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Functional modules of sigma factor 
regulons guarantee adaptability 
and evolvability
Sebastian C. Binder1,*, Denitsa Eckweiler2,3,*, Sebastian Schulz2,3, Agata Bielecka2,3, 
Tanja Nicolai3, Raimo Franke4, Susanne Häussler2,3,* & Michael Meyer-Hermann1,5,*

The focus of modern molecular biology turns from assigning functions to individual genes towards 
understanding the expression and regulation of complex sets of molecules. Here, we provide evidence 
that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent 
insulated functional modules which provide a critical level of biological organization involved in general 
adaptation and survival processes. Analysis of the operational state of the sigma factor network 
revealed that transcription factors functionally couple the sigma factor regulons and significantly 
modulate the transcription levels in the face of challenging environments. The threshold quality of 
newly evolved transcription factors was reached faster and more robustly in in silico testing when the 
structural organization of sigma factor networks was taken into account. These results indicate that the 
modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework 
to function adequately in its environment and at the same time facilitate evolutionary change. Our data 
support the view that widespread modularity guarantees robustness of biological networks and is a key 
driver of evolvability.

Controlling the rate of gene transcription is a fundamental biological process, ultimately dictating the cel-
lular phenotype and bacterial adaptive processes to diverse environments1. Pseudomonas aeruginosa is a 
Gram-negative bacterium that can be found in various and challenging habitats2. It is not only an adaptive envi-
ronmental bacterium but also an important opportunistic pathogen which causes devastating acute and chronic 
persistent infections3,4,5 and exhibits an extremely broad host range6,7. The main reason for the ecological success 
of P. aeruginosa can be attributed to its large metabolic versatility and environment-driven flexible changes in 
the transcriptional profile. Sequencing of the P. aeruginosa reference strains revealed a large genome with highly 
abundant global regulators and signaling systems that form a complex and dynamic regulatory network8. Among 
transcriptional regulators, sigma factors (more than 25 of which have been described in P. aeruginosa) are of 
exceptional importance as they provide promoter recognition specificity to the RNA polymerase core enzyme and 
mediate cellular responses to environmental cues through redirection of transcription initiation9–12.

A long-standing question in biology is how populations are capable of adapting to novel and challenging 
environments and thus conquer new niches. In this context, it has been repeatedly argued13 that the modularity 
of the underlying developmental systems is key to the ability to evolve. By shifting from molecular to modular 
cell biology general principles are expected to be uncovered of how cells robustly detect and amplify signals in a 
noisy environment and at the same time evolve by genetic changes to adapt to new challenges13. We have recently 
demonstrated that in P. aeruginosa alternative sigma factor regulons are discrete functional modules that exhibit 
only limited overlap in their transcriptional response to external stimuli14. Whereas a self-contained activity of 
the various alternative sigma factor-dependent functional modules would guarantee robustness and maintenance 
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in a noisy environment, bacterial adaptation to new and challenging habitats might be reflected by connectivity 
among the regulons. Here, to follow on this hypothesis, we analyzed the functional and operational status of the 
sigma factor networks in the opportunistic pathogen P. aeruginosa. By linking experimental data with in silico 
testing we uncovered a general principle of how one of the largest bacterial genomes is structured. We argue that 
connectivity among the subunits of functional sparsely connected alternative sigma factor governed modules 
via global transcription factors enable P. aeruginosa to reconcile robustness and flexibility to a large variety of 
resources and habitats.

Results
Functional status of alternative sigma factor regulons. By defining the genomic suite of alternative 
sigma factor binding sites throughout the P. aeruginosa genome it became apparent that alternative sigma fac-
tor regulons are discrete functional modules that exhibit only limited overlap14. While this may provide stable 
responses to external stimuli that are sensed by the various alternative sigma factors, we became interested in the 
functional states of sigma factors and how their regulons are expressed under flexible experimental conditions. 
The transcriptional profiles of the P. aeruginosa type strain PA14 grown under a plethora of different environmen-
tal conditions have been analyzed previously15. These included growth within biofilms, at various temperatures, 
osmolarities and phosphate concentrations, under anaerobic conditions, attached to a surface and conditions 
encountered within the eukaryotic host. Among the 796 genes that were found to be differentially regulated 
between at least two of the 14 tested environmental conditions (adaptive transcriptome15), 305 have been assigned 
unambiguously to a specific alternative sigma factor regulon14, colored in Fig. 1a. If the alternative sigma factor 
regulons would be insulated functional modules, one would expect that genes of the various regulons would be 
largely co-regulated even under flexible environmental conditions as long as those conditions activate the respec-
tive alternative sigma factor. Previously, transcriptional profiling of Bacillus subtilis under various environmental 
conditions indeed uncovered a modular expression structure that was reflecting sigma factor regulons16. In this 
study, clearly, co-expression patterns of genes affected by the seven major P. aeruginosa alternative sigma factors 
(RpoN, RpoS, RpoH, AlgU, SigX, FliA, PvdS) were observed within the adaptive transcriptome (Fig. 1). However, 
clustering of genes of the various alternative sigma factor regulons was not prominent, indicating that under com-
plex environmental conditions, sub-sets of genes of different alternative sigma factor regulons were co-regulated 
and became activated simultaneously.

Transcription factor regulated genes show an enrichment of genes belonging to distinct alter-
native sigma factor regulons. The activation of a discrete sub-set of genes is a well-known adaptation 
response of P. aeruginosa to complex and changing habitats and is commonly affected by the activity of not only 
alternative sigma factors but also transcription factors. The genome of P. aeruginosa strain PA14 contains more 
than 6000 genes, 521 of which are annotated as transcriptional regulators. We found altogether 43 transcription 
factors to be differentially expressed within the adaptive transcriptome15. For the majority, 33, of those we could 
not identify an unambiguous assignment to one of the alternative sigma factor regulons14. These are most likely 
regulated by the housekeeping sigma factor RpoD. This is interesting since it supports the finding that alternative 
sigma factor regulons exhibit only limited direct cross-talk. RpoD governed transcription factors do not con-
tribute to direct cross-talk since they do not link an inducing alternative sigma factor to the expression of genes 
belonging to a second alternative sigma factor regulon.

To analyze which genes are affected by global P. aeruginosa transcription factors and to uncover whether they 
contribute to connectivity of the alternative sigma factor regulons, we selected six transcription factors (CbrB, 
GacA, Anr, FleQ, RhlR, and LasR), all of which are known to regulate large numbers of genes. We recorded the 
transcriptional profiles of the respective mutants of the Harvard Medical School PA14 transposon mutant library17. 
Remarkably, we found in each experimentally determined transcriptional profile a preference of genes belonging 
to a specific subset of alternative sigma factor regulons (Fig. 1b). We compared the enrichment of genes belonging 
to specific alternative sigma factor regulons in the transcriptional profile of the transcription factor relative to 
their overall abundance in the P. aeruginosa genome by calculating an enrichment factor (EF) (details in Materials 
and Methods). Interestingly, we found an enrichment of RpoS-controlled genes in the regulon of the transcription 
factor LasR (EF =  1.63) consistent with previous studies which uncovered the contribution of RpoS, LasR-LasI 
and RhlR-RhlI to the complex architecture of the quorum sensing regulon in P. aeruginosa18–21. Likewise, the 
FleQ regulon shows preference for FliA (EF =  3.44) and RpoN (EF =  1.22) regulated genes which is in line with 
their known function: a comprehensive analysis of the flagellar biosynthesis in P. aeruginosa revealed FleQ and 
RpoN on top of the regulatory cascade, while FliA is required for the expression of effector genes such as fliC-fleL, 
cheAB-motAB-cheW, cheVR, flgMN and cheYZ22. The global response regulator GacA has been found to prefer-
entially modulate the expression of genes which are under the guidance of RpoS (EF =  1.67). Previously GacA 
was found to control hydrogen cyanide biosynthesis via the transcriptional control of the quorum-sensing gene 
rhlI23. Moreover, GacA and RpoS have been shown to be involved in biofilm formation, indicating a functional 
link of these global regulators24,25. The composition analysis of the CbrB regulon revealed an over-representation 
of genes which were under control of RpoN (EF =  1.27). This finding is in accordance with previous results that 
link the CbrA/CbrB two-component regulatory system to the regulation of the utilization of multiple carbon 
and nitrogen sources in P. aeruginosa26. Further studies could show that the regulation of carbon and nitro-
gen utilization is coordinated by a network of the two-component systems CbrAB and NtrBC27. Additionally, 
the CbrA/CbrB system is involved in metabolism, virulence and antibiotic resistance in P. aeruginosa28  
which is consistent with the numerous functions and the mode of action of RpoN29–36. Interestingly, SigX target 
genes were identified to be over-represented in the regulons of the transcription factors Anr (EF =  1.68), CbrB 
(EF =  1.30) and RhlR (EF =  2.12). These results underline the significance of this under-estimated and recently in 
more detail characterized sigma factor37–40.
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In conclusion, the composition of global transcription factor profiles in respect to the affiliation of their genes 
to specific alternative sigma factor regulons is i) transcription factor specific and ii) does not reflect the overall 
composition of the alternative sigma factor dependent genes throughout the genome. These results imply that by 
creating connectivity among alternative sigma factor regulons the transcription factors govern a distinct compo-
sition of genes, which has been selected from only a sub-fraction of well approved composite genes of the genome 
and rely on the well proven, combat-ready alternative sigma factor functional modules.

Evolution of new transcription factors is facilitated by the modular structure of alternative 
sigma factor regulons. Incremental changes in coding and non-coding sequences are the key drivers of 
genome evolution and allow for adaptations to new and challenging environmental conditions. However, it has 
been assumed that especially those genes which exhibit central and pleiotropic functions experience a great deal 
of evolutionary limits and constraints. It thus might be expected that alternative sigma factors have undergone 
stabilizing selection, and are therefore conserved and limited in their evolutionary response to future environ-
mental changes.

Genome evolution can also be driven by the emergence of new genes. There is a growing interest in novel 
taxonomically restricted genes that are free to evolve new functions without suffering from the constraining effect 
of pleiotropy. New genes commonly arise through the duplication of existing genes and may maintain similar 

Figure 1. Activation of transcription factors provides connectivity among the functional modules of the 
alternative sigma factors. (a) Hierarchical clustering tree summarizing the co-expression patterns of genes 
previously identified as differentially regulated under changing environmental conditions15. Genes were 
clustered applying the average linkage rule on the pair-wise Pearson correlation between their normalized 
expression values (for further details please see Materials and Methods). Genes that have been assigned to a 
single alternative sigma factor primary regulon (305 genes)14 are depicted in color. Genes that were ambiguously 
assigned are depicted in white (491 genes), (b) Power graph presentation of the connectivity of alternative sigma 
factor regulons via global transcription factors. Genes are shown as colored dots within the colored circles 
defining the RpoH, FliA, SigX, PvdS, AlgU, RpoS and RpoN alternative sigma factor regulons. The six global 
transcription factors (CbrB, GacA, Anr, FleQ, RhlR, and LasR) regulate subsets of genes within the sigma factor 
regulons as shown with colored connectors to likewise encircled genes. The radius of the circles reflects the 
number of genes within the respective sigma factor regulons.
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functions to the parental gene over a long evolutionary period or may undergo a process of diversification until a 
completely new function is evolved.

We hypothesized that the organization of the genome in distinct alternative sigma factor governed structural 
modules which govern pleiotropic phenotypes limits the space for the evolution of alternative sigma factors but 
facilitates the evolution of novel transcription factor regulons that create connectivity between the alternative 
sigma factor regulons in a way that allows organisms to adapt to new challenges.

We therefore determined the sequence variation within the coding sequence of the ten major alternative sigma 
factors (RpoN, RpoS, RpoH, AlgU, SigX, FliA, PvdS, FecI, FecI2, and FpvI) and the housekeeping sigma factor 
RpoD as well as of the six global transcription factors (CbrB, GacA, Anr, FleQ, RhlR, and LasR) across the pre-
viously profiled 151 clinical P. aeruginosa strains15. Indeed, the overall sequence variation was lower for those 
genes encoding sigma factors as compared to those encoding transcription factors. The median of the sums of 
nucleotide positions exhibiting nonsynonymous single nucleotide polymorphisms (SNPs) in at least one of the 
151 clinical isolates, normalized to the gene length, was 3.78% versus 5.84%, and thus was significantly lower 
in the genes encoding sigma factors (Wilcoxon rank sum test, p =  0.01). Sequence variation was even lower in 
sub-regions which correspond to DNA-binding domains. This has been observed before41,42 and indicates that 
there is limiting space for the evolution of sigma factors. In contrast, coding sequence variations within the six 
global transcriptional regulators (CbrB, GacA, Anr, FleQ, RhlR, and LasR) were more frequent implicating that 
the transcriptional regulators can evolve new functions and may drive the evolution of connectivity among sigma 
factor regulons.

To test whether the organization of the genome provides a level of biological organization that is critical for 
the evolution of new transcription factors, we simulated the generation of an optimized transcription factor (rep-
resented as a set of gene expression levels between 0 and 1) by using an evolutionary algorithm43 that attempts to 
approach the target transcription factor by evolving a population of NP randomly chosen transcription factors 
over multiple offspring generations. New generations are created by mutating and recombining transcription 
factors from the parent generation and selecting those individuals for the filial generation that are closer to the 
optimal transcription factor (Fig. 2a). To analyze the influence of sigma factors on the speed of finding the target 
transcription factor, optimization was performed either once across the whole genome or by repeatedly optimiz-
ing across multiple subsets that cover the whole genome and correspond to the sigma factors (Fig. 2b). We found 
that the target transcription factor was evolved in substantially fewer generations when the structural organiza-
tion of sigma factor networks was taken into account (Fig. 3). Accordingly, the CPU time required to find the 
optimal transcription factor was significantly reduced if the search was based on organization of genes within 
sigma factor regulons (Fig. 4a). With increasing size of the genome, the CPU time required for the evolution of 
new transcription factors dramatically increases (faster than polynomial) when based on whole genome opti-
mization, while it increases only moderately if based on sigma factor regulons (Fig. 4a). The probability of actu-
ally finding a new transcription factor by evolution is significantly higher when based on sigma factor regulons 
(Fig. 4b), suggesting that organization of the genome in sigma factors makes the evolution of new transcription 
factors not only faster but also more stable. The speed of finding a newly evolved transcription factor could be 
increased further if their respective regulons were restricted to genes belonging to only a subset of the sigma fac-
tor regulons (Fig. S1). Thus, our finding of a relative enrichment of genes belonging to a specific subset of sigma 
factor regulons in each of the experimentally determined transcription factor regulons is in accordance with the 
in silico predictions. These results imply that evolution of transcription factors is accelerated and facilitated by the 
organization of the genome in functional modules and is further reinforced if the newly evolved transcription 
factor regulon resorts to a selected choice of genes within distinct alternative sigma factor regulons. This result is 
remarkable as in most systems speed and stability of evolutionary processes are mutually exclusive44.

Evolutionary advantages of the modular organization are largely independent of the regulon.  
The in silico simulations predicting increased robustness and speed of the evolution of new alternative sigma 
factors have been derived from simulations with purely random transcription factors. They could show a struc-
tural advantage of the modular organization in alternative sigma factors without assuming a particular structure 
of the regulons. To test whether or not this advantage is also observable in the six transcription factors whose 
transcriptional profiles and sigma factor association were studied here, the same simulations were repeated with 
the experimentally determined gene expression values, regulons, and sigma factor usage for all six transcription 
factors. Despite the varying number of genes in the different regulons, the simulation results were comparable in 
all cases and clearly showed an evolutionary advantage in all cases (Fig. S2).

To further test the influence of the regulon size and of a bias in selection of genes from particular sigma factors 
systematically, hypothetical transcription factors with regulon sizes of 30, 200, 400, 800 and 1200 genes were gen-
erated. Genes were attributed to these regulons either by randomly choosing from all genes with equal probabil-
ities (Fig. S3, green curve) or by imposing a preference for small (Fig. S3, blue curve) or large (Fig. S3, red curve) 
sigma factors on the selection process. The efficiency of the evolutionary optimization process was evaluated by 
comparing the number of generations, Δn, to reach a threshold in the mean distance between the hypothetical 
transcription factor target and the best candidate in each generation.

The advantage of the evolution in sigma factors in terms of evolutionary optimization efficiency is robustly 
visible in all cases (Fig. 5). The time to reach the threshold quality is significantly shorter when optimizing in 
individual sigma factors instead of the whole genome at once. This finding is independent of the regulon size  
(columns in Fig. 5) and of a preference for small or large sigma factors (Fig. 5, rows). Interestingly, although selec-
tion and algorithm termination in the simulations were based on the whole transcriptome and the dimension-
ality of the optimization problem was hence constant in all simulations, very small transcription factor regulons 
showed a trend to evolve faster in all cases (Fig. 5, left column).
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Figure 2. Evolution of a new transcription factor in silico. (a) Overview of the simulated evolution of 
a hypothetical target transcription factor. A population of numerical vectors with values between 0 and 1 
(indicated by the grey shade) representing gene expression values is randomly generated and evolved over 
subsequent generations until termination criteria indicated in the flowchart are met, (b) Optimization takes 
place either once in the whole genome (left) or repeatedly within individual sigma factors (right). Colors 
indicate modular units (sigma factors) for the optimization process and different shades of the same color the 
expression level.

Figure 3. Heat maps of the evolution towards a randomly chosen target transcription factor on a genome 
of 2000 genes structured by 11 sigma factors of random size. (a) simultaneous evolution of the whole genome, 
(b) parallel evolution within sigma factors. Colors from yellow to blue encode the quality of the best evolved 
transcription factor in each generation. Evolution is stopped when the target transcription factor is found.
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Since the transcription factors studied here showed an enrichment of genes belonging to certain alternative 
sigma factors, the effect of a biased distribution of genes is of interest. Hence, the effects of a preference for genes 
from either large or small sigma factors were compared to a selection of all genes with equal probability. While 

Figure 4. Evolution of a new transcription factor in silico. (a) CPU time required to evolve a new 
transcription factor in silico for different genome sizes when evolution is based on the whole genome (red) or 
on sigma factors (blue). Error bars indicate standard deviation in 200 simulations, (b) probability of success to 
find the target transcription factor in silico for different genome sizes when evolution is based on whole genome 
(red) or sigma factors (blue). P values are provided (black line, right axis) for the difference between both 
strategies.

Figure 5. Generation number Δn required to reach a threshold quality index of 0.01 in randomly generated 
transcription factors. Each boxplot represents results from simulations with ten different randomly generated 
transcription factors. Different regulon sizes were used as indicated on the horizontal axis. Upper row: 
genes from small sigma factors were preferred in the generation of transcription factors, middle row: genes 
were randomly chosen without bias, bottom row: genes from large sigma factors were preferred. Asterisks 
indicate significance levels as determined by the Mann-Whitney test and corrected for multiple comparisons; 
***p <  0.001, **p <  0.005, *p <  0.05.
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there was no significant difference between regulons preferring small or large regulons and a random choice of 
genes with equal probabilities when the optimization was performed genomewide (Fig. 6a), a preference for 
small sigma factors led to significantly shorter evolution times in simulations optimizing within the sigma factors 
(Fig. 6b, red and blue boxplots). Similarly, the alternative sigma-factor evolution of regulons with genes chosen 
with a preference for large sigma factors was slower than in regulons with genes chosen according to a uniform 
probability distribution. While the effect is more pronounced in small regulons, the difference between the three 
cases was significant with all studied regulon sizes. Similar results are found when comparing the strength of the 
advantage that the sigma factor evolution provides over a genomewide optimization strategy (Fig. S4).

These results indicate that evolution in smaller, modular units is robustly advantageous compared to a 
genomewide evolution. This advantage, shown even for extreme corner cases, is likely to be relevant for the 
evolution of transcription factors independent of the size and sigma factor-usage of their regulon. Furthermore, 
comparing the different cases, it can be concluded that the evolution of transcription factors with small regulons 
and a bias towards small sigma factors might be more efficient. The latter finding pertains to the optimization of 
independent expression levels represented as a numerical vector, and the computer simulations do not take into 
account the functional relationship between genes grouped in common regulation units. In the evolution of real 
transcription factors, the optimal evolvability most likely represents a trade-off between structural, functional, 
and organizational concerns and the effect of a preference in sigma factors might be one of many factors that 
influence the speed and efficiency of evolutionary processes.

Discussion
The analysis of the structural and operational state of the sigma factor network in the opportunistic pathogen  
P. aeruginosa uncovered a highly modular structure with only limited direct cross talk among alternative sigma 
factor regulons that are robustly activated in response to diverse forms of external stress14. This is important 
since the survival of living systems critically relies on the robustness of essential modules and their insensitivity 
to many environmental and genetic perturbations and thus cannot be radically altered without causing severe 
damage. The ability to evolve, however, requires genetic changes to adapt to new challenges. These changes might 
be achieved over many generations by altering the structure of the sigma factors und thus the function of the 
functional sigma factor modules. A second possibility to evolve is to alter the connections of functional modules 
in a way that enables the organism’s adaptation to new challenges43. There have been multiple reports on overlap-
ping of regulons of the alternative sigma factor regulons with those of the house-keeping sigma factor RpoD in 
different bacterial species45–47. Here, we found that alternative sigma factor regulons are sensitive to the activity 
of transcription factors that functionally couple the regulons and significantly modulate transcription levels from 
the promoters of the alternative sigma factor regulons in the face of diverse environmental cues. Our finding that 
global transcription factors combine the functional modules of selected subsets of sigma factors indicate that evo-
lution of connectivity is facilitated when resorting to the well proven, combat-ready alternative sigma factor func-
tional modules that allow the cell to quickly adapt to new challenges and new stress conditions. With this our data 
support the view that widespread modularity of biological networks constitutes a key driver of evolvability13,48–50.

Remarkably, not only the speed of finding a newly evolved transcription factor in in silico testings could be 
increased further if their respective regulons were restricted to genes belonging to only a subset of the sigma 
factor regulons but also stability was significantly enhanced. The theoretical framework used for the in silico 

Figure 6. Generation number Δn required to reach a threshold quality index of 0.01 in randomly generated 
transcription factors. (a) Evolutionary simulations were performed on the whole genome, (b) Evolutionary 
simulations were performed on the individual sigma factors. Bias in the choice of sigma factors is indicated 
by the color of the boxplots; red: small sigma factors were preferred in the generation of transcription factors, 
blue: genes were randomly chosen without bias, green: genes from large sigma factors were preferred. Asterisks 
indicate significance levels as determined by the Mann-Whitney test and corrected for multiple comparisons; 
***p <  0.001, **p <  0.005, *p <  0.05, n.s.: not significant. Each boxplot represents results from simulations with 
ten different randomly generated transcription factors. Different regulon sizes were used as indicated on the 
horizontal axis.
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predictions relies on several simplifications. Most importantly, representation of gene expression targets as inde-
pendent numerical values ignores functional relationships between genes, and the evolution of transcription 
factors as mutation and selection of a population of randomly chosen starting vectors simplifies and reduces a 
complex evolutionary process down to a well-known algorithm to make evolutionary simulations computation-
ally feasible. Hence, only statements about structural advantages of a modular organization can be made and a 
detailed description of evolutionary parameters and comparisons with data on the evolution of transcription 
factors are beyond the scope of this article. However, the simulated evolution suggests a general advantage of 
modular systems and might apply to other examples of modular systems such as protein domains as well and 
is in line with the previously observed advantage of modularization in numerical optimization problems51–53. 
The robustness of the advantage in evolutionary efficiency in the predictions for the six measured transcription 
factors, and hypothetical transcription factors with different compositions underscores the fundamental role of a 
modular organization in evolutionary processes. These results clearly demonstrate that the modular structures of 
sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment 
and at the same time facilitate evolutionary change.

Methods
Strains. We selected PA14_19120 (rhlR, ID 37943), PA14_30650 (gacA, ID 34781), PA14_44490 (anr, ID 
26855), PA14_50220 (fleQ, ID 41540), and PA14_62540 (cbrB, ID 44074) from the Harvard Medical School PA14 
transposon mutant library17 as well as a deletion mutant of PA14_45960 (lasR) and recorded their transcriptional 
profiles. As a wild-type control we used the PA14_12430 (ladS, ID 38371) transposon mutant as the PA14 strain 
carries an inactivated ladS gene.

mRNA profiling. RNA was isolated from two independent cultures (biological duplicates) of each of the  
P. aeruginosa PA14 transposon (rhlR, gacA, anr, fleQ, cbrB) and deletion (lasR) mutants. For each of those cultures 
three individual main cultures grown in LB medium at 37 °C with shaking at 180 rpm were pooled and cells were 
harvested at the early stationary phase (OD600 =  2.0). RNA extraction, cDNA library preparation and Illumina 
sequencing were performed as previously described54. Briefly, RNA protect buffer (Qiagen) was added to the 
harvested cells and RNA was isolated from cell pellets using the RNeasy plus kit (Qiagen). mRNA enrichment 
was performed using the MICROBExpress kit (Ambion). RNA was fragmented and ligated to RNA-adapters con-
taining a hexameric barcode sequence for multiplexing. The resulting RNA-libraries were reverse transcribed and 
amplified resulting in cDNA libraries ready for sequencing. All but one sample were sequenced on an Illumina 
HiSeq 2500 device in the single-end mode, one sample was sequenced on an Illumina Genome Analyzer II-x. 
The raw and processed data are available at GEO under the accession number GSE55328. There we also provide 
a quality control report showing gene expression scatter plots, heatmaps of highly expressed genes and principal 
component analysis of the samples.

Quantification of gene expression. The sequencing runs yielded between 3.1 ×  106 and 14.1 ×  106 
single-end reads of 50 bp length, the sample sequenced on the Genome Analyzer II-x had read length of 36 bp. 
Sequence reads were separated according to their barcodes and barcode sequences were removed. Reads were 
mapped to the genome sequence of the reference strain P. aeruginosa PA14 wild-type using stampy55. More than 
98% of the reads in each sample mapped to the PA14 genome. The R package DESeq56 was used for differential 
gene expression analysis. For each comparison, two biological replicates for each condition were used. The 
Benjamini and Hochberg correction was used to control the false-discovery rate (FDR) at 5% to determine the list 
of regulated genes. Genes were identified as differentially expressed if they were at least two-fold regulated in the 
mutant strain as compared to the ladS inactivated strain and their Benjamini-Hochberg corrected P value was 
maximally 0.05. The lists of differentially expressed genes are provided in the GSE55328 archive.

Using the PseudoCAP annotation available for P. aeruginosa PA14, over- or under-representation was cal-
culated by comparing normalized PseudoCAP classes experimentally detected and normalized PseudoCAP 
classes annotated using the following equation: EF =  (number of specific PseudoCAP classes detected/number 
of all PseudoCAP classes detected)/(number of specific PseudoCAP classes annotated/number of all PseudoCAP 
classes annotated). As previously described40, an EF ≥  1.5 was defined as overrepresentation and an EF ≤  0.66 as 
underrepresentation.

Hierarchical clustering. 796 genes in PA14 have been defined to be highly variable under 14 environmental 
conditions15. The normalized read counts of those genes (nRPKs15) were used as an input for hierarchical cluster-
ing in R using the hclust function. We computed the pair-wise Pearson correlation between the normalized read 
counts for each gene under each condition and performed hierarchical gene clustering by progressively grouping 
them: at each step of the iterative algorithm the two genes or gene clusters that have the smallest distance were 
merged to form a new cluster, and two branches of a growing tree were joined. We used the average linkage rule; 
this means that the distance between two clusters is computed as the mean of all the distances between the genes 
in the first cluster and the genes in the second cluster. In the expression tree depicted in Fig. 1a the genes (vertical 
bars) are colored according to the alternative sigma factor they were exclusively assigned to14.

In silico analysis of transcription factor evolution. A mathematical model of the evolution of transcrip-
tion factors (TFs) on an unstructured genome is developed and compared to the same evolutionary process with 
a genome structured by alternative sigma factors. In this investigation, any functional relevance of alternative 
sigma factors is ignored. Further, the fact that TFs use only a small subset of alternative sigma factors is not con-
sidered unless stated otherwise. Any of these observations would increase the advantage of having alternative 
sigma factors such that this is a worst case investigation. However, the fact that newly evolved TFs do not simply 
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take alternative sigma factors as they are but modulate the expression of each gene associated with the alternative 
sigma factors enters the investigation. The general idea of the simulation is to start from a vector of N  genes with 
each element representing an abstract expression level between 0 and 1 of this gene. A TF is represented as one 
such vector. Starting from N P vectors a new target TF is evolved by an evolutionary algorithm. We use the follow-
ing strategy:

1. An optimal TF for a new challenge is randomly defined by attribution of gene expression levels between 0 
and 1 to each of the N  genes.

2. The target TF is (tried to be) evolved using two strategies:
  (a)  Genome-based: A set of NP randomly chosen TFs is defined by randomly choosing expression levels 

between 0 and 1 for all N  genes. These are evolved using the DE algorithm43.
  (b)  Alternative sigma factor-based: 11 alternative sigma factors with randomly attributed measured sizes 

are defined. These are mutually exclusive and cover the whole genome. For each of the alternative 
sigma factors, random gene expression levels between 0 and 1 are attributed to all genes associated with 
the respective alternative sigma factors. These are evolved using the DE algorithm43. The procedure is 
repeated for all alternative sigma factors.

3. The number of generations required to reach a success criterion is monitored in both evolution strategies. 
The success criterion is defined as the average per gene distance of the best TF in a generation from the 
target TF (denoted as quality index, QI) reaching values below 0.1%.

In addition, the CPU time used for both strategies is monitored, where in the alternative sigma factor-based 
strategy the time required for all alternative sigma factors is added up for comparison. Furthermore, the success 
of further evolution is controlled in both strategies by ensuring that the quality index decreases by at least −10 6 in 
1000 generations. Otherwise, the evolution is stopped. The DE algorithm determines each parameter j in the next 
generation TF Px by attributing a mixture of three randomly chosen other TF vectors Pa b c, ,  to this parameter 
value Pxj. This is done with the probability CR using the mutation function

= + −( )P P F P P (1)xj cj aj bj

where F is a factor between 0 and 2 and ≠ ≠ ≠a b c x. The parameters are varied and the presented simulations 
are performed with CR =  0.4 and F =  0.1. These parameters are most efficient in approaching the target TF with 
both, the alternative sigma factor-based and the genome-based strategy (Fig. S5). The number of evolved TF N P 
as well as the number of genes in the genome N  varied in order to determine how fast and how robustly the target 
TF is found. If applicable, the significance of the difference between both strategies in the success of TF evolution 
was evaluated by calculating p values from Fisher’s exact test in R. A robustness test in which a purely random 
mutation algorithm (F =  0) was used (Fig. S6) did not alter the conclusions.

In silico predictions based on six real transcription factors and 150 hypothetical transcription 
factors with biased alternative sigma factor usage. To assess whether the theoretical predictions hold 
if real datasets instead of randomly generated transcription factors are used, the above simulation algorithm was 
used with the experimental data found for the six transcription factors cbrB, gacA, anr, fleQ, rhlR, and lasR. 
Instead of randomly generated values for the target vector, measured expression levels were used and normalized 
by the maximal expression level, resulting in target vectors with elements between 0 and 1. Since the evolution of 
transcription factors does not take place in isolation from the rest of the genome, all genes were included in the 
optimization algorithm and the algorithm was terminated accordingly. The quality index over all genes belonging 
to the regulon of the transcription factor of interest was monitored over all generations to keep track of its evolu-
tion. To further assess the influence of extremely biased usage of alternative sigma factors and different sizes of the 
transcription factors, this procedure was repeated with a number of hypothetical transcription factors. To gener-
ate these transcription factors, genes were first grouped according to the associated alternative sigma factors and 
then sorted by the size of the alternative sigma factors. Genes were then chosen at random either with uniform 
probability or with a probability given by a geometric distribution according to the size of associated alternative 
sigma factors, either in ascending or descending order, to introduce a strong bias towards small or large alterna-
tive sigma factors (Fig. S2). Transcription factors with regulons of 30, 200, 400, 800 and 1200 genes were gener-
ated by this procedure, leading to 15 different classes of transcription factors. For each of these classes, 10 
transcription factors were generated and used as targets in evolutionary simulations. The number of generations, 
∆n, required to reach a threshold quality index of 0.01 was recorded for each simulation to compare the efficiency 
of the optimization process. The Wilcoxon-Mann-Whitney test was used for statistical comparison of ∆n in dif-
ferent transcription factor classes and corrected for multiple comparisons according to the Holm-Bonferroni 
method.
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