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Ultrafast adiabatic quantum 
algorithm for the NP-complete 
exact cover problem
Hefeng Wang1,2 & Lian-Ao Wu3,4

An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long 
runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here 
we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of 
fast random or regular signals during evolution, the runtime can be reduced substantially, whereas 
advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula 
and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented 
simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem 
(EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to 
implementing the problem with trapped ions.

The adiabatic principle addresses that a quantum system governed by a slowly-varying Hamiltonian will remain 
near instantaneous ground state of the driving Hamiltonian1,2. It has a variety of applications in quantum infor-
mation processing, such as adiabatic quantum computing (AQC)3, fault-tolerance against specific errors4, and 
universal holonomic quantum computation5–7 based on the Berry’s phase8–10.

Adiabatic quantum computing is one of quantum computing models that have potential in solving certain 
problems much faster than their classical counterparts, in particular factoring large integers11, searching unsorted 
database12 and simulating quantum many-body problems13. AQC is based on the adiabatic principle. The eigen-
state of the final Hamiltonian encodes solution to the problem of interest. The runtime of AQC has to be slow 
to guarantee that the final state is able to reach the ground state of the final problem Hamiltonian. This requires 
long coherence time in experimental implementation of the process, especially for practical large scale systems. 
As such, the runtime is crucial for AQC to be valid. If the runtime is too long, quantumness may become van-
ishingly small due to decoherence and consequently the quantum speedup over classical computation will fade 
away. Recently an experiment14 has been performed to address this crucial question: whether or not a large-scale 
quantum device has the potential to outperform its classical counterpart? The experimental test was done for 
finding the ground state of an Ising spin glass model on the 503-qubit D-Wave Two system which are designed 
to be a physical realization of quantum annealing using superconducting flux qubits. Unfortunately, there was 
no evidence found for quantum speedup. The main reason for this dysfunction is that the runtime is so long 
that before the end of an adiabatic quantum algorithm, decoherence has completely ruined all quantumness. 
Therefore speedup of adiabatic algorithms is crucial in realization of practical large scale quantum computation.

In this paper, we present a general approach that speeds up adiabatic algorithms substantially by applying fast 
signals during the dynamical evolution process. The proposed protocol is experimentally accessible in a variety 
of promising quantum-computing setups. We demonstrate this approach by solving a 3-bit exact cover problem 
(EC3).

Results
The Algorithm.  The EC3 problem is a particular instance of satisfiability problem and is one of the 
NP-complete problems. No efficient classical algorithm has been found for solving this problem. On a quantum 
computer the EC3 problem can be formulated as follows3,15: for a Boolean formula with M clauses
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where each clause Cl is true or false depending on the values of a subset of the n bits, and each clause contains 
three bits. The clause is true if and only if one of the three bits is 1 and the other two are 0. The task is to determine 
whether one (or more) of the 2n assignments satisfies all of the clauses, and find the assignment(s) if it exists.

In refs 3,15, a quantum adiabatic algorithm for solving the EC3 problem has been proposed. In this algorithm, 
the time-dependent evolution Hamiltonian H0(t) is

= − +H t J t T H t T H( ) [(1 / ) ( / ) ], (2)B P0 0

where HB is the initial Hamiltonian whose ground state is used as the initial state, HP is the Hamiltonian of the 
EC3 problem whose ground state is the solution to the EC3 problem and T is the total evolution time or the runt-
ime. Here J0 is the strength of the Hamiltonian and is set as J0 =  1 in this paper. In this algorithm, the Hamiltonian 
of the system evolves adiabatically from HB to the problem Hamiltonian HP, meaning that the system evolves 
from the ground state of HB to the ground state of HP. HB is defined as

∑= .H H
(3)B

C
B C,

where HB,C is the Hamiltonian of clause C. Let iC, jC and kC be the 3 bits associated with clause C. HB,C is defined as

= + +H H H H , (4)B C B
i

B
j

B
k

,
C C C

with

σ= −H 1
2
(1 ) (5)B

i
x
i

and σx
i are the Pauli matrices. The Hamiltonian HP for the EC3 problems is defined as follows: for each clause C, 

one can define an “energy” function

=
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such that

| 〉 = | 〉 H z z z h z z z z z z( , , ) , (7)P C n C i j k n, 1 2 1 2C C C

where | 〉z j  is the j-th bit and has a value 0 or 1. Define

∑=H H ,
(8)P

C
P C,

and we then have ψ =H 0P , if and only if ψ  is in a superposition of states 
z z zn1 2 , where the bit string 

z z zn1 2  satisfies all of the clauses.
In what follows we will describe our approach for solving the EC3 problem by applying a sequence of fast 

signals during the dynamical process16. We consider a Hamiltonian – a dressed H0(t),

= +H t c t J H t( ) (1 ( )/ ) ( ), (9)0 0

where c(t) represents a sequence of fast signals. Ref. 16 shows that the adiabaticity can be enhanced and even 
induced by c(t)/J0 – regular, random, and even noisy fast signals. Specifically, c(t)/J0 could be a white noise signal 
in magnetic field, as exemplified in ref. 16. We will use this strategy to speed up adiabatic quantum algorithms and 
then illustrate our general approach by an experimentally feasible example.

We now come to explain the principle and experimental implementation of our approach in terms of a simple 
but nontrivial EC3 problem. Consider a 4-bit EC3 problem, where we select the 3-bit set of clauses as {1, 2, 3}, 
{2, 3, 4}, and {1, 2, 4}. The solution to this problem is 0100 .

For this specific model, we show numerically that when T0 >  160, the system enters the adiabatic regime. In 
order to study the contributions of fast signals, we set T =  40 <  T0 in the non-adiabatic regime, and apply a 
sequence of fast regular pulses during the adiabatic process. The pulse strengths are s =  0, 0.5, 1.0, 2.0, respectively. 
Figure 1 shows the dynamics of fidelity ψ ψ=F t T t T( / ) ( / )0  between the system wave function and the 
instantaneous ground state of H(t), where ψ t T( / ) is the wave function governed by the Schrödinger equation or 
the time-ordering evolution operator and ψ t T( / )0  represents the instantaneous ground state of the Hamiltonian 
H(t). It is clear in the figure that as the strength of pulses increases, the adiabaticity is induced from a non-adiabatic 
regime and the fidelity F is approaching one, in particular in the region where the solution is encoded. The quality 
of pulse control can also be improved by increasing the density of fast signals.

Different types of fast signals work as perfect as regular rectangular pulses17. Figure 2 shows the fidelity 
dynamics by applying different fast signals, even random signals as in Fig. 3. The red dashed line shows the result 
by an even simpler fast signal =c t t( ) 2cos (10 )2  and the blue dotted line is that of 2sin2(10t). The black solid line 
uses regular rectangular pulses with s =  2.0 and Δ =  0.08, as a reference.
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Fast signals reduce the runtime of adiabatic evolution algorithms greatly, and keep very high fidelity F particu-
larly when the system reaches the target–the ground state of the problem Hamiltonian HP. Furthermore, the runt-
ime can be even shorten for example to half, T =  20. We set the strength of pulses as s =  0, 1.0, 2.0, respectively, 
as in Figure 3. It shows again that the adiabaticity is greatly enhanced even in a shorter runtime by increasing 
strengths.

Adiabaticity can be induced from an originally very fast dynamical process if pules signals are even stronger. 
For example, if the signal strength s =  15, the system wave function evolves along the adiabatic path in the runt-
ime T =  9 and at the very high fidelity F =  0.999 overlapping with the eigenstate of HP, which is 17 times faster 
than the natural adiabatic process where the runtime T0 =  160. Numerical analysis shows that if we are allowed 
to increase the strength at will, the runtime T can be as fast as we wish. Other examples are, if s =  1.0, 5, 30, 
T ≈  70, 23, 5.0, respectively.

In general, our algorithm can be justified in terms of Leakage Elimination Operators. Consider the instanta-
neous eigenstates E t( )n  of the Hamiltonian (2). A quantum state at time t can then be expressed as

Figure 1.  Dynamics of fidelity ψ ψ= |〈 | |F t T t T( / ) ( / )0 . The total evolution time or runtime T =  40, the 
intervals between pulses are set as Δ =  0.08. The black solid curve shows the result for the strength s =  0; the red 
dashed curve for s =  0.5; the blue dotted curve for s =  1.0 and the dash-dot dark cyan curve shows for s =  2.0. 
The magenta short dashed curve shows the result of the total evolution time T0 =  160 when the system enters the 
adiabatic regime justified by F(T) ≥  0.999. For this model we consider this curve as a reference: paths ψ t T( / ) are 
in the adiabatic regime if F(T) ≥  0.999.

Figure 2.  T and Δ are the same as in (a). The black solid curve shows the dynamics of F for the case where no 
signal is applied; the red dashed curve (the blue dotted curve) shows the fidelity dynamics when applying fast 
signals 2cos2(10t) (2sin2(10t)), and the dark cyan dash dot curve shows F(t) controlled by fast pulse signals with 
the pulse strength s =  2.0.
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∑ψ ψ= .t t E t( ) ( ) ( )
(10)n

n n

Under the bases E t( )n , we can rewrite the Schrödinger equation, with the corresponding wave function 
ψ ψ ψ ψ= ′t( ) [ , , , ]0 1 2  and the rotating representation Hamiltonian

= +H t H t L t( ) ( ) ( ), (11)d0

where = …H t E t E t( ) diag( ( ), ( ), )d 0 1  is diagonal and = − L t i E E( )mn m n  is off-diagonal. Without loss of gen-
erality, we set = =E E E t( ) 0m m 0 , otherwise they can be removed by a simple gauge transformation. Now the 
reason why we chose the dressed H(t) in (9) is clear. The dressing does not change the off-diagonal L(t), but only 
rescales Hd(t). Ideally, if we turn on the strong and fast control δ τ∝ −c t t n( ) ( ) at given times nτ = …n( 0,1, ), 
the propagator of the control c(t)Hd(t) gives Leakage Elimination Operation (LEO) RL 18 in the rotating frame-
work, or a rotating LEO. This operator satisfies {RL, L} =  0, and serves as a leakage elimination operator: 

=τ τ τ τ τ τ τ− − − − + −†e R e R eiH n
L

iH n
L

i H n H n( ) ( ( 1) ) ( ( ) ( ( 1) )d d  when τ →  0 and t ≈  nτ. This Bang-Bang sequence 
parity-kicks out the leakage L. Furthermore, all leakages such as LB can be eliminated by RL, where B can be an 
operator of other system, such as an external bath18.

We now illustrate the rotating LEO by a two level system, where the rotating representation Hamiltonian reads

σ σ= − = .H t E t I L t E E( ) ( )
2

( ) and ( ) (12)d z y
1

0 1

When δ τ= −πc t t n( ) ( )
E t2 ( )1

 or parity-kick at t =  nτ, the rotation LEO is RL =  −iσz, such that 
RLL(t)RL =  − L(t) and L(t) is parity-kicked out.

The idealization of the Bang-Bang sequence has been proved unnecessary in the recent publications16,17. The 
effectiveness of LEOs depends exclusively on the integral of the pulse sequence in the time domain17 and the 
scheme is obviously independent of n, the size of the system.

Randomized Trotter formula and implementation of the algorithm in trapped ions.  We now 
discuss the feasibility to experimentally implement our algorithm on an ion trap quantum information processor. 
In general, the EC3 problem Hamiltonian is supposedly stored in an Oracle and is called when it is needed. In 
order to perform experimental demonstration of our algorithm, here we simulate the 4-bit EC3 Hamiltonian with 
trapped ions. We first write the problem Hamiltonian explicitly in the qubit space,

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ
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Figure 3.  Dynamics of fidelity F with the runtime T = 20 and the intervals Δ = 0.04. The black solid curve 
shows the dynamics for s =  0; the blue dotted curve for s =  1.0; the red dashed curve shows the result for s =  2.0 
and the dark cyan dash dot curve for s =  5.0.
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Note that the Hamiltonian contains up to three-body interactions, since symmetry rules out more complicated 
interactions which may appear in multi-bit EC3 problems.

The time-ordering evolution operators driven by the time dependent Hamiltonians H(t) and H0(t) cannot 
be analogously simulated by trapped ions. Therefore digital simulation has to be employed. The standard recipe 
of digital simulation for adiabatic processes is the use of the Trotter formula, as done in previous literatures19. In 
what follows, we will present a randomized Trotter formula (RTF) to mimic H(t), which effectively combine the 
two processes, applying fast signals during the dynamics and simulating H0(t).

The time-ordering unitary evolution operator is implemented as

τ ≈ τ τ τ τ τ τ− − −
U k e e e( ) (14)iH k iH iH( ) (2 ) ( )k0 0 2 0 1

up to order O(τ2). Usually, the evolution operator of H0(kτ) is simulated by setting all τj =  τ where = …j k1, , .
The distinctive recipe of our RTF is that we set

τ
τ
τ=





+






c j
J

1 ( ) ,
(15)

j
0

such that =τ τ τ τ− −e eiH j iH j( ) ( )j0 . The equality links two different physical operations. The left is the simulated H0 
evolving during a short but uneven time interval τj, and the right means a fast signal c(jτ) has been implemented, 
at the time instance jτ, upon H0 that transforms into the dressed H evolving in an even time interval τ. The math-
ematical equivalence implies that we can experimentally simulate τ τ−e iH j( ) j0  instead of τ τ−e iH j( ) , whose simulation 
ingredient is not yet known (unknown for this model but it is simple to implement c(t) upon H0 for most systems, 
such as an additional magnetic fast-varying field upon spins). In other words, the simulation (14) for H0 becomes 
that of H,

τ ≈ τ τ τ τ τ τ− − −
U k e e e( ) (16)iH k iH iH( ) (2 ) ( )

up to order O(τ2).
The evolution operator of H0 is simulated by the Trotter decomposition,

≈ .τ τ τ τ− − − −e e e (17)iH j iH j k iH j k( ) (1 / ) ( / )j B j P j0

Experimentally, exact control of these uneven time intervals τj might not be easy. Therefore, the easiest way for 
experimentalists is to assign random values to these intervals τj. This is equivalent to employ random fast signals 
c(jτ), which has shown the same excellent control quality as that of other fast signals16,17.

We set the runtime T =  20 and let τj change randomly in the range [2.0τ, 3.0τ] and [4.0τ, 8.0τ] respectively, 
and perform simulation. Figure 4 shows the results and compares them with regular pulses. It is clear that ran-
dom fast signals work as perfect as regular pulses. When the variation range of τj is larger, the enhancement of 
adiabaticity is even better than that of fixed τj’s, and evolves on the same adiabatic path as that of the adiabatic 
reference where T0 =  160.

Now we come to discuss the experimental implementation of the algorithm on trapped ions . It is clear that we 
need only to implement the slices τ τ− − −e eiH j k iH j k(1 / ) ( / )B j P j and repeat them to perform the evolution operator 
U(kτ). HB is a simple single-qubit Hamiltonian and can be implemented on most sophistic quantum devices, 

Figure 4.  Dynamics of F(t) with the total evolution time T = 20. The black solid curve shows F without signal 
control; the red dashed curve is F controlled by a sequence of fast pulses with s =  2.0 and Δ =  0.04; the blue 
dotted and the dark cyan dash dot curves show the dynamics of F obtained by the simulated Eq. (16), where τj 
varies randomly in the range [2.0τ, 3.0τ] and [4.0τ, 8.0τ], respectively. The magenta short dashed curve is the 
T0 =  160 reference for the adiabatic regime.
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including trapped ions. It is a challenge for quantum devices to implement three or more body interactions. 
Fortunately, trapped ions do not have this difficulty. Consider tensor products of Pauli matrices in the form of 

σ= ∏ =A m
n

x
m

1 . The time evolution operator of A can be implemented efficiently with the Mølmer-Sørensen (MS) 
scheme20,23 on trapped ions,

π φ π= −φσ σ σ⊗ ⊗ ⊗e U U U( /2,0) ( ) ( /2,0), (18)i
MS anc MS

x x x
n1 2

where the exponential is implemented by two MS gates to the n system ions and one ancilla qubit (no. 0), 
θ ϕ ϕ ϕ= − +θ( )( )U i S S( , ) exp cos sinMS x y4

2 , and σ= ∑ =Sx y j
n

x y
j

, 0 , . φU ( )anc  is defined as when n is odd, 

φ = φσ−U e( )anc
i y

0  for n =  4m +  1, and φ = φσU e( )anc
i y

0  for n =  4m −  1, and when n is even, φ = φσU e( )anc
i z

0  for 
n =  4m, φ = φσ−U e( )anc

i z
0  for n =  4m −  2. The unitary operator τ−e iH j k( / )P j in Eq. (17), which contains tensor 

products of σz’s, can be implemented by performing Hadamard transform on each of the σx operators in Eq. (18).
In comparison with decomposing the slices of the time evolution operator into single- and two-qubit gates, 

the number of the gates to be implemented is reduced. This saves resources greatly and helps in the digital imple-
mentation of the fault-tolerant quantum computing. In a recent work21, trapped ions have been reported that T2 
is of 50 secs and 2000 single qubit gates have been implemented with fidelities significantly above the minimum 
threshold required for fault-tolerant quantum computing. This is the reason why there have been many quantum 
simulation proposals using the MS scheme.

Discussion
A short runtime is of crucial importance for adiabatic quantum algorithms to achieve polynomial time speedups 
over their classical counterpart, because it is difficult to keep quantumness of a system for long time in pres-
ence of noisy environment. In this paper, we propose an adiabatic quantum algorithm assisted with fast signal 
and show that by applying a sequence of fast signals, the runtime in the adiabatic quantum computing can be 
greatly reduced22. This technique has practical interest in the physical implementation of adiabatic quantum 
algorithms23. We applied this approach to solve the EC3 problem and discuss the feasibility to implement it on 
trapped ions Fig. 4. We introduce a randomized Trotter formula which effectively implements effects of fast sig-
nals upon the original Hamiltonian, which, as we show, can be implemented efficiently on a trapped ion system.
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