonance), the 
codimension-1 bifurcations identified within a frequency response (saddle-node and Hopf) were continued in 
both parameters (F and σ 1). Additional details regarding numerical continuation are given in Supplementary 
Section 4.
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