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Full-scale computation for all 
the thermoelectric property 
parameters of half-Heusler 
compounds
A. J. Hong1, L. Li1, R. He2, J. J. Gong1, Z. B. Yan1, K. F. Wang1, J. -M. Liu1 & Z. F. Ren2

The thermoelectric performance of materials relies substantially on the band structures that determine 
the electronic and phononic transports, while the transport behaviors compete and counter-act for the 
power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set 
of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and 
phononic contributions to thermal conductivity remains yet challenging. In this work, we present a 
full-scale computation scheme based on the first-principles calculations by choosing a set of doped half-
Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k 
code and the carrier relaxation times for electrons and holes are calculated using the Bardeen and 
Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated 
within the framework of Boltzmann transport theory. In sequence, the density functional perturbation 
combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for 
calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Ti-
doped NbFeSb compounds without losing a generality. The calculated results show good agreement 
with experimental data. The present methodology represents an effective and powerful approach to 
calculate the whole set of thermoelectric properties for thermoelectric materials.

At least as much as the energy we used on earth is lost in the form of waste heat1. Thermoelectric (TE) power 
generators that enable the direct conversion from heat to electricity have been studied for a long time, much 
earlier than the claimed energy crisis2–12. A good TE material should have high figure of merit ZT =  (S2σ/κtot)T, 
where S, σ, κtot (=κl +  κe), T, represent the Seebeck coefficient, electrical conductivity, total thermal conduc-
tivity, and absolute temperature, and κl and κe are the lattice and electronic components, respectively. The 
thermally-driven electrical performance of a TE material is measured by the power factor (PF =  S2σ), while a 
high heat-to-electricity conversion efficiency is scaled by ZT. Conceptually, in order to possess a large ZT, the PF 
must be large and the total thermal conductivity κtot should be minimized. Good electrical conduction usually 
corresponds to high thermal conductivity and a counteracted relationship between the S and σ is often observed, 
resulting in the complex relationships between these physical parameters (S, T, σ, κl, and κe). Given this dilemma, 
an optimization of all these properties so that the largest PF and ZT can be obtained simultaneously is far beyond 
fast-track experimental explorations. By the way, technically, a reliable measurement of the κtot and evaluation of 
its two components (κl, κe) seem to be tricky and thus the reported data are sometimes authors-dependent. These 
issues are thus appealing materials computation and property design as a pre-requisite for exploring TE materials 
for favorable applications. As a result, a theoretical prediction from first-principles calculations and other meth-
ods has been of interest for a long time13–16. For example, Yan et al.15 developed a scheme to calculate the carrier 
mobility, effective mass, and lattice thermal conductivity related to TE performances, and Sparks et al.16 proposed 
an approach of data mining to search for novel TE materials, both of which are of significance. Nevertheless, 
developing a full-scale computation scheme for the TE properties of a material to guide the experimental search 
is still appealed.
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However, such a scheme remains yet to be found, in particular for carrier-doped TE materials. There exist 
two major challenges for an accurate calculation of these TE properties. First of all, given reliable knowledge on 
electronic structure as produced by the ab-initio calculations and/or experimental probing using techniques like 
angle-resolved photoelectron spectroscopy for a TE compound, indeed the semi-classic Boltzmann transport 
theory can be employed to predict the σ, S, and κe. Even though, earlier calculations on these parameters (σ, S, κe) 
utilizing this semi-classic theory relies on a constant relaxation time (τ) or non-constant relaxation time obtained 
from the experimental data12,17,18 which are certainly questionable for many cases. This drawback damages the 
reliability of the predicted properties. In our study, we use the deformation potential (DP) theory combined with 
the effective mass approximation to calculate the relaxation time (τ) which is no longer treated as a constant. In 
this method, the effective mass is very important to the calculation of relaxation time (τ). The effective carrier 
masses are often calculated by a fitting of energy bands along the high symmetry lines, which is not accurate. In 
our work, we calculate the effective carrier masses at all k points in the first-Brillouin zone, and then obtain the 
average of the effective masses at all specific energies. For the p-type and n-type semiconductors, we respectively 
take the average effective masses at the top of the valence band and the bottom of the conduction band. If the 
k-point-mesh is dense enough, the effective carrier mass calculation using our method is accurate.

Second, it is known that the lattice thermal conductivity κl is mainly determined by the three-phonon pro-
cesses (corresponding to the intrinsic lattice thermal conductivity denoted by κl-in), impurity scattering, and 
boundary scattering. The latter two processes make the calculation particularly difficult at the current stage. On 
one hand, a prediction of ZT is a formidable task because it requires accurate carrier relaxation time for eval-
uating σ and κe. On the other hand, a first-principles computation of the κl, especially for doped TE materials 
would demand computational resource that is too big to access in the material design routine. Along this line, an 
alternative computation scheme partially free of this difficulty would be favorable. In fact, Bardeen and Shockley 
proposed in 1950s the deformation potential (DP) theory to interpret the carrier transport in semiconductors 
where the carriers are mainly scattered by acoustic phonons. Consequently, the density functional perturbation 
theory (DFPT) combined with the quasi-harmonic approximation (QHA) can be used to calculate the κl of a 
stoichiometric compound. Within the framework of this modified density functional theory, the κl of a doped 
compound can be evaluated by the Klemens’ equation. To this end, a full-scale computation of the whole set of TE 
parameters for doped TE compounds is thus possible.

In this work, we will demonstrate this scheme by applying it to doped half-Heusler alloys which have received 
much attention for their good TE performance at the intermediate temperature, less than 900 K. These alloys 
offer high PF and high thermal stability. For instance, the XNiSn (X =  Zr, Hf) compounds possess large Seebeck 
effect (S ~ 100–500 μV/K at T ~ 300 K) and moderately low electrical resistivity. An optimization by microstruc-
ture engineering and doping allows a reproducible ZT ~ 1.0 at T ~ 900 K19–29. For MgAgSb-based half-Heusler 
alloys, a proper optimization allows the ZT value as large as ~1.0 at room temperature and ~1.4 at T ~ 475 K30. In 
particular, the p-type NbFeSb-based half-Heusler alloys have their ZTs up to ~1.1 at T ~ 1100 K31. It is shown that 
these materials are always doped and experiments revealed the substantial change of thermal conductivity upon 
varying carrier density (n). Therefore, the calculated κl from the measured total κtot using the Wiedemann-Franz 
relation is much less reliable, which on the contrary enhances the significance of the present work.

Our calculations start from the half-Heusler NbFeSb compound and consider the Ti substitution for Nb as 
dopant. Since this compound has the face-centered cubic structure with only three atoms in the primitive cell, a 
calculation of phonon dispersion behavior becomes possible. A description of the scheme and procedure of the 
full-scale computations is presented in the Methods section below.

Results
Electronic structures.  The crystal structure of NbFeSb belongs to the #216 space group31, as illustrated in 
Fig. S1 of the supplementary materials. The calculated electronic dispersion relations along the high symmetry 
lines and thus evaluated density of states (DOS) are shown in Fig. 1(a,b). It is seen that the NbFeSb lattice has 
the indirect band gap of ~0.55 eV and band degeneracy at the valence band maximum (VBM). The major DOS 
contributions to the VBM come from the Fe atoms, while almost identical contributions of the Fe and Nb atoms 
to the DOS near the conduction band minimum (CBM) are identified. For both cases, the contributions from the 
Sb atom around the VBM and CBM are quite weak. These imply that the Seebeck effect is mainly induced by the 
Fe and Nb atoms rather than the Sb atoms.

For further illustrating the bonding characteristics, one looks at the bonding peaks between Fe and Nb atoms. 
The projected DOS profiles for the s-, p-, d-orbitals of these atoms in the energy interval between − 5.0 eV and 
5.0 eV are presented in Fig. 1(c,d), and the electronic density distribution on the (011) plane is shown in Fig. S2 of 
the supplementary materials. The d-orbitals from the Nb and Fe atoms contribute mostly to the total DOS, while 
the DOS contribution from the Sb atoms mainly comes from the p-orbitals, which shows that there is the p-d 
hybridization between the Sb-Fe pairs and Sb-Nb pairs.

Electrical transport.  For stoichiometric NbFeSb compound and its Ti-doped counterparts Nb1−xTixFeSb, 
the available physical parameters are shown in Table S1 of the supplementary materials. The calculated elastic 
constants cij, bulk modulus B, and shear modulus GH are listed in Table S2 of the supplementary materials. Given 
these constants and the obtained electronic band structure, the electrical transport behaviors are characterized 
by parameters (carrier effective mass m, carrier mobility μ, carrier relaxation time τ) for electrons and holes. 
Figure 2(a) presents the band edge energy (Eedge) values at the CBM and VBM for electrons and holes as a func-
tion of the uniaxial strain δβ assigned along the a-axis, respectively, exhibiting good linear dependence. Here, the 
average electrostatic potential32 is set as a reference to obtain the absolute band edge shifts. The DP constant λβ 
values, as listed in Table 1, are similar for electrons (λβ =  − 15.94 eV) and holes (λβ =  − 14.51 eV). The calculated 
m at zero temperature, and mobility μ and relaxation timeτ at T =  300 K for electrons and holes, are shown in 
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Table 1. It is seen that τ =  245.04 fs for electrons is almost 12 times longer than that for the holes, while the mobil-
ity for electrons is 1018.46 cm2 V−1 s−1, ~66 times larger than that for the holes. We also investigated the energy 
(ε) - dependent effective carrier mass mε in the valence band and conduction band, as shown in Fig. 2(b) where 
me is the electron mass. In the valence band, the effective mass is positive, indicating the hole-like behavior of the 
energy band due to the concave curvatures, while the carriers in the conduction band show electron-like behav-
iors. The effective mass near the VBM is ~1.87 me, much heavier than ~0.35 me near the CBM. This difference 
results in the huge discrepancies of the carrier relaxation time and mobility for holes and electrons.

We present extensive calculations on these TE properties (σ, S, κe), given either the p-type doping or the 
n-type doping with a broad range of carrier density n. The results are summarized in Fig. 3 where the parameters 
in the (T, n) plane are plotted on the right column for hole-doping and on the left column for the electron-doping. 
In the overall sense, these parameters all show non-trivial variations. First, the counter-acting relationship 
between S and σ (or κe) can be established for both doping cases. The large |S| appears in the region of low n and 
intermediate T, but both σ and κe are low in this region. Second, in the low n region, one observes only insignif-
icant variation of σ over the T-range covered here, but κe exhibits remarkable increasing with increasing T. This 
remarkable increasing is much more than the linear T-dependence as predicted by the Wiedemann-Franz law 
κe =  LσT where L =  (1.49~2.45) ×  10−8 W K−2 is the Lorenz constant. Third, these non-trivial dependences of 
(σ, S, κe) on (T, n) suggest that an optimized design in terms of the TE performance by carrier doping strategy is 
necessary.

Lattice thermal transport.  The more critical issue is to evaluate accurately parameter κl-in (intrinsic ther-
mal conductivity) for NbFeSb compound and κl for the doped Nb1−xTixFeSb. First, the phonon band structures 
are shown in Fig. 4(a,c), respectively, for FeNbSb lattice without and with non-analytical term correction along 
the representative symmetry lines within the first Brillouin zone of the primitive cell with three atoms. The three 
atoms give rise to nine phonon branches, i.e., one longitudinal acoustic (LA) mode, two transverse acoustic (TA) 
modes, two longitudinal optical (LO) modes, and four transverse optical (TO) modes. The two TA modes along 
the Γ -L and Γ -X directions are two-fold degenerate. The acoustic and optical branches overlap near the L point.

It is known that the electric dipoles caused by displacement of charges of long-wavelength LO modes can 
lead to internal electric field. The phonon frequencies for the LO modes at the Γ  point will be up-shifted by this 
induced electric field. Thus, the LO-TO splitting is an important parameter to evaluate the strength of ionicity. A 
comparison of Fig. 4(a,c) shows the clear non-vanishing LO-TO splitting at the zone-center of the Brillouin zone, 
which implies the existence of the ionic bonding. It is seen from Fig. 4(a) that the frequencies of the two triply 
degenerate optical phonons at the Γ  point are 6.07 THz and 7.80 THz, respectively. Surely, one of the two triply 
degenerate optical phonons is split into two-fold degenerate and single-fold degenerate optical phonons when the 
LO-TO splitting effect is taken into account. Subsequently, we can obtain the phonon density of states by taking 

Figure 1.  The calculated band structure (a) and DOS spectra for Fe atoms, Nb atoms, and Sb atoms, as well as 
the total DOS (b) for NbFeSb compound. The projected DOS for Nb atoms (c), Fe atoms (d), and Sb atoms (e) 
in NbFeSb compound are plotted too.



www.nature.com/scientificreports/

4Scientific Reports | 6:22778 | DOI: 10.1038/srep22778

the LO–TO splitting into account, as shown in Fig. 4(d) evaluated from Fig. 4(c). It is seen that the low-frequency 
branches up to 5.6 THz are mainly from the Sb atomic vibrations, while the frequency branches between 5.6 THz 
and 7.1 THz are mainly from the Nb atomic vibrations. The Fe atomic vibrations contribute to the high-frequency 
branches above 7.1 THz.

Based on the above consideration, one can calculate a set of parameters for evaluating the thermal conduc-
tivity, including the Grüneisen parameter γ, isometric heat capacity CV, Debye temperature ΘD, and intrinsic 
lattice thermal conductivity κl-in as a function of T for NbFbSb lattice. The results are summarized in Fig. S3 of 
the supplementary materials. The values of γ, CV, and Θ D are 1.69, 69.03 J K−1 mol−1, and 384.90 K at T =  300 K. 
For T >  300 K, the calculated κl-in(T) curve is plotted in Fig. S3(d), which decreases monotonously with increas-
ing T, from ~22.0 W K−1 m−1 at T =  300 K to ~6.0 W K−1 m−1 at T =  1000 K. Given the κl-in(T) data, the κl for 
Nb1−xTixFeSb with different doping level x is calculated by Eq. (20) in the Methods section. For this calculation, 
relationship xper =  x/3 =  nV/3ΔZ should be satisfied, where V is the volume of unit cell and ΔZ is the valence 

Figure 2.  The edge energy shifts (Eedge) for the conduction band (CBM) and valence band (VBM) with respect 
to the lattice dilation along the a-axis (a) and the energy ε-dependent effective masses for holes (b) and 
electrons (c). The red lines are the fitting curves.

Carrier type λβ (eV) m (me) μ (cm2 V−1 s−1) τ (fs)

electrons − 15.94 1.87 1018.46 245.04

holes − 14.51 0.35 18.63 19.84

Table 1.   The calculated DP constant λβ, carrier effective mass m at zero temperature, and carrier mobility 
μ and relaxation time τ at T = 300 K for electrons and holes.
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difference between the master atom (Nb) and substituting atom (Ti). The values of these parameters are given in 
Table S1 of the supplementary materials.

To this stage, with κtot =  κl +  κe, PF =  σ·S2, and ZT =  σ·S2·T/κtot, one reaches a full-scale computational scheme 
for the whole set of TE parameters for a TE compound or doped TE alloy. In the following section, we apply this 
scheme to the doped compounds Nb1−xTixFeSb with different x for TE performance optimization.

Optimization of TE performance in Nb1−xTixFeSb.  We have performed extensive calculations on the 
whole set of TE parameters for a series of p-type Ti doped Nb1−xTixFeSb compounds, considering the nominal 
substitution of Nb5 +  $ by Ti4 + . Several representative sets of data on these parameters as a function of n at 
T =  600, 800, and 1000 K are summarized in Fig. 5(a–f). It is noted here that the calculated results represent a 
spatial averaging over the three major axes [100], [010], and [001]. Given the cubic lattice structure, these param-
eters along the three major axes are nearly identical with one and another. It is seen that a linear dependence of 
logσ on n is identified in the intermediate and high n ranges. A linear dependence of logσ on n is identified in the 
intermediate and high n ranges. The σ(n) is sensitive to T but show weak dependence on n in the low n ranges. 
The S(n) first increases and then decreases with increasing n, exhibiting a single-peaked pattern. With increasing 
T, the peak height of S(n) decreases, nevertheless, the peak location increases. As expected, the S(n) and σ(n) 
exhibit the opposite dependences, and both are insensitive to T in the high n range. The PF(n) first increases and 
then decreases with increasing n, similar to the S(n) curves. The peak height becomes low and the peak location 
shifts to the high n range with increasing T.

More interested are the calculated κe(n), κl(n), and κtot(n). The κe(n) remains low in the low-n range 
(<1021 cm−3), beyond which a rapid increase of κe(n) is identified. The κl(n), instead, shows the saturated plateaus 

Figure 3.  The calculated S (top row), logσ (middle row), and logκe (bottom row) on the (T, n) plane for 
carrier-doped NbFeSb. Left panel: n-type and right panel: p-type.
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in the low-n range and then falls rapidly in the high-n range due to electron-phonon scattering. Due to the differ-
ent n-dependences and similar magnitudes of κe(n) and κl(n), the κtot(n) exhibits strong n- and T-dependences: 
less sensitive to n in the low-n range but highly sensitive to n in the high-n range. Conclusively, we summarize the 
ZT(n, T) contour in Fig. 5(g). While the ZT is quite low over most of the region unfortunately, a large ZT ~ 0.86 
is obtained at the optimal condition (n ~ 1.45 ×  1021 cm−3 and T ~ 1000 K). The ZT values are ~0.39 and ~0.62 at 
T =  600 K and 800 K, given n ~ 1.45 ×  1021 cm−3.

Comparison with experiments.  Finally, we compare our calculated data quantitatively with measured 
data on Nb1−xTixFeSb31, noting that no data for x =  0.0 itself are available. The measured S, σ, and κtot data for 
polycrystalline samples at x =  0.04, 0.06 0.08, are taken from ref. 31 with the n of ~6 ×  1020 cm−3, ~9 ×  1020 cm−3, 
and ~12 ×  1020 cm−3, respectively, giving the ratio x/n of ~0.67 ×  10−22 cm3. By inputting these parameters we 
obtain σ(T), S(T), κl(T), κtot(T), and ZT(T) data as plotted in Fig. 6(a–l), where the dots are the measured data 
and the solid lines are from calculations. Experimentally, the κl(T) data are extracted from the κtot(T) data by 
excluding the κe(T) estimated by the Wiedemann-Franz relation. Even so, the calculated κl(T) is still consistent 
well with the extracted ones.

For all the three doped cases, the calculated S(T) and κtot(T) match with measured data nicely over the whole 
T-range. It indicates that our computational scheme works well for predicting the S and κl and suggests that the 
imposed approximations with this scheme don’t induce remarkable uncertainties to the two parameters at least. 
However, the measured σ is lower than the calculated values in the low T-range. This discrepancy can be partially 
ascribed to the microstructural defects like grain boundaries, impurities, and other defects etc, scattering the 
carriers and decreasing the electrical conductivity particularly in the low T-range where the carrier scattering by 
these defects and impurities is important. In the high T-range, the carrier scattering from optical phonons may 
be neglected, and this may partially explain the slightly higher calculated σ than the measured one. The measured 
thermal conductivity is bigger than the calculated in the high T-range which is due to that the contribution from 
optical phonon to thermal conductivity is neglected in the calculation. Consequently, the difference between 
the calculated κ(T) and measured ones makes the calculated ZT values larger than measured ones, as shown in 
Fig. 6(d,h,l). It is noted that recent studies15,33 incorporated a minimum optical contribution (a constant) to the 
lattice thermal conductivity at high T and obtained good agreement with measured lattice thermal conductivity 
for materials with big number of atoms in the unit cell. In this study, the NbFeSb compound has only three atoms 
in the unit cell, a minimum optical contribution (a constant) to the lattice thermal conductivity is negligible. In 
addition, the NbFeSb compound is believed to be polar to some extent. Although the carrier relaxation time τ 

Figure 4.  The calculated phonon spectra (a) and phonon DOS (b) without the LO-TO splitting for NbFeSb 
compound. The corresponding spectra and DOS with the LO-TO splitting are plotted in (c,d) respectively.
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is less affected by the polarization field, the induced contribution may be one of the origins for the difference in 
σ(T).

Discussion
The present computational scheme has been demonstrated for the whole set of TE properties on half-Heusler 
NbFeSb compound. This scheme combines efficiently the multi-scale computation techniques, but the imposed 
several approximations may introduce substantial discrepencies in some cases such as synthesis-dependent poly-
crystalline samples. They are deserved for additional discussions.

First, the TE parameters depend substantially on the microstructures and associated defects. The carrier scat-
tering from electron-phonon interaction, polarization electric field, impurities, defects, and grain boundaries, 
etc., may be important. However, only the electron-phonon interaction is considered in the present scheme. 
Substantial uncertainties may arise and in particular the electrical conductivity does show deviations from 
measured results. Based on the constant relaxation time approximation, it is believed that the Seebeck effect is 

Figure 5.  The calculated electrical conductivity σ(n) (a), Seebeck coefficient S(n) (b), power factor PF(n) (c), 
electronic thermal conductivity κe(n) (d), lattice thermal conductivity κl(n) (e), and total thermal conductivity 
κtot(n) (f) at three temperatures T =  600 K, 800 K, and 1000 K, respectively, for the p-type Nb1−xTixFeSb alloys. 
The evaluated figure of merit ZT on the (T, n) plane is plotted in (g).
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independent of carrier relaxation τ and determined by the Fermi level Ef (or n) and electronic structure, allowing 
much better consistency of the calculated values with measured ones.

Second, the calculated parameters are obtained by spatially averaging the data on single crystal along the three 
main axes. Both the lattice symmetry and anisotropy make this averaging inaccurate. Fortunately, the NbFeSb 
compound has cubic structure, reasonably insuring the applicability of the present computational scheme. Surely, 
this scheme can be easily extended to those systems of high lattice symmetry and low polar nature, and the 
extension is straightforward, noting that the Debye approximation which ignores the optical phonons should be 
modified for calculating the anisotropic κl.

Third and surprisingly, it is interesting to note that the calculated κtot data are also in good agreement with 
measured ones for the polycrystalline samples synthesized by ball-milling method offering fine grain size. These 
fine-structured features, not considered in the present scheme, may add additional scattering processes to the 
phonon transport. The good agreement seems to suggest the dominant role of the long-wavelength phonons in 
the lattice thermal conductivity, and therefore these multi-scale microstructural features may work for further 
reducing the lattice thermal conductivity.

Finally, for a general sense, we have to remind that a capricious utilization of the present computation scheme 
to predict a potential TE material should be anyhow cautious. We list several of these considerations: (1) elec-
tronic and phononic structures are in fact dependent of carrier doping/element substitution; (2) mixing of cova-
lent bonding and ionic bonding makes the relation between substitution level (x, xper) and carrier density (n) 
complicated; (3) the applicability of the Slack’s equation and the Klemen’s equation should be concerned. Indeed, 

Figure 6.  The evaluated electrical conductivity σ(T), Seebeck coefficient S(T), otal thermal conductivity κtot(T), 
and ZT(T) for Nb1−xTixFeSb alloys at x =  0.04 (a–d), x =  0.06 (e–h), x =  0.08 (i–l), respectively. The solid lines 
are the calculated results and the dots are measured data extracted from ref. 31.
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an optimal prediction/design of a TE material is a collection of many physical parameters which are inter-related, 
and a reliable design remains to be challenging.

Methods
Electrical transport.  For the electronic structure, we employed the density functional theory (DFT) with 
full-potential linearized augmented plane-wave (LAPW) method implemented in WIEN2k code34 which can 
offer enough dense k-mesh to make transport coefficients converge. The exchange and correlation interactions 
are described using generalized gradient approximation (GGA) and Perdew-Burk-Ernzerhof (PBE) functional35. 
For practical computation, the muffin-tin radii can be set as 2.0 a.u. for all the atoms and the plane-wave cut-off 
is defined by RMT·Kn =  8.0, while an energy threshold of − 8.0Ry is usually used in order to separate core and 
valence states. It is noted that we don’t include the spin-related contribution for transport properties of NbFeSb 
compound. It is usually assumed that the magnetic order has a slight impact on the electro-transport above 300 K.

Given the electronic structure, the electrical transport parameters at finite T are obtained by solving the 
Boltzmann transport equation36. In our calculation, the calculated transport coefficients are well converged using 
a shifted 43 ×  43 ×  43 k mesh. The original k-mesh is interpolated onto a mesh 5 times as dense. The electrical 
conductivity tensors σαβ and electronic thermal conductivity tensors καβ

0  at non-zero electric current are given36:
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where subscripts α and β stand for the two axis directions in the momentum space (or corresponding real space), 
parameters e, Ω, ε, and f represent the electron charge, unit cell volume, carrier energy, and Fermi distribution 
function, respectively, and Ef is the Fermi energy. The σαβ can also be expressed as a function of ε:
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where τ, N, and να (νβ) are the carrier relaxation time, number of sampled k-points, and carrier group velocity 
along the α(β) direction. Subscripts i and k are the band index and the wave-vector. In the standard procedure, 
Seebeck coefficient S and electronic thermal conductivity tensors καβ at zero electric current can be given by36:
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where subscripts (l, m, n) stand also for the axis directions in the momentum space, while the main axes (a, b, c) in 
real space are parallel to those axes in the momentum space. The coefficient tensor ηαβ at arbitrary two directions 
(α, β) are written as:

∫η σ ε ε
ε
ε=

Ω
−






−
∂
∂




αβ αβT E

eT
E f d( , ) 1 ( )( ) ,

(6)f f

For an approximately isotropic system like NbFeSb compound, the σ, S, and κe can be directly evaluated from 
σ =  (σ11 +  σ22 +  σ33)/3, S =  (S11 +  S22 0 S33)/3, and κe =  (κ11 +  κ22 +  κ33)/3, which all are the functions of T and Ef 
(or n).

Based on the constant relaxation time approximation, the Seebeck effect is determined mainly by the band 
structure and roughly irrelevant with relation time τ. Nevertheless, both the σ and κtot are strongly dependent 
on τ. An evaluation of τ alone from the ab-initio data is inaccurate since it depends on phonon scattering and 
polarization electric field if the lattice is polar, and also on impurity and defects. For simplified consideration, 
the influences from impurity and defects can be safely neglected in high T range, and we only need to con-
sider the phonon scattering. The effective mass approximation based on the DP theory is used to evaluate the τ. 
Accordingly, the carrier relaxation time τ and mobility μ defined specifically at the conduction (valence) band 
edge for a three-dimensional lattice can be expressed as37:


µ

π
λ

=
β

e c
k T m
2 2

3( )
,

(7)
ii

B

4

3/2 5/2 2

τ µ
=

m
e

, (8)

where kB is the Boltzmann constant, cii is the lattice elastic constant (i =  1, 2, 3), and λβ is the DP constant defined 
as:
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δ

=

=
−
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β

β
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dE
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a a
a

,

(9)

edge

a

0

0

where δβ is the uniaxial strain along the β direction and this strain is defined by the variation of lattice constant a 
with respect to equilibrium lattice constant a0 along the β direction. In Eqs (7) and (8), m is the isotropic effective 
carrier mass at the conduction (valence) band edge, which can be calculated by:

ε
δ ε ε

δ ε ε

ε ε ε ε α β

ε

=
∑ −

∑ −

= ⋅ ⋅ = =

=

αβ
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ε ε=
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m m

( )
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( )

( ) ( ) ( ) ( ) , ( 1, 2, 3),
( )

(10)

i k i k

i k i k

E

, ,

, ,

11 22 33

edge

3

where αβ
⁎m  is the energy-dependent effective mass tensor and tensor mαβ is given by


ε

=
∂
∂ ∂αβ
α β

−m
k k

[ ] ,
(11)

1
2

2

with  the Planck constant. It is noted that the effective carrier mass αβ
⁎m  is obtained by averaging the mαβ over the 

whole momentum space.
Finally, the carrier density n is obtained via:

∫ ε ε ε= − )n E T n f E T D d( , ) ( , , ( ) , (12)f f0

where n0 is the valence electron number and D(ε) is the total density of states (DOS) as a function of ε, evaluated 
from the electronic structure. There is the one-to-one correspondence between n and Ef at a given T.

Elastic properties.  An evaluation of the τ and μ needs the cij of a material and they are calculated using the 
strain method (energy approach) in the WIEN2k code. For this specific computation, the special points sampling 
integration over the Brillouin zone is realized using the Monkhorst-Pack method with 10000 special k-points 
meshes. For cubic lattice such as NbFeSb compound, there are three independent elastic constants, i.e., c11, c12, 
and c44, whose evaluation requires three independent homogeneous distortion modes. The first is the orthor-
hombic distortion mode satisfying the volume-conservation, the second is to change the lattice parameter in the 
a-axis, given the conserved cubic symmetry, and the third is the monoclinic distortion mode with varying lattice 
parameter along the a-axis satisfying the volume-conservation rule too. According to the Voigt’s and Reuss’s 
approximations, the shear modulus can be expressed as38:

=
− +

=
−

+ −

G c c c

G c c c
c c c

3
5

5( )
4 3( )

,

(13)

V

R

11 12 44

11 12 44

44 11 12

Hill et al. λ proposed the mean arithmetic value of GV and GR to reflect the real properties of a material:

= +G G G( )/2, (14)H V R

The bulk modulus B is defined as:

=
+B c c2
3 (15)

11 12

Lattice thermal conductivity.  Now one can calculate the κl. We first discuss the κl-in. The DFPT39 com-
bined with the QHA is employed. The DFPT is a combination of the standard DFT with a linear electron density 
response, which is highly favorable for calculating the phonon frequencies over the Brillouin zone efficiently. In 
the specific operation, we specified the volume changes in 3%, 2%, 1%, 0%, − 1%, − 2%, − 3% for the QHA. The 
Slack’s equation which applies at high T >  Θ D yields40:

κ
γ

=
Θ

− A
V m
n T

,
(16)

l in
D per

tot

3 1/3

2 2/3

where A is a dimensionless collection of physical constants (A ~ 3.1 ×  10−6), Θ D the Debye temperature, Vper the 
volume per atom, ntot the number of atoms in the primitive unit cell, m the average mass of all the atoms in the 
crystal, γ is the Grüneisen parameter defined as41:
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where i and q are the band index and the phonon wave vector, CV and CV(i, q) are the isometric heat capacity and 
mode heat capacity, respectively, γ(i, q) is the mode Grüneisen parameter42, V0 is the equilibrium volume, ω(i, q) 
is the phonon frequency of the i-th branch at wave vector q, D(q) is the dynamical matrix, and e(i, q) is the eigen-
vector. The CV(i,q) and then CV are calculated from the phonon dispersions

 


∑ ∑
ω ω

ω
= =









 −

C C i q k i q
k T
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,
(18)

V
i q

V
i q

B
B

B

B, ,

2

2

and in general, the CV and γ are for all the phonon modes including the acoustic and optical modes.
On the other hand, the ΘD is evaluated by calculating the ΘD/T truncated expression of the isometric heat 

capacity CV
43:

∫Θ
=







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C Nk T z e
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,

(19)
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0

/ 4

2
D

where symbol z stands for ћω/kBT.
To this stage, the lattice thermal conductivity κl for a carrier-doped TE compound can be obtained directly by 

the Klemens’ equation44–46:

κ κ
ω
ω

ω
ω

ω
ω

γ
π

=
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


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G V x
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arctan

4
3

,

(20)

l l in
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m

m

B

H per per

0

0

0
2

where ωm and ω0 are the Debye frequency and cut-off frequency, respectively, M is the mass of the master atom to 
be substituted, ΔM is the difference in mass between the master atom (Nb here) and substituting atom (Ti here), 
and xper is the dopant number fraction per unit cell. The carrier density n can be written as n ~ 3xper ΔZ/V where V 
is the volume of unit cell and ΔZ is the difference in valence between the master atom and substituting atom. The 
negative and positive ΔZ values represent respectively the n-type and p-type carriers. For Nb1−xTixFeSb, one can 
have xper =  x/3. It is noted that the ratio ω0/ωm can be negative upon a negative ΔM, but the κl remains positive.

To this end, the κl can be self-consistently calculated once the phonon spectrum is available. Specifically, the 
phonon spectrum calculation is performed using the VASP (Vienna ab initio simulation package) code47,48. A 
supercell of 2 ×  2 ×  2 primitive cell containing three atoms is considered, which consists of a total of 24 atoms. 
The first-principles calculations based on the DFPT are performed using the VASP code under the general-
ized gradient approximation (GGA) Perdew-Becke-Erzenhof (PBE) functional. A 6 ×  6 ×  6 mesh for the first 
Brillouin-zone sampling and 500 eV for cutoff of the plane-wave basis set are used. It is noted that the longitude 
optical (LO)-transverse optical (TO) splitting effect is taken into account in the phonon calculation. With the 
obtained phonon spectrum, the κl-in and κl are obtained accordingly using the Slack’s equation and the Klemens’ 
equation.
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