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Configurational space 
discretization and free energy 
calculation in complex molecular 
systems
Kai Wang1, Shiyang Long1 & Pu Tian1,2

We sought to design a free energy calculation scheme with the hope of saving cost for generating 
dynamical information that is inherent in trajectories. We demonstrated that snapshots in a converged 
trajectory set are associated with implicit conformers that have invariant statistical weight distribution 
(ISWD). Since infinite number of sets of implicit conformers with ISWD may be created through 
independent converged trajectory sets, we hypothesized that explicit conformers with ISWD may be 
constructed for complex molecular systems through systematic increase of conformer fineness, and 
tested the hypothesis in lipid molecule palmitoyloleoylphosphatidylcholine (POPC). Furthermore, 
when explicit conformers with ISWD were utilized as basic states to define conformational entropy, 
change of which between two given macrostates was found to be equivalent to change of free energy 
except a mere difference of a negative temperature factor, and change of enthalpy essentially cancels 
corresponding change of average intra-conformer entropy. By implicitly taking advantage of entropy 
enthalpy compensation and forgoing all dynamical information, constructing explicit conformers with 
ISWD and counting thermally accessible number of which for interested end macrostates is likely to be 
an efficient and reliable alternative end point free energy calculation strategy.

For two arbitrary macrostates A and B visited in a set of converged molecular dynamics (MD) simulation trajec-
tories, the free energy difference may be expressed as:
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with Nsnap
A B( ) being observed number of snapshots in macrostate A B( ), kB being Boltzmann constant and T  being 

the temperature. However, if a converged MD trajectory set was generated for the sole purpose of calculating free 
energy differences between interested macrostate pairs, all dynamical information contained would have been 
discarded. One question we sought to answer is that if there is a way to save computational cost used for generat-
ing dynamical information by designing a free energy calculation method without explicit utilization of trajecto-
ries. A rarely discussed fact is that each snapshot represents an implicit microscopic volume (termed conformer 
hereafter) in configurational space (see Fig. 1a). More importantly, eq. (1) implies that, in a set of converged tra-
jectories, implicit conformers associated with snapshots have invariant statistical weight distribution (ISWD) 
across the whole configurational space (see Fig. 1c). Therefore, one way to answer our original question is to 
accomplish the following two tasks: i) to construct a set of configurational-space-filling (Let the volume of the 
whole configurational space of a N -atom molecular system being V N3 , for a set of M  conformers each has a 
non-overlapping volume vi(i  =   1,  2, · ,  M),  if  ∑ == v Vi

M
i N1 3 ,  then this set of conformers are 

configurational-space-filling, see Fig. 1b for a schematic representation) explicit conformers, with thermally 
accessible ones among which have the property of ISWD (or a sufficiently good approximation of it), and ii) to 
design an efficient method to count such conformers that are thermally accessible in given macrostates. To be 
concise, we use “explicit conformers with ISWD (ECISWD)” to represent “configurational-space-filling explicit 
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conformers, with thermally accessible ones among which have the property of ISWD (or a sufficiently good 
approximation of it)” hereafter. For two arbitrary macrostates A and B that have Nconf

A  and Nconf
B  (Note that both 

are functions of potential energy) thermally accessible conformers, denoting corresponding average statistical 
weight of conformers as w A and wB, the change of free energy between these two macrostates may be written as:
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For ECISWD, ≈w wA B, therefore:
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It was demonstrated that sequential Monte Carlo (SMC) in combination with importance sampling1,2 may 
rapidly count the number of explicit conformers that are thermally accessible. Therefore, the hinging issue is to 
construct a set of ECISWD. We set to address this issue and accompanying implications in this study.

Hypothesis on ECISWD
Conformers associated with MD snapshots are implicit with no information available for their shapes or sizes, 
we consequently may not directly learn from MD trajectories. One principal consideration for defining ECISWD 

Figure 1. (a) Schematic representation of a few snapshots and corresponding implicit conformers represented 
by dashed rectangles. (b) A configurational-space-filling set of conformers in two dimension, with grayscale 
indicating conformer statistical weight. (c) A schematic illustration of the ISWD property in two dimension for 
implicit conformers associated with snapshots in a converged MD trajectory set. Red points represent 
snapshots, corresponding dashed squares represent associated implicit conformers with darker grayscale 
indicating heavier statistical weight. With shown variant statistical weight distribution of implicit conformers in 
the vertical direction, ∆ =F lnAB N

N
snap
A

snap
B

 (left), while ∆ ≠F lnCD N

N
snap
C

snap
D

 (right). As long as variation of statistical 

weight distribution exist, we may always find a pair of macrostates like C and D. Therefore, robustness of the 
population based free energy formula (eq. 1) is equivalent to the ISWD property for the corresponding set of 
implicit conformers.
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is sufficient fineness since statistical weight of complex molecular systems are in general exponentially different 
for different macrostates3, very coarse conformers are associated with the possibility that the heavist conformer 
in the statistically most dominant macrostate weighs more than the total of all other macrotates, hence rendering 
ISWD impossible. Better uniformity is another factor to consider for the same reason. It is noted that ISWD holds 
for each set of implicit conformers associated with snapshots of corresponding independent and converged MD 
trajectory set. Therefore, infinite number of ways exist for constructing sets of implicit conformers with ISWD 
for a given complex molecular systems. Based on this thought, we hypothesized that any set of sufficiently fine 
and uniform conformers should approximately have the property of ISWD, and we may consequently define 
ECISWD through systematically increasing their fineness according to our convenience.

This hypothesis is immediately disproved by a simple double well system shown in Fig. 2. With increasingly 
different ∆U  between two wells A and B, regardless of the fineness for any uniformly defined conformers, the 
statistical weight distribution of which in two macrostates will be increasingly different. The only way to achieve 
sufficiently good approximate ISWD is to construct conformers that were properly weighted by U , the potential 
energy surface that we do not know a priori in a real complex molecular system. Nonetheless, complex molecular 
systems are very different from a double well system. As shown in Fig. 2, if we divide macrostates A and B into NA 
and NB (e.g. = =N N 1000,000A B ) conformers, U  is consistently higher in A than in B in terms of conformer 
average, and within each conformer U is essentially a constant. Such situation is unlikely, if ever possible, to occur 
in a complex molecular system. With large number of degrees of freedom (DOFs), tight packing and steep van der 
waals repulsive core of constituting atoms, potential energy may vary significantly within a microscopic volume 
of configurational space. Therefore, we think that competitions among large number of DOFs may render con-
struction of ECISWD an achievable task, and the above mentioned hypothesis may well be valid for complex 
molecular systems.

Sufficiently well-converged MD trajectory sets of specific molecular systems provide ideal test grounds for 
ISWD property of given explicit conformers based on the following two arguments. Firstly, trajectory sets are 
generated by known force fields, and therefore no convolution of force fields inaccuracy and experimental error 
exists as in the case of comparing computational results with experimental ones; Secondly, we may arbitrarily 
partition configurational space visited in a trajectory set, and a hypothesis tested for arbitrarily given partitions 
should remain true for the whole configurational space. This is an important logic since traversing configurational 
space for complex molecular systems is practically impossible. The symbolic equivalence between eqs (1) and (3) 
suggests that for a set of ECISWD, if we assign each snapshot in a trajectory set to a corresponding conformer and 
utilizing eqs (1) and (3) respectively to calculate free energy changes for arbitrarily selected pairs of macrostates, 
differences in results caused by different conformer definitions (between a given explicit conformer set and the 
implicit one associated with snapshots) should decrease with increasing size of trajectory set and essentially dis-
appear for a fully converged trajectory set, the reason is that free energy difference between two arbitrarily given 
macrostates does not depend on the way it is calculated. Conversely, if statistical weight distribution of a set of 
explicit conformers is widely different in different part of the configurational space, the corresponding differ-
ences in results would increase with increasing size of trajectory set and saturate for a fully converged trajectory 
set since the largest possible error is limited by the number of available snapshots in any trajectory sets that are 
not fully converged. Both complete disappearance of differences resulted from eqs (1) and (3) for the case of 
ECISWD, and full saturation of differences resulted from these two equations for the case of explicit conformers 
without ISWD will be extremely difficult to observe for complex molecular systems due to excessive amount 
of data needed. Nonetheless, the trend should be equivalently informative as long as the largest trajectory set is 
sufficiently well-converged.

We chose lipid POPC to carry out such tests based on the fact that large MD trajectory sets are available for 
this molecule. Specifically, we firstly extracted MD trajectories of POPC from trajectories of M2 muscarinic ace-
tylcholine receptor study4. Three increasingly larger trajectory sets, TSA1, TSA2 and TSA3 were constructed with 
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Figure 2. A simple double well potential with equal width (i.e. xA = xB). U is the potential energy and ∆U is 
the potential energy difference between the macrostates A and B.
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smaller trajectory sets being subsets of larger ones. Secondly, we defined four different sets of conformers, which 
were denoted as CONF1 through CONF4 (see Fig. 3 and Table 1) respectively, with CONF1 being the finest and 
CONF4 being the coarsest. Thirdly, we used backbone dihedrals as order parameters to construct macrostates 
through projection operations. Finally, number of conformers (N conf ) were calculated for each macrostate of the 
given combination of trajectory set and definition of conformers (see Methods for details).

With the above given definitions of conformers, macrostates and trajectory sets, we calculated ∆F for all pairs 
of macrostates on each combination of conformer definition and trajectory set according to eq. (1) (denoted as 
∆Fsnapshot ) and eq. (3) (denoted as ∆Fconformer ) respectively, and their differences were denoted as 
δ∆ = ∆ − ∆F F Fsnapshots conformer  (see Methods for details), which essentially measures differences between our 
constructed set of explicit conformers and implicit conformers associated with snapshots. Distributions of δ∆F 
and cumulative probability density (CPD) of its absolute values for the four sets of explicit conformers (CONF1 
through CONF4) are shown in Fig. 4. Firstly, for CONF2 through CONF4 (Fig. 4b–d), distribution of δ∆F is 
significantly broader for larger trajectory set. Secondly, it is noted that the range of horizontal axis is widely differ-
ent for these three sets of conformers (ranging from less than 0.1k TB  to a few k TB ). For a given trajectory set, 
dramatically broader distribution of δ∆F is observed for coarser conformer definitions. Correspondingly, CPD 
plots of δ∆F (Fig. 4f–h) exhibit the extent of errors more directly. These observations match our expectation for 

Figure 3. Ball and stick representation of POPC and definition of conformer sets. Oxygen: red, hydrogen: 
white, carbon: cyan, phosphate: blue. The 43 all-heavy-atom torsions (see Table 1 for detailed lists of comprising 
atoms) utilized to define conformers are labeled with numbers on their central bonds. Set CONF1 is defined 
with all 43 torsions; set CONF2 is defined by 28 torsions, which are {2,3,5,6,8,9,11,12,14,15,17,18,20,21,23,24, 
26,27,29,30,32,33,35,36,38,39,41,42}; set CONF3 is defined by 22 odd numbered torsions and set CONF4 is 
defined by 15 torsions that are excluded in the definition of CONF1.

Index atom1 atom2 atom3 atom4 Index atom1 atom2 atom3 atom4

 1 C12 N C11 C15 2 N C11 C15 O1

 3 C11 C15 O1 P1 4 C15 O1 P1 O2

 5 O1 P1 O2 C1 6 P1 O2 C1 C2

 7 O2 C1 C2 O21 8 C1 C2 O21 C21

 9 C2 O21 C21 C22 10 O2 C1 C2 C3

 11 C1 C2 C3 O31 12 C2 C3 O31 C31

 13 C3 O31 C31 C32 14 O21 C21 C22 C23

 15 C21 C22 C23 C24 16 C22 C23 C24 C25

 17 C23 C24 C25 C26 18 C24 C25 C26 C27

 19 C25 C26 C27 C28 20 C26 C27 C28 C29

 21 C27 C28 C29 C210 22 C28 C29 C210 C211

 23 C29 C210 C211 C212 24 C210 C211 C212 C213

 25 C211 C212 C213 C214 26 C212 C213 C214 C215

 27 C213 C214 C215 C216 28 C214 C215 C216 C217

 29 C215 C216 C217 C218 30 O31 C31 C32 C33

 31 C31 C32 C33 C34 32 C32 C33 C34 C35

 33 C33 C34 C35 C36 34 C34 C35 C36 C37

 35 C35 C36 C37 C38 36 C36 C37 C38 C39

 37 C37 C38 C39 C310 38 C38 C39 C310 C311

 39 C39 C310 C311 C312 40 C310 C311 C312 C313

 41 C311 C312 C313 C314 42 C312 C313 C314 C315

 43 C313 C314 C315 C316

Table 1.  Detailed list of comprising atoms of the 43 torsions utilized in defining conformers and 
macrostates for POPC.
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coarse conformers that do not have sufficiently good approximation of ISWD. Finally and most importantly, for 
CONF1 (Fig. 4a), distribution of δ∆F is narrower for larger trajectory set, and is significantly narrower than that 
of all other conformers (Fig. 4b–d), the CPD plot (Fig. 4e) shows the differences among trajectory sets more 
clearly. Therefore, conformers in set CONF1 match our expectation for ECISWD. The observation of the behavior 
for CONF1 through CONF4 suggest that, as hypothesized, we may define a set of ECISWD through systematic 
increase of conformer fineness. Regarding the uniformity of conformers, we equally partitioned each torsional 
DOF into three torsional states since we have no better information a priori to divide otherwise. To test further 
the hypothesis that any sufficiently fine conformers should have similarly good approximation of ISWD, we 
defined a few more different set of conformers with similar fineness to CONF1 through CONF4 respectively, and 
similar observations were made (see Fig. 5). On different trajectory sets of POPC with similar size to TSA1 
through TSA3, similar observations were made (data not shown). It is noted that regardless of conformer defini-
tion and trajectory set size, distributions of δ∆F is approximately symmetric with the mode at zero (Fig. 4a–d, 
Fig. S1a–d and Fig. S2a–d), this is inevitable since selection of start and end macrostate is arbitrary and consistent 
in calculating both ∆Fsnapshot and ∆Fconformer.

For coarser explicit conformers without ISWD, deviations from ISWD are expected to occur in the heaviest 
macrostates, where larger probability for occurrence of excessively heavy conformers would cause uneven distri-
bution of statistical weight. Again, such deviations are expected to be larger for larger trajectory sets (and eventu-
ally saturate for a fully converged trajectory set). To this end, we plotted − Nln snap vs − Nln conf  for all constructed 
macrostates in Fig. 6 for CONF1 and CONF4. Indeed, deviations occur for the heaviest macrostates and are larger 
for larger trajectory set for CONF4 (Fig. 6b,d,f). Perfect scaling was observed for CONF1 (Fig. 6a,c,e) as expected.

Figure 4. Distributions of δ∆F (a–d) and CPD of its absolute values (e–h) for POPC with four sets of explicit 
conformers (CONF1 through CONF4, which are indicated in the horizontal label as subscripts, e.g. δ∆Fconf 1 in 
(a) and δ| ∆ |Fconf 1  in (e)). Different trajectory sets are represented by different line colors. The unit of the 
horizontal axis is in k TB .

Figure 5. Distributions of δ∆F (a–d) and CPD of its absolute values (e–h) for POPC with conformer sets 
CONF5 through CONF8, which are defined similarly to CONF1 through CONF4 except that torsional states 
boundaries are °60 , °180  and °300 . Different trajectory sets are represented by different line colors. The unit of 
the horizontal axis is in k TB .
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Conformational entropy based on ECISWD
Typical molecular systems in chemical, materials and biological studies, when treated quantum mechanically, 
present intractable complexity. Classical (continuous) representation of atomic DOFs, however, presents an 
awkward situation for the definition of microstates and entropy5. Correspondingly, density of states of classical 
systems may be determined only up to a multiplicative factor6. The term “conformational entropy”, despite its 
widespread usage, has no well established definition available for major complex biomolecular systems. Explicit 
conformers with ISWD, despite its system dependence and the fact that infinite number of specific definitions 
exist for each given complex molecular systems, may be utilized as basic states for defining conformational 
entropy in an abstract and general sense for any complex molecular systems, and we explore this idea and its 
implications in this section.

It is well established in the informational theory field7 that for a given static distribution with well-defined 
basic states, entropy may be constructed by arbitrary division of the whole system into M subparts.

∑ ∑ ∑= − = − +
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=
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Figure 6. The −lnNsnap vs. −lnNconf plots for CONF1 (left, ace) and CONF4 (right, bdf) on the three 
trajectory sets. Blue lines represent situations where eq. (3) holds sufficiently well. Each red dot represents a 
macrostate; green lines are the best linear fits for the observed data with R2 being the squared linear correlation 
coefficients.
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S is the global informational entropy and S j s = ⋅ ⋅ ⋅j M( 1, 2, , ) are local informational entropies, it is noted that 
such division may be carried out recursively. We may similarly construct both local entropies of macrostates (say 
A and B) and global entropy for the given molecular system based on a set of explicit conformers:
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Pi is the probability of the ith conformer in the global configurational space, p q( )j k( ) is the probability of the j k( )
th conformer in macrostate A B( ). Si is the intra-conformer entropy of the ith conformer in the global configura-
tional space. Sj k

A B
( )

( ) is the intra-conformer entropy for the j k( )th conformer in macrostate A B( ). N conf , Nconf
A  and 

Nconf
B  are number of thermally accessible conformers in the full configurational space, in macrostate A and in 

macrostate B respectively. Again, Pi, pj and qk are properly normalized:
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The first terms on the right hand side of eqs (8, 9 and 10) describe distributions of conformer statistical weights 
within a macrostate or within the whole configurational space, and is referred to as “conformational entropy” 
(Sconf ), the second terms are averages of the intra-conformer entropies of corresponding conformers and are 
denoted Sint. We may rewrite SA and SB in the following form:

= +S S S (12)
A

conf
A

int
A

∑= −
=

S k p pln
(13)

conf
A

B
j

N

j j
1

conf
A

∑=
=

S p S
(14)

int
A

j

N

j j
A

1

conf
A

= +S S S (15)
B

conf
B

int
B

∑= −
=

S k q qln
(16)conf

B
B

k

N

k k
1

conf
B

∑=
=

S q S
(17)int

B

k

N

k k
A

1

conf
B

With a simple algebraic manipulation shown below:
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Conformational entropy of macrostate A (Sconf
A ) is divided into two terms. The first term is the Boltzmann 

entropy (or ideal gas entropy, denoted as SBoltzmann
A ) based on the number of conformers. The second term repre-

sents deviation from the Boltzmann entropy (denoted as δSconf
A ). It is the product of the Boltzmann constant and 

the Kullback-Leibler divergence8 between the actual probability distribution of conformer statistical weights in 
macrostate A ( = p p pp ( , , , )N1 2 conf

A ) and the uniform distribution (unif N{1, }conf
A ). Sconf

A  may be rewritten as:
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Similarly, denote probability distribution of conformer statistical weights in macrostate B as 
= q q qq ( , , , )N1 2 conf

B  and the corresponding uniform distribution as { }Nunif 1, conf
B , we have:

δ= +S S S (21)conf
B

Boltzmann
B

conf
B

δ = − ||S k D unif Nq( {1, }) (22)conf
B

B KL conf
B

For ECISWD, if we denote the corresponding ISWD with a continuous probability density R, then ≈p R and 
≈q R. Denote the continuous uniform distribution as unif , we have:
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Note that ∆Sconf
AB  (eq. 26) is equivalent to ∆F AB (eq. 3) except a mere difference of a negative temperature fac-

tor. δ∆Sconf
AB  reflect the difference between two KL divergences, which correspond to distances between the statis-

tical weight distribution of conformers in macrostate A B( ) and the uniform distribution. The advantage of 
utilizing ECISWD for defining conformational entropy is the generality by concealing system specific molecular 
structural information in specific definition of conformers. Additionally, when difference of conformational 
entropy is taken between two arbitrary macrostates, deviation of the unknown ISWD from the uniform distribu-
tion is cancelled and we need only to deal with the number of conformers. Based on the same logic as in the case 
of free energy analysis, with increasingly larger subsets of a sufficiently well-converged MD trajectory set, we 
expect to observe systematic decrease of δ∆Sconf  calculated for arbitrarily defined macrostate pairs as long as 
ECISWD are basic states of conformational entropy. Conversely, we expect to observe systematic increase of 
δ∆Sconf  when explicit conformers with widely variant statistical weight distributions are basic states of conforma-
tional entropy. To this end, we took the same trajectory sets, definition of conformers and macrostates as in the 
analysis of δ∆F, and calculated corresponding δ δ δ∆ = −S S Sconf conf

B
conf
A  based on eqs (20) and (22) for each 

macrostate pair. Both distributions of δ∆Sconf  and corresponding CPD of its absolute value were shown in Fig. 7. 
As expected, and consistent with free energy analysis as shown in Fig. 4, trend of δ∆Sconf  based on conformers in 
set CONF1 (Fig. 7a,e) matches our expectation for that of ECISWD, while trends of δ∆Sconf  based on conformers 
in sets CONF2 through CONF4 (Fig. 7b–d,f–h) match our expectation for that of conformers with variant statis-
tical weight distribution, with coarser conformers and larger trajectory sets correspond to wider distributions of 
δ∆Sconf .

Entropy enthalpy compensation
In canonical ensemble, we have:

∆ = ∆ − ∆ = ∆ − −F U T S U T S S( ) (27)AB AB AB AB B A
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with ∆UAB being the change of potential energy between the two macrostates A and B. Let ∆ = −S S Sint
AB

int
B

int
A , 

and substitute eqs 12, 15, 19, 21 and 25 into eq. (27), we have:

∆ ≈ ∆U T S (28)AB
int
AB

While the derivation is carried out in canonical ensemble, it should be applicable for many isobaric-isothermal 
processes (e.g. many biomolecular systems under physiological conditions or routine experimental conditions) 
where change of the PV  term is negligible. Note that eq. 28 is the intriguing entropy-enthalpy compensation 
(EEC) phenomena (when the PV  term is negligible), which had long been an enigma9–13, and has attracted a 
revival of interest due to its critical relevance in protein-ligand interactions14–25. Careful statistical analysis con-
firm that EEC does exist to various extent in many protein-ligand interaction systems after experimental errors 
are effectively removed19. For a given molecular system, once we have constructed a set of ECISWD, eqs (3) and 
(28) state that change of molecular interactions does not necessarily cause change of free energy, which depends 
on relative number of thermally accessible ECISWD in end macrostates, and local effects from change of molec-
ular interactions will be cancelled almost completely by corresponding change of average intra-conformer 
entropy. Note that correlation of neither signs nor magnitudes between ∆Sconf

AB  and ∆Sint
AB is implied. Therefore, 

depending upon signs and magnitudes of ∆Sconf
AB  and ∆Sint

AB (we neglect the PV  term here), this theory is compat-
ible with molecular processes driven by enthalpy, entropy or both and various extent of observed EEC. When 
∆ ≈S 0conf

AB , perfect EEC would be observed; when ∆ >S 0conf
AB  and ∆ >U 0 (or ∆ >S 0int

AB ), a seemingly entropy 
driven (and a reverse entropy limited) process would be observed; when ∆ >S 0conf

AB  and ∆ <U 0 (or ∆ <S 0int
AB ), 

depending upon the sign of ∆ = ∆ + ∆S S SAB
conf
AB

int
AB, a seemingly enthalpy or entropy-enthalpy jointly driven 

(and a reverse enthalpy or entropy-enthalpy jointly limited) process would be observed. The fundamental new 
perspective provided by eqs (3, 26 and 28) is that EEC is directly related to local redistribution of microstates in 
configurational space, while change of free energy and conformational entropy reflect the collective thermal 
accessibility of relevant macrostates. System complexity is essential for construction of ECISWD as demonstrated 
by our initial discussions on the double well model. Consistently, robustness of approximations in eqs (3) and (26) 
corresponds to the near-perfect cancellation of change of intra-conformer entropy and change of enthalpy as 
reflected by eq (28). Without sufficient number of complex and heterogeneous microstates within each con-
former, it is hard to imagine how such EEC occur. Along the same lines, a simple Morse potential type of 
protein-ligand interaction model was not found to allow significant EEC22. Based on the widespread observation 
of strong EEC effect in many molecular systems, it was suggested22 that any attempt to calculate the change of free 
energy as a sum of its enthalpic and entropic contributions is likely to be unreliable. The proposed conformer 
counting strategy (eq. 3) implicitly utilizes EEC by completely avoiding direct calculation of ∆U and ∆Sint, which 
is expensive and error prone.

Conclusions
In summary, we presented the idea that snapshots in a converged MD trajectory set map directly to implicit 
thermally accessible conformers with ISWD. Based on the thought that infinite number of ways exist for defining 
implicit conformers with ISWD for a given molecular system, we hypothesized that any sufficiently fine set of 
conformers should have sufficiently good approximate ISWD. This hypothesis, while being disproved by a dou-
ble well potential, tested successfully on extensive MD trajectories of lipid POPC. We think that competition of 
many DOFs, each allowed to vary significantly in both potential energy and spatial position within a conformer, 
constitutes the foundation for the observed validity of the hypothesis. Considering the moderate complexity 
of lipid POPC, it is likely that the hypothesis holds for complex molecular systems in general. This is a useful 

Figure 7. Distributions of δ∆Sconf  (a–d) and CPD of its absolute values (e–h) for POPC with four sets of 
explicit conformers (CONF1 through CONF4, which are indicated in the horizontal label as subscripts, e.g. 
δ∆Sconf 1 in (a) and δ| ∆ |Sconf 1  in (e)). Different trajectory sets are represented by different line colors. The unit of 
the horizontal axis is in kB.
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demonstration of the idea that “More is different”26. Active research is undergoing in our group toward defining 
ECISWD for more biomolecular systems (e.g. protein-ligand, protein-protein interaction and protein-nucleic 
acid interactions systems with explicit or implicit solvation). Furthermore, when ECISWD are utilized as basic 
states for definition of conformational entropy, change of which between two macrostates was found to be 
equivalent with corresponding change of free energy except a mere difference of a negative temperature factor. 
Meanwhile, change of potential energy between two macrostates was found to cancel corresponding change of 
average intra-conformer entropy. This finding suggests that EEC is inherently a local phenomenon in configura-
tional space, and is likely universal in complex molecular systems. While providing an alternative perspective to 
the long-standing enigmatic EEC, this result is consistent with different extent of EEC observed for both enthalpy 
driven and entropy driven molecular processes in conventional sense where change of enthalpy is compared with 
change of total entropy. Counting thermally accessible ECISWD (eq. 3) is a natural extension of the population 
based free energy formula (eq. 1), which is only useful posterior to a converged simulation. However, eq. 3 effec-
tively utilizes EEC implicitly through separation of entropy into conformational entropy based on ECISWD and 
intra-conformer entropy, and renders direct utilization of SMC and importance sampling possible for rapid free 
energy difference estimation1,2. In accordance with “no free lunch theorem”27, this expected gain in efficiency pays 
the price of all dynamical and pathway information associated with converged trajectories.

Methods
Definition of trajectory sets. Trajectory sets TSA1, TSA2 and TSA3 are constructed from snapshots of 
POPC collected in simulation condition A in the supplementary Table 2 of the GPCR simulation study4. There 
were totally 34143653 snapshots, which collectively amount to ∼ . ms6 15  ( . ms6 14585754 ). Five subsets, with col-
lective length (CL) being ∼ . ms1 58 , ∼ . ms1 32 , ∼ . ms1 32 , ∼ . ms1 32  and ∼ . ms0 66  respectively, were available for 
this simulation condition. We take the first six trajectories out of the total 66 trajectories of the first subset as 
TSA1, which has a CL of µ. s142 56 . The first subset (∼ . ms1 58 ) was taken as TSA2, and the union of all subsets was 
taken as TSA3 (∼ . ms6 15 ).

Definition of conformers. To define conformers, we first take a given set of ntor  torsional DOFs (Fig. 3), 
with each being divided into three equally sized torsional states with boundaries at ° °0 (360 ), °120  and °240 , and 
subsequently utilize their unique combinations as conformers. The whole configurational space is therefore 
divided into 3ntor conformers. Sets CONF1 through CONF4 divide the configurational space into 343, 328, 322 and 
315 conformers respectively. Two structural states (i.e. snapshots) of a POPC molecule belong to the same con-
former if and only if they share the same torsional state for each selected torsional DOF. Apparently, infinite 
number of ways exist to define set of conformers with similar fineness and uniformity.

Defintion of macrostates and corresponding number of conformers within each of which. To 
prepare macrostates, all snapshots in a given trajectory set were projected onto a selected backbone dihedral that 
was partitioned into 20 18°-windows, snapshots fall within each of which constitute an observed macrostate. Such 
projections were performed for each of 43 dihedrals (Fig. 3) and we have collectively 860 macrostates for each 
given combination of trajectory set and conformer definition. Apparently, macrostates based on the same dihe-
dral angle do not overlap, while those based on different dihedral angles may overlap to different extent. To assign 
each snapshots to its belonging conformer and calculate Nconf

i  for the ith macrostates, torsional states for the 
selected torsional DOFs were encoded into bit vectors and the radix sort algorithm28 was utilized. Take CONF1 
and TSA1 as an example, all snapshots from TSA1 that satisfy the criteria for the ith macrostate are binned into 
the 343 possible conformers, and total number of non-empty bins is the Nconf

i , which is subsequently utilized in eq. (3)  
to calculate explicit-conformer-based free energy difference as ∆ =F k T lnconformer

ij
B

N

N
conf
i

conf
j

. For each specific com-

bination of conformer definition and trajectory set, Nconf
i  ( = i 1, 2, , 860) are also used in constructing Fig. 6.

Calculation of δΔF. For a given pair of macrostates (i, j) under specific definition of conformer and trajec-
tory set, we first calculate ∆Fsnapshots

ij  and ∆Fconformer
ij  according to eqs (1) and (3) , and we subsequently calculate 

δ∆ = ∆ − ∆F F Fij
snapshots
ij

conformer
ij . With 860 macrostates, i runs from 2 through 860, and j runs from 1 through 

−i 1 for each i, we calculated δ∆F for 369370 macrostate pairs. Distribution of these 369370 δ∆F values were 
plotted in Figs 4a–d and 5a–d. Since we care more the magnitude of free energy differences than their signs, we 
calculated distribution of δ∆F  and CPD of which is plotted in Figs 4e–h and 5e–h. The area under curves (AUC) 
for CPD curves provide clearer description of extent of differences between ∆Fsnapshots based on implicit con-
formers with ISWD (eq. 1) and ∆Fconformer based on specific definition of explicit conformers (eq. 3), with larger 
AUC corresponds to smaller differences.

Calculation of δΔS. For the ith macrostate under specific definition of conformer and trajectory set, we first 
calculated δSconf

i  according to eq. (20) (or eq. (22)), with i runs from 1 through 860. Subsequently, for each macro-
state pair i j( , ), δ δ δ∆ = −S S Sconf

ij
conf
j

conf
i  is calculated, with i runs from 2 through 860, and j runs from 1 to −i 1 

for each i. We therefore had 369370 δ∆Sconf  values for each specific combination of trajectory set and definition 
of conformers. Probability distribution of these δ∆Sconf  values are plotted in Fig. 7a–d and CPD of their absolute 
values in Fig. 7e–h, similar to plotting of δ∆F distributions and CPD of their absolute values in Figs 4 and 5. AUC 
for CPD curves of δ∆S  describes extent of differences between change of ideal gas entropy based on number of 
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conformers (eq. 26) and observed change of conformational entropy ∆ = −S S Sconf
ij

conf
j

conf
i , with Sconf

i j( )  being 
defined in eq. (13) or eq. (16). Again, larger AUC corresponds to smaller difference.
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