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Colour and pattern change 
against visually heterogeneous 
backgrounds in the tree frog Hyla 
japonica
Changku Kang1,2, Ye Eun Kim2 & Yikweon Jang2

Colour change in animals can be adaptive phenotypic plasticity in heterogeneous environments. 
Camouflage through background colour matching has been considered a primary force that drives the 
evolution of colour changing ability. However, the mechanism to which animals change their colour 
and patterns under visually heterogeneous backgrounds (i.e. consisting of more than one colour) has 
only been identified in limited taxa. Here, we investigated the colour change process of the Japanese 
tree frog (Hyla japonica) against patterned backgrounds and elucidated how the expression of dorsal 
patterns changes against various achromatic/chromatic backgrounds with/without patterns. Our 
main findings are i) frogs primarily responded to the achromatic differences in background, ii) their 
contrasting dorsal patterns were conditionally expressed dependent on the brightness of backgrounds, 
iii) against mixed coloured background, frogs adopted intermediate forms between two colours. Using 
predator (avian and snake) vision models, we determined that colour differences against different 
backgrounds yielded perceptible changes in dorsal colours. We also found substantial individual 
variation in colour changing ability and the levels of dorsal pattern expression between individuals. We 
discuss the possibility of correlational selection on colour changing ability and resting behaviour that 
maintains the high variation in colour changing ability within population.

In many animals, body colouration is primarily used for defence against predators1,2. Camouflage is the most 
commonly used and widespread defensive colouration. Predators will often fail to detect or recognize camou-
flaged prey3. There are different forms of camouflage that may reflect different protective mechanisms2,4, which 
include background matching5, disruptive colouration6, countershading7, or masquerade8. Among those, back-
ground colour matching (the minimization of colour difference between an animal’s body colouration and its 
background colours) is unarguably the most widespread in various taxa.

Camouflage through background matching can be achieved by possessing colours and patterns that resemble 
those of the animals’ background3,9. However, achieving background matching is complicated when the back-
grounds are heterogeneous in colours and patterns. Natural backgrounds often exhibit substantial spatial and 
temporal variation in both colour and pattern10–12. In turn, some organisms have evolved body colouration plas-
ticity, so called colour change, in order to cope with heterogeneous backgrounds11,13.

Colour change is found in a variety of taxa including fish14,15, amphibians16, crustaceans17, and insects13. 
Anurans are one of the most intensively studied organisms for colour change, and the proximate mechanisms 
that mediate the colour change in anurans are a century old question that is still under investigation16,18,19. 
Physiologically, anuran colour change occurs due to the synchronous movements of pigment organelles within 
chromatophores, which are largely regulated by hormones (for the detailed mechanisms, see Nielsen20). External 
environmental factors for colour change in anurans include light intensity, background colour, and temperature21. 
The evidence of frogs’ response to light intensity and temperatures align well across many studies and concludes 
that frogs become brighter under stronger illumination and higher temperature22. Temperature-dependent colour 
changes have also been considered an adaptation for thermoregulation since darker colours are more likely to 
absorb solar energy21,23.
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Colour changing animals are able to change their colours or patterns to enhance the degree of camouflage 
(e.g. background colour matching or disruptive pattern expression) against their background24,25. In anurans, the 
evidence of camouflage in terms of both achromatic and chromatic colour matching are present21,26,27. However, 
it has rarely been tested how animals change their colours under the conditions of mixed-colour backgrounds 
which can be also found in many natural substrates (but see Kats and van Dragt23). Colour changing animals pro-
vide good opportunities to explore how animals adopt/optimize their colours and patterns for camouflage when 
a background consists of more than one colour. We predict that colour changing animals would exhibit either of 
the two strategies against mixed-colour backgrounds: ‘intermediate’ colour between two background colours or 
a specialized colour that specifically matches either background colours28,29.

Although most of the experiments with frogs tested the change in colours, colours are not the only properties 
that can change in anurans30. Frogs can change the expression of dorsal patterns and body colouration, often 
simultaneously31. This simultaneous change is pronounced in tree frogs since the dorsal pattern expression varies 
from complete disappearance to highly contrasting patterns within individuals. These patterns may improve cam-
ouflage by either the disruption of edges6,32, and/or background pattern/complexity matching10,33.

Physiological colour changes in anurans are predicted to occur rapidly20,34. However, there still exists evidence 
for both short-term (from minutes to hours19,23) and long-term colour change (several days26,27,35). The evidence 
of long-term colour change has been reported under a constant environmental condition throughout the experi-
mental days26,27. However, because the external conditions (e.g. temperature, light intensity, background colour) 
of a frog change within/between days in natural circumstances, whether the long-term colour change occurs in 
natural conditions is not understood well. The most abrupt change in external conditions that might interfere 
the long-term colour change process would be the change in light intensity between day and night. The exposure 
to darker and duller conditions during a night could mean that long-term colour changing processes are less 
likely to occur, if in fact the period of darkness “resets” the colours of the frogs to a dark and dull colour every 
night22. Therefore, it is crucial to examine how frog colour changes at night when the light intensity and exposure 
decreases dramatically.

Some animals, such as cuttlefish, can actively modulate their body colours through visual perception of the 
background24, but it has rarely been demonstrated in other taxa (including anurans as far as we know) whether 
the animal’s visual perception of environments plays role in colour change processes. However, if colour change 
evolved to increase the efficacy of the visual signal, the more important factor that may drive the colour change 
ability would be the visual systems of the receivers. In terms of camouflage, the receivers are the animals’ natural 
predators. Although the evidence of camouflage function of colour change (through background colour match-
ing) in frogs are plentiful, no studies have considered the vision of their natural predators9,27. To completely 
understand the adaptive significance of colour change, it is crucial to understand whether this change is being 
perceived by natural predators36.

In this study, we investigated the colour change of the Japanese tree frog, Hyla japonica (Hylidae; Günther, 
1859), against heterogeneously coloured backgrounds. We mainly examined how the frogs’ colour and dorsal 
patterning changed against differently coloured backgrounds. We estimated whether the differences in dorsal 
colour against different backgrounds were large enough to improve camouflage from natural predators’ point of 
view. Furthermore, we tested whether colour change on mixed coloured backgrounds was an intermediate body 
colour or matched with one of the background colours.

Methods
General experimental design. We collected male H. japonica from agricultural fields and rice paddies 
near Mt. Bukhan (37.6 °N, 126.9 °E). Catching/housing of frogs, and the experimental procedures were approved 
by Ewha University Institutional Animal Care and Use Committees (IACUC 2013-01-084) in accordance with the 
approved guidelines. Due to the low abundance of females, males were chosen for the experiment. The collected 
frogs were kept individually in small containers and transported to a temperature and humidity controlled room 
(25 ±  2 °C, 75 ±  5%) at Ewha University. Each frog was provided with two juvenile crickets as food source per day 
and a small petri dish with a thin layer of water. Frogs were housed in small cube-shaped cells (0.5 ×  0.5 ×  0.5 m) 
that were independently illuminated by a daylight LED bulb (POSCO 9W 5000°K, Yong-in, South Korea; see 
Supplementary Fig. S1 for spectral properties) from the ceiling. Photoperiod was 12:12 L:D.

During the colour changing trial, we kept each frog in a cylindrical container, which was located in the 
cube-shaped cell, with the top covered by a transparent glass (which were removed when taking photos) through 
which light can reach inside the container. The inside of the container was covered by printed papers that pro-
vided various background colours. To ensure equal illumination, we adjusted the height of bulb such that illumi-
nance was 100 lux at the centre of each container.

Because frogs can rapidly change dorsal colours under stress or during handling, non-invasive methods are 
preferred for quantification of frog colouration20. Photography of frogs is a method of colour quantification that 
limits direct contact with frogs and allows post-processing37. The issue with digital photography is that most 
commercial cameras do not capture light within the UV range (300–400 nm) that can be perceived by natural 
predators of frogs36. However, this problem is of less concern if an animal and its natural backgrounds reflect low 
levels of light in the UV region37,38. We checked for the UV reflection in frogs (N =  14) using a spectrometer (JAZ, 
Ocean Optics, Dunedin, Florida, USA) and found negligible UV reflectance (Supplementary Fig. S2). Because 
most of their natural backgrounds such as leaves, soil, or tree barks also reflect low levels of UV, we considered 
that photographic method can capture full spectrum range of colour change in H. japonica.

The colour-change trial began at 8:00AM (UTC+ 09:00) every day in June and July of 2014. Because the pho-
tophase always started at 8:00AM, the potential effect of circadian rhythms on the expression of colours between 
treatments would be minimized39. A frog was tested only in one type of background each day. Prior to each trial, 
each frog was transported to a pre-assigned coloured container (see below for the colour assignment) and waited 
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under darkness. Subsequently, we photographed each frog at 0, 1, 2, 4, 8, 12, and 23 h after the light was turned 
on (turned off at 12 h). Hereafter, duration referred to the amount of time that a frog was exposed under a back-
ground type. For each duration, photography was done in the photographic arena. The photographic arena had 
the same setup as the cell where colour change trials were conducted, but a camera was set next to the bulb side by 
side to photograph the frogs’ dorsal colour from above. The photography process usually took less than a minute 
for each frog. After 12 h, they remained in the same container, spent the night under darkness, and were photo-
graphed at 23 h (7 am next day) to document the degree of colour change under night-time. Then, between 7 am 
and 8 am, they were transported to the next container with a different background and waited for the initiation of 
the next trial. We used a Sony α 65 camera equipped with SAL1855 lens (Sony, Japan) for photography. We used a 
constant exposure setting throughout the experiments. Every morning, just before the initiation of each trial, we 
took photos of X-rite colour checker (Grand Rapids, Michigan, U.S.) inside of each coloured container and used 
the six grey colours of the colour checker for image calibration (see below). After the experiments, frogs were 
released at their captured sites.

BW experiment. In this experiment, we tested how the colours and patterns of frogs change against four 
achromatic background colours (Fig. 1 upper panel, see Supplementary Fig. S3 for reflectance data): black 
(BK), white (WH), grey (GY), and black-white check pattern (BW). The background colours were printed on 
waterproof papers (HP Laserjet Tough Paper) with a printer (Colour LaserJet 5550; Hewlett-Packard; Palo Alto, 
CA, USA). For BK and WH backgrounds, we printed black and white colour (R =  G =  B =  0 for BK colour, 
R =  G =  B =  255 for WH colour) using Photoshop (Adobe Systems Inc.; San Jose, CA, USA). For GY background, 
we were unable to find a colour that showed flat reflectance across whole wavelength range (400–700 nm). Instead 
we printed out one of the grey colours (i.e. the colour with R =  G =  B) that showed an intermediate reflectance 
between WH and BK colour within red-green colour region (550–700 nm) because frog colour change were 
expected to be most prominent within this wavelength region. For BW background, we generated black/white 
check pattern with 5 mm interval. This pattern size was chosen because 1) the square area of each pattern was 
considerably smaller than the size of frogs so that frogs were always on a mixture of white and black patterns, 
and 2) the area of square pattern is comparable to the patterns on frogs’ dorsa (see Fig. 1). We note here that the 
reflectance of BK colour was near 0 across all wavelengths, but WH/GY colour showed higher reflectance near 
blue colour region (400–550 nm) which is the properties of most commercial white papers. Therefore, although 
we consider that most of the colour difference between each background in BW experiment accounted for the 
differences in achromatic properties, there were small levels of uncontrolled chromaticity in GY and WH colours 
(BK: brightness =  6.67, chroma =  0.45, hue =  − 1.23; GY: brightness =  73.31, chroma =  4.42, hue =  − 1.36; WH: 
brightness =  100, chroma =  6.2, hue =  − 1.32 after printing; the brightness of GY colour was brighter than 50% of 
WH colour because of the higher reflection in 400–550 nm region.).

Figure 1. Background colours that were used for BW (upper panels) and GB (lower left three panels) 
experiments. Black (BK), black/white check-patterned (BW), grey (GY), white (WH), green (GR), green/brown 
check-patterned (GB), and brown (BR) background. The photo in the lower right side is an example of H. 
japonica with contrasting dorsal patterns against BW background.
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Each frog (N =  48) was tested on all four backgrounds and the order of four-colour trials followed 4 ×  4 Latin 
Square design for every four frogs.

GB experiment. In this experiment, we used additional 24 frogs (N =  24; distinct from BW experiment) and 
examined the colour and pattern change in frogs against three chromatic backgrounds with similar brightness 
(Fig. 1 bottom panel): green (GR), brown (BR), and green-brown check pattern (GB). Green and brown colours 
are more representative of natural backgrounds such as leaves or leaf litter . Males of H. japonica are known to 
rest on leaves or within leaf litter, whose primary colours were dominated by green and brown during daytime  
(A. Borzée, unpublished). The properties of printed colours are dependent on the RGB values of pixels and printer 
properties. To print the colours that imitate the chromaticity of natural objects, colours required calibration. 
To do so, a colour palette (comprising of 2040 different colours from the web) was printed and photographed 
with five fresh and five dead leaves in a single shot. We then searched for the colour with the most similar RGB 
values to the averaged RGB values of both leaf types. The chosen green and brown colours were clearly differ-
ent chromatically, but were similar to each other in terms of brightness (GR: brightness =  24.31, hue =  − 0.37, 
chroma =  20.58; BR: brightness =  27.02, hue =  0.74, chroma =  31.68 after printing). The visual system of H. 
japonica is unknown. Based on the known spectral sensitivities of H. cinerea40 and animal vision modelling41 
(described in Supplementary methods in detail), however, GR and BR colours may be discriminable from the 
vision of H. japonica (just noticeable difference > 5; just noticeable difference is a contrast estimate between two 
colours from an animal’s point of view, see below).

We did not use the background with intermediate hue value that was equivalent to grey background in BW 
experiment because, unlike achromatic backgrounds that have almost flat reflectance values across visible wave-
lengths which makes it possible to have average brightness, hue is a qualitative trait by which averaging results 
in different colours dependent on the types of colour space42. Each frog was tested on all background types and 
the order of backgrounds followed a 3 ×  3 Latin Square design for every three frogs. At completion of the GB 
experiments, frogs were additionally tested on BK and WH backgrounds to estimate colour changing capacity 
and pattern expression (see below).

Image analysis. Images were taken as a RAW format and converted to the tiff format using Image Data 
Converter (Sony, Japan). Then, we cropped each image to only have frog body and reduced to 600 ×  600 pixels 
using bicubic interpolation. To remove non-linearity of camera responses, we performed linearization processes 
using grey colours in the colour checker that were photographed each morning37. Then each colour channel was 
equalized by scaling to the RGB value of grey37. After this processing, the RGB values of the processed images 
represented physical properties of the colours, independent of device and light conditions, and represented the 
reflectance of each pixel ranges from 0–255, corresponding to the reflectance of 0–100%.

For each image, we categorized whether the frog’s dorsal pattern was visible or not as presence or absence. 
Then, we randomly selected three regions of interest (ROIs) from the dorsum of frogs and measured median RGB 
values of the ROIs. The presence of dorsal patterns was often dependent on the background type even within 
individuals. Therefore, to properly compare how frog colours changed independent of the pattern appearance, we 
only selected basal region (outside of the pattern) for colour comparison. When frogs were patterned, the inside 
of a pattern was always darker than the outside basal regions (Fig. 1 bottom right panel).

The modelling of predator vision requires assuming specific predator species since the visual systems of 
predators are distinct to each other41,43. However, because tree frogs are preyed upon by a variety of predators 
including birds, snakes, or mammals, it is difficult to assume one predator type44. Here, we primarily used Lab 
colour space to analyse colours of each frogs42. Lab colour space is designed to approximate human vision, and 
one of the advantages of using this colour space is that it has perceptually uniform space: the Euclidean distance 
(∆ E) between two colours reflects the perceived difference in human vision42. We converted measured median 
RGB values to Lab values and derived brightness, hue, chroma of each frog’s dorsal colour based on following 
equations42:
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Once we detected changes in either of these colour properties against different backgrounds, we transformed 
the image’s red, green, and blue channel pixel values to a bird-specific colour space (predicted photon catches for 
each cone cell type) using a polynomial mapping method37,45 by a custom-built MATLAB program. We derived 
the contrasts between i) background colour and frog dorsal colour and ii) between individual frog’s dorsal colour 
against different backgrounds using receptor-noise-limited visual discrimination model41. This model produces 
both chromatic and achromatic contrasts as a unit of just noticeable difference (JND) between two colours in the 
receptor space. When JND ≥ 1, the difference between two colours is considered to be noticeable to tree frogs’ 
natural predators. The references for avian vision were the blue tit (Cyanistes caeruleus) single (chromatic) and 
double (achromatic) cones, and the references for snake vision were the garter snake (Thamnophis sirtalis) single 
cones (chromatic) and long wavelength sensitive single cones (achromatic)46,47. Because both background and 
frog body did not reflect significant UV lights (Supplementary Figs S2, S3), we assumed that photon catches 
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from UV-sensitive cone cells were 0. The detailed explanation of predator vision modelling can be found in the 
Supplementary Methods and elsewhere41. ImageJ (NIH, Bethesda, MD, USA) was used for the image analysis.

Data analysis. First, we examined the speed of colour change. We calculated the ∆ E of the colour of frogs at 
each duration from the initiation of each trial. Then we compared the differences in ∆ E between each duration 
using generalized linear mixed models (GLMMs) using the colour of current background and previously pre-
sented background as covariates, frog id as a random factor. Based on the result of this analysis, we used the frog 
colour that had completed colour changing process (two hours after being against one background; see results) 
as a representative colour against each background for further analysis. We further evaluated whether the frog 
colour after two hours against current background was independent of the colour of the previously tested back-
ground using MANOVA by putting brightness, chroma, hue at two hours as dependent variables, the colour of 
current background and previous background as independent variables.

Within individual frogs, colour difference was most prominent between BK and WH backgrounds (see 
results). To estimate individual frog’s capacity to change colour, we measured the ∆ E between the frog’s colour 
against BK and WH backgrounds and used this distance as an index of individual colour change capacity.

To compare frogs’ dorsal colours between different background types, we examined within-subject effects of 
background type on brightness, chroma, and hue, using repeated measures multivariate analysis of variance. We 
then performed post-hoc multiple comparisons for the colour components that had significant effects. P values 
were adjusted to control for the false discovery rates48. To elucidate background colour matching function from 
the viewpoint of predators, we compared whether JNDs were lowest when the background-frog colours were 
matched (e.g. a frog’s colour against BK background yielded lowest JNDs with BK colour rather than GY and WH 
colours) using GLMMs.

In addition, we analysed the effects of background type on the presence of dorsal pattern using GLMMs to 
examine whether dorsal pattern appearance was affected by background colour. To identify the magnitude of 
colour change under darkness during night, we compared the colours of frogs just before becoming dark (at 12 h) 
with the colours at 7 am next day using repeated measures analysis of variance.

For all individuals tested (N =  72), we characterized the individual capacity to change colour and the exhi-
bition of dorsal patterns. Since these two characteristics were assumed to be physiologically connected between 
each other, we examined the relationship between colour changing capacity and the ability to exhibit dorsal 
patterns. First, we categorized each frog into a ‘patterned’ or ‘non-patterned’ group based on whether they exhib-
ited dorsal patterns against BK background. We then employed a logistic regression to analyse the relation-
ship between colour changing ability and the ability to exhibit dorsal patterns. All the statistical analysis were 
two-tailed and conducted in R.

Results
Colour change speed and capacity. In the BW experiment, the dorsal colours of frogs changed with 
time and duration was a significant factor for colour change (Fig. 2; χ 25 =  595.56, P <  0.001). We found that the 
dorsal colours of frogs changed rapidly within an hour of trial initiation and maintained similar levels through-
out the daytime (Fig. 2). Post-hoc comparisons suggest that there were no significant changes in ∆ E after two 
hours, which was also the trend for the GB experiment (Supplementary Fig. S4). We also found no effect of the 
colour of previously tested background on the frog colour at two hours (Wilk’s λ  =  0.89, approximate F9,338 =  1.29, 
P =  0.22). This suggests that frog colours at two hours were independent of the colour of previously tested back-
ground. Therefore, we used the colour of frogs at two hours as a representative colour on each background for 
further analysis. By using the colour of frogs that completely had undergone colour change process against their 

Figure 2. The relationship between time passed since the initiation of each colour changing trial and 
the Euclidean colour distance (∆E) from the initial status in BW experiment (N = 48). In all four types 
of backgrounds, frog colours changed rapidly within one hour and maintained similar levels throughout the 
remaining time. Symbols represent mean values and bars denote standard error of the mean.
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current background, we consider that further results are independent of the colour of the previously tested 
background.

We found substantial differences in colour changing ability between the frogs. In a pooled group of frogs 
from both BW and GB experiments, the distribution of colour changing capacity followed unimodal distribution 
(Supplementary Fig. S5; D =  0.03, N =  72, P =  0.88), which indicates that colour changing ability is a continu-
ously varying trait in H. japonica, unlike H. regilla that shows discrete variation in colour changing ability30.

BW experiment: brightness, chroma, and hue. We found that the colour components were sig-
nificantly different between background types (Fig. 3; Wilk’s λ  =  0.51, approximate F9,338 =  12.00, P <  0.001). 
Univariate analysis revealed that frogs’ dorsal colour changed in both brightness (Fig. 3A; F3,141 =  31.58, 
P <  0.001) and chroma (Fig. 3B; F3,141 =  37.98, P <  0.001), but not in hue (Fig. 3C; F3,141 =  0.14, P =  0.93). 
Post-hoc tests revealed that both frogs’ dorsal brightness and chroma were different between all four background 
types (Supplementary Table S1). Brightness and chroma varied between WH, GY, BW, and BK background (high-
est to lowest; Fig. 3). Brightness and chroma against BW background showed intermediate values between WH 
and BK background, which indicates that frogs adopted intermediate forms when their backgrounds consisted 
of two colours.

Estimated JNDs suggest that achromatic differences between frogs against different backgrounds were all 
discriminable (all JNDs > 4) to both avian and snake predators (Table 1). Frogs tested on BK backgrounds had 
significantly lower JNDs from BK colour than any other backgrounds while frogs tested on WH backgrounds 
had significantly lower JNDs from WH colour (Fig. 4; avian model: χ 26 =  245.02, P <  0.001; snake model: 
χ 26 =  186.15, P <  0.001; see Supplementary results for full comparisons). These support the camouflage func-
tion of colour change in H. japonica. We presented here only achromatic JNDs from BK and WH colour, but not 
GY colour because brightness of GY and WH were not significantly different for both avian and snake models 
presumably because the GY colour that we chose for the experiment was already highly bright (because of the 
higher reflection in 400–550 region, see Supplementary Fig. S3) from the perspective of predators. Although we 
used GY colour that showed an intermediate reflectance between WH and BK within red-green colour regions, 
frogs’ responses to background seemed to be affected by the overall brightness of colour across whole wavelength 
range. This might be one potential reason why we find higher brightness in frog colours against GY than BW 
background.

In terms of chromaticity, the colours of frogs in different backgrounds were all discriminable to predators 
between each other (Table 1). However, when we estimated the contrasts between current background and frog 
dorsal colour and compared them between backgrounds, we found no evidence that frogs’ chromaticity matched 

Figure 3. (A) Brightness, (B) chroma, and (C) hue of dorsal colour of frogs against each achromatic 
backgrounds (N =  48). Symbols represent mean values and bars denote standard error of the mean.

Comparisons

Bird vision Snake vision

Chromatic JNDs Achromatic JNDs Chromatic JNDs Achromatic JNDs

BK-BW 11.86 (6.18–17.31) 8.54 (6.07–14.21) 4.85 (3.39–8.43) 13.64 (9.63–24.24)

BK-GY 12.51 (7.43–20.90) 11.28 (5.34–19.21) 6.71 (3.00–10.30) 17.98 (8.47–29.65)

BK-WH 14.82 (12.28–25.87) 14.49 (11.70–21.81) 8.03 (5.49–12.38) 22.81 (15.50–35.54)

BW-GY 7.47 (4.82–11.34) 7.19 (4.39–14.19) 4.54 (2.13–7.31) 13.06 (6.06–20.87)

BW-WH 9.08 (5.99–13.41) 9.27 (4.96–17.02) 5.82 (2.70–8.70) 16.34 (7.44–24.97)

GY-WH 8.10 (4.62–10.71) 9.16 (4.14–13.18) 4.19 (1.96–6.78) 11.97 (5.48–19.46)

Table 1. Median just noticeable differences (JNDs) of frog dorsal colours between different achromatic 
backgrounds (BK: black; BW: black/white patterned; GY: grey; WH: white). JNDs from avian predator 
models were derived using blue tits (Cyanistes caeruleus) and snake models were derived from visual pigment 
absorbance data of garter snakes (Thamnophis sirtalis). The ranges in brackets mean first-third quartile ranges 
(N =  12 for each background).
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better against the tested background than other backgrounds from the viewpoint of avian (χ 26 =  0.01, P =  1) and 
snake predators (χ 26 =  0.00, P =  1). This indicates that, although the chromaticity of frog dorsal colour changed 
dependent on the background type, it did not achieve any better colour matching in terms of chromaticity.

BW experiment: dorsal pattern visibility. We found substantial within-individual variation in the 
expression of dorsal patterns against differently coloured background (Fig. 5A; χ 23 =  21.08, P <  0.001). Dorsal 
pattern expression under BK background was significantly higher than any other background types (BK vs. 
BW: Z =  − 2.49, Padj =  0.02, BK vs. GY: Z =  − 4.26, Padj <  0.001, BK vs. WH: Z =  − 4.208, Padj <  0.001). They also 
exhibited dorsal patterns more often under BW background than both GY (Z =  − 3.32, Padj =  0.002) and WH 
(Z =  − 3.16, Padj =  0.002) backgrounds. There was no difference in dorsal pattern expression between GY and WH 
backgrounds (Z =  0.43, Padj =  0.67).

BW experiment: colour change under darkness. During night-time under darkness, colour prop-
erties changed substantially (Wilks λ  =  0.51, F9,796 =  28.52, P <  0.001) depending on the type of backgrounds 
(Wilks λ  =  0.80, F3,327 =  27.98, P <  0.001). We also found significant interactions between colour component 
and background type (Wilks λ  =  0.93, F9,796 =  2.76, P =  0.003). Univariate analysis of each response variable 
showed that the frogs became darker and less colourful in all colour treatments (Fig. 6; brightness: F1,329 =  70.57, 
P <  0.001; chroma: F1,329 =  69.71, P <  0.001), but both brightness and chroma after the night were significantly 
affected by the background colour that they were being tested the previous day (Fig. 6; brightness: F3,329 =  67.09, 
P <  0.001; chroma: F1,329 =  81.88, P <  0.001; brighter and more colourful on WH, GY, BW, and BK background 
(highest to lowest)). We found no significant interaction between duration and background colour in brightness 
comparisons (F3,329 =  2.13, P =  0.10), but a single significant interaction was detected in chroma comparisons 
(F3,329 =  4.06, P =  0.007). We found no differences in hue analysis (all P> 0.05). These collectively imply that, after 
exposed under darkness during a night, frogs became darker and less colourful, but largely retained brightness 
and chroma from the previous day especially when they were against brighter backgrounds (Fig. 6).

GB experiment: overall results. We found no differences in brightness, chroma, and hue of frogs’ dorsal 
colours between all backgrounds (all P> 0.65). However, we note here that, although obscured by group effect, 
two out of 24 frogs showed clear hue change from green to brown (Supplementary Fig. S6; green on GR back-
ground and brown on BR background). The effect of background colour was not significant for the expression of 
dorsal pattern (χ 22 =  0.64, P =  0.73; 29%, 25%, 25% for GR, GB, BR background respectively).

Relationship between dorsal pattern expression and colour changing capacity. The above results 
suggest that individual frogs have different levels of colour changing ability as well as dorsal pattern expression. 
Against BK background, the dorsal patterns appeared in 34 out of 72 frogs. Logistic regression analysis showed 
that frogs with higher colour changing ability were more likely to express dorsal patterns (Fig. 5B; Z =  3.02, 
P =  0.003).

Discussion
Colour change against uniform vs. heterogeneous backgrounds. Our results indicate that, on 
average, frogs’ response to mixed colours followed an intermediate form rather than specifically matching one 
of the colours when they were against patterned background49. In addition, we found that there exists within 

Figure 4. Achromatic contrasts between reference colours and frogs’ dorsal colours against each 
background type. Reference colours were black (BK) and white (WH). We derived just noticeable differences 
(JNDs; see methods) from (A) avian and (B) snake vision model. A frog may be detected by the predator when 
JNDs > 1. Symbols represent mean values and bars denote standard error of the mean.
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population variation in colour changing ability: the degree of colour change was almost negligible (∆ E ≈  0) for 
the individuals with low colour changing ability (hereafter, non-changers), but colour change was considerably 
higher for the individuals with high colour changing ability (colour changers; Supplementary Fig. S6 for the dis-
tribution). Although the distribution of colour changing abilities has continuous distribution so that it is difficult 
to categorize them as two distinct groups, we contend that non-changers adopted the specialized camouflage 
strategy that only matched a background type while colour-changers adaptively changed their dorsal colours 

Figure 5. Proportion of patterned individuals against each achromatic background (A; N =  48) and the 
relationship between individual colour changing capacity and the presence of dorsal patterns against 
BK background (B; N =  72). (A) Frogs exhibited dorsal patterns more often when they were against darker 
backgrounds rather than brighter backgrounds. (B) Frogs with higher colour changing capacity were more 
likely to exhibit dorsal patterns.

Figure 6. Colour change of frogs during night-time under darkness in BW experiments (N = 48). Frogs 
retained substantial colour properties of the previous day in terms of both (A) brightness and (B) chroma. 
Symbols represent mean values and bars denote standard error of the mean.
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based on background brightness, and adopted the intermediate forms when they were against mixed coloured 
background26,49. We note here that the speculation that non-changers adopt specialized camouflage strategy only 
makes sense when non-changers indeed rest on one type of background that has the similar colour to their dorsal 
colour. Therefore, we encourage future experiments to test the resting preference of non-changers using natural 
substrates to evaluate this speculation.

Individual variation in colour change capacity. What maintains this intra-population variation in col-
our changing capacity? Obviously, colour changing ability would be advantageous in terms of camouflage, since 
they can achieve better background matching against various substrates. However, this plasticity in dorsal colour 
expression can have costs, such as physiological costs to rearrange numerous pigments in chromatophores50,51. 
Therefore, there may be opposing selection pressures for higher phenotypic plasticity and lower energetic costs 
that would affect the phenotypes and behaviours of frogs.

It has been hypothesized that the variation in colour changing ability in frogs can be maintained by the 
correlational selection between microhabitat (background colour) preference and colour changing ability. 
Non-changers would prefer to stay on a uniformly coloured substrate that have similar colours of their dorsal 
colours while colour-changers would not have such preferences52. Background selection experiments revealed 
that H. regilla, especially non-changers, prefer to stay against the background that exhibits similar colours of 
their dorsal colour52. In natural circumstances, behavioural preference for colour matching background does not 
assume visual recognition of colours, but colour matching can also be achieved by using other correlated visual/
non-visual cues53. For example, preferences for resting on the ground or leaves may not necessarily mean frogs 
rely on the colour cues but rather other sensory cues, such as shape or location of the substrates, which correlate 
with their colours in nature. These hypotheses are based on the assumption that colour change ability has genetic 
basis. However, our current understanding on how colour change ability of an individual is determined is limited, 
and we have no evidence that whether this plasticity is induced by genetic or environmental factors. Therefore, we 
encourage prospective experiments to explore genetic basis of colour changing ability through selection or cross 
fostering experiments. Then, the examination of substrate-frog colour matching under natural environments and 
identifying the sensory basis of it would also give us a new insight on how this plasticity can be maintained in a 
population.

Dorsal patterns. Patterns are important elements for camouflage because they can reinforce the camouflage 
of animals by providing either background resemblance, disruption effects that hinder the detection of true out-
lines of frogs5,6, or increasing the complexity of animals which makes predators difficult to detect camouflaged 
targets10. In our study, H. japonica exhibited dorsal patterns considerably more often against darker background 
while only about 15% of the frogs exhibited dorsal patterns against brighter backgrounds (white and grey).  
Although the frogs exhibited dorsal patterns more often against check patterned background than brighter back-
grounds, it seems to be driven by the overall brightness of the background, not by the existence of background 
pattern: the proportion of patterned individuals against pattered background were about the half between those 
against black and white backgrounds. Therefore, we suggest that dorsal pattern expression in H. japonica was 
affected by overall background brightness, not by the presence of background pattern. Here, we propose an adap-
tive hypothesis for the observed conditional expression of dorsal patterns.

If we apply our results to natural substrates, substrates that exhibit brighter background colours would be 
leaves while darker substrates would be tree bark or leaf litter. In general, leaves usually are homogenous in colour 
and are rarely patterned, whereas tree bark and/or leaf litter are often found with complex patterns. Therefore, 
considering the presence of patterns are likely to be advantageous against patterned background, having patterns 
against tree bark or leaf litters may be advantageous for frogs, while having patterns against leaves would be detri-
mental for survival. However, we cannot exclude the possibility of alternative non-adaptive explanations such as 
dorsal patterns as a by-product of melanophore re-arrangement during colour change process.

Our results also suggest that this conditional expression of dorsal patterns is more pronounced for 
colour-changers. Therefore, colour-changers would be benefited not only by their high colour changing ability, 
but also by their ability to express dorsal patterns against dark heterogeneous substrates. This further highlights 
the pressure for the correlational selection between microhabitat preference and colour changing ability. It would 
be advantageous for the non-changers to preferentially rest on one substrate (lighter substrate such as leaves) 
because they are less likely to exhibit dorsal patterns against darker substrates. The mean brightness of non-colour 
changers in our experiments (individuals with ∆ E <  8, N =  13, mean brightness =  21.20) was comparable to the 
brightness of naturalistic green colour that we used (mean brightness =  24.31) which supports this prediction.

Brightness, chroma, and hue changes. Our results corroborate the prediction of the physiological mod-
els of colour change in that two colour properties, brightness and chroma, were responsible for dorsal colour 
change in tree frogs54. These changes are readily perceivable to avian and snake predators in terms of both colour 
and brightness, which strongly supports that colour change evolved and was maintained because of its survival 
advantage through better background matching. Ultrastructural changes in pigments during colour change pro-
cess are well documented in H. arborea. We will not discuss the details of the complex pigment rearrangement 
here (see54), but one of the main changes during a colour change from a light to a dark colour is that the melano-
somes of melanophores disperse and surround chromatophores such as iridophores and xanthophores. Therefore, 
it is predicted that the change in brightness would also be accompanied by the change in chroma. In our experi-
ment, brightness and chroma of the frog dorsal colour changed correlatively (the increase in brightness resulted 
in the increase in chroma; Supplementary Fig. S7) which supports this prediction. Although green and brown 
colours chromatically mimic naturalistic backgrounds in the wild, frogs exhibit similar colours against the two 
backgrounds. This indicates that the dorsal colours of frogs mainly responded to the achromatic properties of 
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background rather than chromatic properties. It has been largely assumed that avian predators primarily use 
achromatic contrast (i.e. contrast in brightness) for the discrimination of small objects55,56. Therefore, to make 
predators fail to discriminate frogs against background, background matching in terms of brightness would be 
more important than chromaticity matching.

In BW experiment, GY colour represented the colour that showed intermediate reflectance between WH 
and BK colour within red-green colour region, but had higher brightness within the whole visible wavelength 
range. The fact that frogs adopted brighter colour against GY background than BW background implies that their 
responses to background colour were affected by the overall brightness of visible light rather than the brightness 
of red-green wavelength regions. We note here that our choice of bright GY background only affected frogs’ col-
our expression against GY background, but does not qualitatively change any other main findings of this study.

Although our sample sizes are not sufficient enough for the firm conclusion, about 10% of the frogs that were 
tested in GB experiments were able to change hue in response to background hues (Supplementary Fig. 6). This 
suggests the existence of polymorphic forms of H. japonica in terms of hue changing ability similar to the poly-
morphic forms of H. regilla26. It would be important for future studies to sample H. japonica in a larger scale to 
verify the presence of polymorphism and to investigate the mechanism that maintains this polymorphism within 
a population. Potential mechanisms that maintain this polymorphism would be correlational selection52, trade-off 
between survival benefits and either (or both) physiological costs or sexually attractive characters57, or other 
physiological restraints induced by environmental conditions58.

Colour change speed. Most of the colour change process has been completed within an hour and main-
tained similar levels throughout the day when frogs are against the same coloured background. This corroborates 
previous studies that demonstrated rapid colour change in frogs22,23. Rapid colour change to resemble natural 
backgrounds is pivotal for daily survival, especially when a frogs’ resting place changes within or between days. 
Since individual H. japonica can be found against various background even within a day (A. Borzée, unpub-
lished), rapid colour change ability would be beneficial for individuals that move between substrates frequently.

Interestingly, during the night, frogs became darker but largely retained the colour that they exhibited the 
previous day in terms of both brightness and chroma (Fig. 6). This could be adaptive if a frog rests on the same 
background as the previous day because the colour of the frog should already resemble the background in the 
early morning when many predators are actively searching for prey59. In addition, this retaining of colours sug-
gests the possibility of long-term colour change. Since we tested each frog against each background maximally for 
12 hours, we do not know about the long-term colour change in H. japonica and the upper threshold of dorsal col-
our change if they stay against one background repeatedly for more than a day. However, previous studies suggest 
the existence of long-term colour changing in tree frogs. H. regilla can undergo slow and gradual colour change 
during 21 days26. In the previous study of H. japonica27, the background colour matching in terms of brightness 
and chroma generally and gradually improved over the course of 7 days when the frogs stayed against the same 
coloured background. Long-term gradual colour change is dominated by morphological colour changing organ-
isms and can be adaptive only when the animals stay against the same background for a longer period. Although 
mechanisms for long-term colour change in frogs are currently lacking, long-term change could be adaptive if 
they selectively rest on the same substrate over days.

Concluding remarks. Camouflage through colour change is a widespread phenomenon in nature. To prop-
erly understand this intriguing biological process, it is crucial to consider its evolution under visually hetero-
geneous environments and the sensory properties of the animals’ natural predators36,60. Our results provide a 
new insight on the camouflage function of colour change in anurans and mainly highlight i) background colour 
matching strategy of tree frogs against visually heterogeneous backgrounds, ii) conditional expression of dorsal 
patterns, and iii) substantial variation in individual capacity to change colours, and iv) the possibility of poly-
morphism in terms of hue-changing abilities. Further studies on the fitness benefits of colour change and pattern 
expression, the relation between colour changing capacity and substrates preference, and the mechanisms that 
maintain the variation in colour changing capacity and polymorphic morphs within a population would advance 
our current understandings of colour changing animals.
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