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Multiple Imputation for General 
Missing Data Patterns in the 
Presence of High-dimensional Data
Yi Deng1, Changgee Chang1, Moges Seyoum Ido2 & Qi Long1

Multiple imputation (MI) has been widely used for handling missing data in biomedical research. In 
the presence of high-dimensional data, regularized regression has been used as a natural strategy for 
building imputation models, but limited research has been conducted for handling general missing 
data patterns where multiple variables have missing values. Using the idea of multiple imputation by 
chained equations (MICE), we investigate two approaches of using regularized regression to impute 
missing values of high-dimensional data that can handle general missing data patterns. We compare our 
MICE methods with several existing imputation methods in simulation studies. Our simulation results 
demonstrate the superiority of the proposed MICE approach based on an indirect use of regularized 
regression in terms of bias. We further illustrate the proposed methods using two data examples.

Missing data are often encountered for various reasons in biomedical research and present challenges for data 
analysis. It is well known that inadequate handling of missing data may lead to biased estimation and inference. A 
number of statistical methods have been developed for handling missing data. Largely due to its ease of use, mul-
tiple imputation (MI)1,2 has been arguably the most popular method for handling missing data in practice. The 
basic idea underlying MI is to replace each missing data point with a set of values generated from its predictive 
distribution given observed data and to generate multiply imputed datasets to account for uncertainty of impu-
tation. Each imputed data set is then analyzed separately using standard complete-data analysis methods and the 
results are combined across all imputed data sets using Rubin’s rule1,2. MI can be readily conducted using availa-
ble software packages3–5 in a wide range of situations and has been investigated extensively in many settings6–12. 
Most of the existing MI methods rely on the assumption of missingness at random (MAR)2, i.e., missingness 
only depends on observed data; our current work also focuses on MAR. In recent years, the amount of data has 
increased considerably in many applications such as omic data and electronic health record data. In particular, 
the high dimensions in omic data may cause serious problems to MI in terms of applicability and accuracy. In 
what follows, we first describe some challenges of MI in the presence of high-dimensional data and explain why 
regularized regressions are suitable in this setting, and then review existing MI methods for general missing data 
patterns and propose their extensions for high-dimensional data.

Advances in technologies have led to collection of high-dimensional data such as omics data in many biomed-
ical studies where the number of variables is very large and missing data are often present. Such high-dimensional 
data present unique challenges to MI. When conducting MI, Meng13 suggested imputation models be as general 
as data allow them to be, in order to accommodate a wide range of statistical analyses that may be conducted 
using multiply imputed data sets. However, in the presence of high-dimensional data, it is often infeasible to 
include all variables in an imputation model. As such, machine learning and model trimming techniques have 
been used in building imputation models in these settings. Stekhoven et al.14 proposed a random forest-based 
algorithm for missing data imputation called missForest. Random forest utilizes bootstrap aggregation of multiple 
regression trees to reduce the risk of overfitting, and combines the predictions from trees to improve accuracy of 
predictions15. Shah et al.16 suggested a variant of missForest and compared it to parametric imputation methods. 
They showed that their proposed random forest imputation method was more efficient and produced narrower 
confidence intervals than standard MI methods. Liao et al.17 developed four variations of K-nearest-neighbor 
(KNN) imputation methods. However, these methods are improper in the sense of Rubin (1987)1 since they do 
not adequately account for the uncertainty of estimating parameters in the imputation models. Improper impu-
tation may lead to biased parameter estimates and inference in subsequent analyses. In addition, KNN methods 
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are known to suffer from the curse of dimensionality18,19 and hence may not be suitable for high-dimensional 
data. Apart from random forest and KNN, regularized regression, which allows for simultaneous parameter 
estimation and variable selection, presents another option for building imputation models in the presence of 
high-dimensional data. The basic idea of regularized regression is to minimize the loss function of a regression, 
subject to some penalties. Different penalty specifications give rise to various regularized regression methods. 
Zhao and Long (2013)20 investigated the use of regularized regression for MI including lasso21, elastic net22 (EN), 
and adaptive lasso23 (Alasso). They also developed MI using a Bayesian lasso approach. However, they focused on 
the setting where only one variable has missing values. There has been limited work on MI methods for general 
missing data patterns where multiple variables have missing values in the presence of high-dimensional data.

To handle general missing data patterns, there are two MI approaches, one based on joint modeling (JM)24 
and the other based on fully conditional specifications, the latter of which is also known as multiple imputa-
tion by chained equations (MICE) and has been implemented independently by van Buuren et al. (2011)3 
and Raghunathan et al. (1996)25. While JM has strong theoretical justifications and works reasonably well for 
low-dimensional data, its performance deteriorates as the data dimension increases26 and it is difficult to extend 
to high-dimensional data. MICE involves specifying a set of univariate imputation models. Since each imputation 
model is specified for one partially observed variable conditional on the other variables, it simplifies the mode-
ling process. While MICE lacks theoretical justifications except for some special cases27,28, it has been shown to 
achieve satisfactory performance in extensive numerical studies and empirical examples. White et al. (2011)29 
provides a nice review and guidance for MICE. It is worth mentioning that standard MICE methods cannot 
handle high-dimensional data. For example, the MICE algorithms proposed by van Buuren et al.3 and Su et al.5 
cannot handle the prostate cancer data used in our data analysis and the high-dimensional data generated in 
our simulations. As such, we focus on extending MICE to high-dimensional data settings for handling general 
missing data patterns.

Methodology
Suppose that our data set Z has p variables, z1, …, zp. Without loss of generality, we assume that the first l (l ≤  p) 
variables contain missing values. Suppose the data consist of n observations and we have rj observed values in 
variable zj. We denote the observed components and missing components for variable j by zj,obs and zj,mis. Let 
= ( , ..., , , ..., )− − +z z z z zj j j p1 1 1  be the collection of the p −  1 variables in Z except zj. Let z−j,obs and z−j,mis denote 

the two components of z−j corresponding to the complement data of zj,obs and zj,mis.

Multiple imputation by chained equations. Let the hypothetically complete data Z be a partially 
observed random draw from a multivariate distribution θ( )f Z . We assume that the multivariate distribution of 
Z is completely specified by the unknown parameters θ. The standard MICE algorithm obtains a posterior distri-
bution of θ by sampling iteratively from conditional distributions of the form θ θ( , ), ..., ( , )− −f fz z z zl l l1 1 1 . Note 
that the parameters θ1, …, θl are specific to the conditional densities, which might not determine the unique ‘true’ 
joint distribution θ( )f Z .

To be specific, MICE starts with a simple imputation, such as imputing the mean, for every  
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when z j is subsequently used as a predictor in the regression model for other variables that have missing values, 
both the observed and predicted values are used. These steps are repeated for each variable with missing values, 
that is, z1 to zl. Each iteration entails cycling through imputing z1 to zl. At the end of each iteration, all missing 
values are replaced by the predictions from regression models that expose the relationships observed in the data. 
We then repeat the procedures iteratively until convergence. The complete algorithm can be described as 
follows:
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Note that while the observed data zobs do not change in the iterative updating procedure, the missing data zmis do 
change from one iteration to another. After convergence, the last M imputed data sets after appropriate thinning 
are chosen for subsequent standard complete-data analysis.

In the case of high-dimensional data, where p >  rj or p ≈  rj, it is not feasible to fit the imputation model (1) 
using traditional regressions. In the following two subsections, we provide details of two approaches to apply 
regularized regression techniques in the presence of high-dimensional data for general missing data patterns.

Direct use of regularized regression for multiple imputation. For variable zj, our goal is to fit the 
imputation model (1) using rj cases with observed zj. Assuming that qj variables in z−j,obs are associated with zj,obs, 
we denote this set of qj variables by j , which is also known as the true active set. We define the subset of predic-
tors that are selected to impute z j as the active set by  j , and denote the corresponding design matrix as ,z obs .We 
first consider an approach where a regularization method is used to conduct both model trimming and parameter 
estimation and a bootstrap step is incorporated to simulate random draws from θ( | , ), ,f z zj obs obsj

. This approach 
is referred to as MICE through the direct use of regularized regression (MICE-DURR). The purpose of the 
boostrap is to accommodate sampling variation in estimating population regression parameters, which is part of 
ensuring that imputations are proper16. In the m-th iteration and for variable j, (j =  1, …, l), define 
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We conduct the above procedure for l variables that have missing values in one iteration and repeat iteratively 
to obtain M imputed data sets. Subsequently, standard complete-data analysis can be applied to each one of the M 
imputed data sets.

We make our approach clear by linking the above three steps to the MICE algorithm. In the first step, we boot-
strap the data from the last iteration to ensure that the following imputations are proper. In the second step, we 
use regularized regressions to fit model (1) and obtain an estimate of θj. Then, we use this estimate to predict the 
missing values from the model (2). Details of MICE-DURR for three types of data can be found as Supplementary 
Method S1 online.

Indirect use of regularized regression for multiple imputation. MICE-DURR uses regularized 
regression for both model trimming and parameter estimation. An alternative approach to MICE-DURR is to use 
a regularization method for model trimming only and then followed by a standard multiple imputation procedure 
using the estimated active set ( j), say, through a maximum likelihood inference procedure. We refer to this 
approach as MICE through the indirect use of regularized regression (MICE-IURR). Suppose ( )W j

m  is defined as 
above. Denote by ,

( )W j obs
m  the component of ( )W j

m  corresponding to ,z j obs. At the m-th iteration and for variable z j, 
the algorithm of the MICE-IURR approach is as follows:

(1) We use a regularized regression method to fit a multiple linear regression model regarding ,z j obs as the out-
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These three steps are conducted iteratively until convergence. We obtain the last M imputed data sets for the 
following analyses. In the third step, instead of fixing one θ̂ j for all iterations, we randomly draw θ

( )
^

j
m

 from the 
distribution and use it to predict ,z j mis at each iteration. This strategy can guarantee that our imputations are 
proper30. Details of MICE-IURR for three types of data can be found as Supplementary Method S2 online.

Simulation Studies
Extensive simulations are conducted to evaluate the performance of the two proposed methods MICE-DURR and 
MICE-IURR in comparison with the standard MICE and several other existing methods under general missing 
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data patterns. For MICE-DURR and MICE-IURR, we consider three regularization methods, namely, lasso, EN 
and Alasso. We summarize the simulation results over 200 Monte Carlo (MC) data sets.

The setup of the simulations is similar to what was used in Zhao and Long (2013). Specifically, each MC data 
set has a sample size of =n 100 and includes y, the fully observed outcome variable, and = ( , …, )Z z z p1 , the 
set of predictors and auxiliary variables. We consider settings with =p 200 and =p 1000. We consider z1, z2, and 
z3 having missing values, which follow a general missing data pattern. We first generate ( , …, )z z p4  from a mul-
tivariate normal distribution with mean ( , …, ) −0 0 p 4

 and a first order autoregressive covariance matrix with 
autocorrelation ρ varying as 0, 0.1, 0.5, and 0.9. Given ( , …, )z z p4 , variables z1, z2, and z3 are generated inde-
pendently from a normal distribution α( + , )N Z1 4 , where   represents the common true active set with a 
cardinality of q for all variables with missing values. We further consider settings where =q 4 and 20, and 
α = ( ,…, )′1 1 4

 for =q 4; α = ( . ,…, . )′0 2 0 2 20
 for =q 20. For =q 4 and 20, the corresponding true active set 

 = ( , , , )Z z z z z4 5 50 51  and , …, , , …,z z z z{ }4 13 50 59 . Given Z, the outcome variable y is generated from 
β β β β β β ε= + + + + + +y z z z z z0 1 1 2 2 3 3 4 4 5 5 , where β = 1i , and ε ( , )~ N 0 6  is random noise and inde-

pendent of zi . Missing values are created in z1, z2, and z3 using the following logit models for the  
c o r r e s p o n d i n g  m i s s i n g  i n d i c a t o r s ,  δ1,  δ2 ,  a n d  δ3 ,  δ( ( = )) = − − + −logit Pr z z y1 1 21 4 5 , 

δ( ( = )) = − − + −logit Pr z z y1 1 22 4 51 , and δ( ( = )) = − − + −logit Pr z z y1 1 23 50 51 , resulting in approx-
imately 40% of observations having missing values.

We compare our proposed MICE-DURR and MICE-IURR with the random forest imputation method 
(MICE-RF)16 and two KNN imputation methods17, one by the nearest variables (KNN-V) and the other by the 
nearest subjects (KNN-S). When applying MICE-RF, KNN-V, and KNN-S, the corresponding R packages 
returned errors when the incomplete dataset contains large number of variables (i.e. =p 1000). As a result, these 
three methods are only applied to the setting of =p 200. Since the standard MI method as implemented in the R 
package mice is not directly applicable to the setting of >p n, we consider a standard MI approach that uses the 
true active set   plus y to impute ,z z1 2 and z3, denoted by MI-true. Of note, MI-true is not applicable in practice 
since the true active set is in general unknown.

Following Shah et al.16, 10 imputed datasets are generated using each MI method; then a linear regression 
model is fitted to regress y on ( , , , ,z z z z z1 2 3 4 5) in each imputed data set and Rubin’s rule is applied to obtain 
β and their SEs. Consistent with the recommendations in the literature3,29, we find in our numerical studies that 
imputed values using all the MI methods are fairly stable after 10 iterations and hence fix the number of iterations 
to 20. To benchmark bias and loss of efficiency in parameter estimation, two additional approaches that do not 
involve imputations are also included: a gold standard (GS) method that uses the underlying complete data before 
missing data are generated, and a complete-case analysis (CC) method that uses only complete-cases for which all 
the variables are observed2. We calculate the following measures to summarize the simulation results for β1, β2, 
and β3: mean bias, mean standard error (SE), Monte Carlo standard deviation (SD), mean square error (MSE) and 
coverage rate of the 95% confidence interval (CR).

Tables 1–3 summarize the results for ρ = .0 1, ρ = .0 5 and ρ = .0 9, respectively. Within each table different 
methods are compared and the effects of the cardinality of the true active set q and dimension p are evaluated with 
the correlation ρ fixed. In all scenarios, GS and MI-true, neither of which is applicable in real data, lead to negli-
gible bias and their CRs are close to the nominal level, whereas the complete-case analysis and the existing MI 
methods including MICE-RF, KNN-V and KNN-S lead to substantial bias. In particular, MICE-RF, with a large 
bias, tends to obtain a large coverage rate close to 1. KNN-V and KNN-S, on the other hand, impute the missing 
values only once and exhibit under-coverage of 95% CI, likely a result of improper imputation. MICE-DURR 
performs poorly with substantial bias in our settings with general missing data patterns. Of note, MICE-DURR 
was shown in Zhao and Long (2013)20 to improve the accuracy of the estimate in the simulation settings where 
only one variable has missing values. In comparison, the MICE-IURR approach achieves better performance–in 
terms of bias–than the other imputation methods except for MI-true. In all settings, the MICE-IURR method 
using lasso or EN exhibits small to negligible bias, similar to MI-true. When ρ = .0 1, the biases and MSEs for 
MICE-RF, KNN-V, and MICE-DURR decrease as q increases, whereas the performance of KNN-S deteriorates. 
The MICE-IURR methods tend to give fairly stable results as q changes. When ρ and q are fixed, the results of 
MICE-DURR and MICE-IURR with =p 200 are very similar compared with the results with =p 1000.

Compared with Tables 1–3 show similar patterns in terms of comparisons between the imputation methods. 
Among the three MICE-IURR algorithms, Alasso tends to underperform lasso and EN when ρ = .0 1 (Table 1), 
but not so when ρ = .0 5 and .0 9 (Tables 2 and 3). In addition, when ρ = .0 5, the biases and MSEs decrease for 
MICE-IURR using lasso and EN and increase for MICE-IURR using Alasso, as q increases from 200–1000.

Data Examples
We illustrate the proposed methods using two data examples.

Georgia stroke registry data. Stroke is the fifth leading cause of death in the United States and a major 
cause of severe long-term disability. The Georgia Coverdell Acute Stroke Registry (GCASR) program is funded by 
Centers for Disease Control Paul S. Coverdell National Acute Stroke Registry cooperative agreement to improve 
the care of acute stroke patients in the pre-hospital and hospital settings. In late 2005, 26 hospitals initially par-
ticipated in GCASR program and this number increased to 66 in 2013, which covered nearly 80% of acute stroke 
admissions in Georgia. Intravenous (IV) tissue-plasminogen activator (tPA) improves the outcomes of acute 
ischemic stroke patients, and brain imaging is a critical step in determining the use of IV tPA. Time plays a signif-
icant role in determining patients’ eligibility for IV tPA and their prognosis. The American Heart and American 
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Stroke Association and CDC set a goal that hospitals should complete imaging within 25 minutes of patients 
arrival to a hospital. The objective of this study, thus, is to identify the factors that might be associated with 
hospital arrival-to-imaging time. GCASR collected data on 86,322 clinically diagnosed acute stroke admissions 
between 2005 and 2013. The registry has 203 data elements of which 121 (60%) have missing values, attributed to 
lack of answers, service not provided, poor documentation and data abstraction or ineligibility of a patient to a 
specific care. The extent of missingness varies from 0.01–28.72%.

In this analysis, we consider arrival-to-CT time the outcome and the other 13 variables the predictors. These 
13 variables of interest can be classified into two categories: patient-related variables such as age, gender, health 
insurance, and medical history; pre-hospital-related variables such as EMS notification. Only gender, age and 

β1 β2 β3

Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

q =  4

GS 0.010 0.519 0.484 0.233 0.960 − 0.004 0.518 0.514 0.263 0.930 − 0.003 0.522 0.507 0.255 0.960

CC − 0.273 0.560 0.570 0.398 0.910 − 0.277 0.561 0.556 0.385 0.915 − 0.350 0.566 0.570 0.446 0.865

MI-true 0.023 0.718 0.676 0.455 0.940 − 0.013 0.719 0.721 0.517 0.920 − 0.109 0.728 0.692 0.489 0.950

p =  200

MICE-RF − 0.618 0.697 0.364 0.514 0.970 − 0.469 0.699 0.331 0.329 1.000 − 0.615 0.701 0.341 0.494 0.940

KNN-V − 0.800 0.696 0.584 0.979 0.845 − 0.369 0.700 0.552 0.440 0.975 − 0.696 0.712 0.547 0.782 0.900

KNN-S − 0.273 0.560 0.570 0.398 0.910 − 0.277 0.561 0.556 0.385 0.915 − 0.350 0.566 0.570 0.446 0.865

MICE-DURR(Lasso) − 0.781 0.572 0.404 0.773 0.775 − 0.543 0.567 0.431 0.479 0.895 − 0.759 0.583 0.431 0.760 0.775

MICE-DURR(EN) − 0.784 0.575 0.407 0.779 0.790 − 0.534 0.568 0.428 0.467 0.895 − 0.759 0.585 0.432 0.761 0.755

MICE-DURR(Alasso) − 0.774 0.589 0.374 0.739 0.800 − 0.557 0.581 0.384 0.458 0.925 − 0.768 0.600 0.392 0.742 0.820

MICE-IURR(Lasso) − 0.031 0.684 0.711 0.503 0.935 − 0.017 0.681 0.697 0.484 0.920 − 0.173 0.692 0.676 0.485 0.930

MICE-IURR(EN) − 0.047 0.673 0.731 0.534 0.920 − 0.009 0.670 0.703 0.491 0.910 − 0.144 0.676 0.703 0.513 0.900

MICE-IURR(Alasso) − 0.105 0.759 0.813 0.668 0.905 − 0.181 0.751 0.794 0.660 0.910 − 0.283 0.759 0.751 0.641 0.925

p =  1000

MICE-DURR(Lasso) − 0.769 0.579 0.412 0.761 0.810 − 0.568 0.576 0.474 0.547 0.885 − 0.720 0.580 0.405 0.682 0.855

MICE-DURR(EN) − 0.766 0.578 0.414 0.758 0.835 − 0.558 0.581 0.465 0.526 0.900 − 0.719 0.584 0.413 0.687 0.840

MICE-DURR(Alasso) − 0.748 0.582 0.364 0.691 0.855 − 0.576 0.583 0.441 0.525 0.905 − 0.751 0.588 0.396 0.720 0.815

MICE-IURR(Lasso) 0.021 0.683 0.780 0.605 0.885 − 0.037 0.677 0.778 0.603 0.910 − 0.168 0.689 0.714 0.536 0.910

MICE-IURR(EN) 0.050 0.671 0.776 0.601 0.890 − 0.049 0.671 0.779 0.606 0.900 − 0.158 0.680 0.724 0.546 0.915

MICE-IURR(Alasso) − 0.159 0.791 0.901 0.834 0.905 − 0.245 0.777 0.849 0.777 0.905 − 0.366 0.786 0.767 0.720 0.925

q =  20

GS 0.012 0.540 0.492 0.241 0.975 0.010 0.535 0.548 0.299 0.930 − 0.008 0.542 0.508 0.256 0.965

CC − 0.366 0.529 0.554 0.439 0.865 − 0.359 0.526 0.517 0.395 0.905 −  0.443 0.535 0.495 0.440 0.865

MI-true − 0.097 0.715 0.627 0.400 0.950 − 0.089 0.713 0.660 0.441 0.930 − 0.133 0.728 0.683 0.482 0.950

p =  200

MICE-RF − 0.468 0.730 0.429 0.402 0.975 − 0.384 0.710 0.416 0.320 0.980 − 0.447 0.725 0.412 0.369 0.980

KNN-V − 0.412 0.684 0.527 0.446 0.945 − 0.266 0.678 0.531 0.351 0.960 − 0.389 0.691 0.544 0.445 0.945

KNN-S − 0.366 0.529 0.554 0.439 0.865 − 0.359 0.526 0.517 0.395 0.905 − 0.443 0.535 0.495 0.440 0.865

MICE-DURR(Lasso) − 0.494 0.675 0.464 0.458 0.960 − 0.374 0.666 0.442 0.334 0.970 − 0.443 0.678 0.442 0.390 0.970

MICE-DURR(EN) − 0.499 0.677 0.480 0.478 0.965 − 0.379 0.660 0.430 0.328 0.965 − 0.435 0.679 0.448 0.389 0.975

MICE-DURR(Alasso) − 0.488 0.685 0.475 0.462 0.945 − 0.378 0.675 0.412 0.312 0.980 − 0.457 0.693 0.423 0.387 0.985

MICE-IURR(Lasso) − 0.058 0.695 0.714 0.510 0.915 0.058 0.671 0.732 0.536 0.875 − 0.048 0.698 0.756 0.570 0.905

MICE-IURR(EN) − 0.049 0.691 0.705 0.496 0.930 0.023 0.679 0.715 0.509 0.880 − 0.041 0.697 0.743 0.551 0.910

MICE-IURR(Alasso) − 0.214 0.714 0.735 0.583 0.905 − 0.197 0.700 0.774 0.635 0.890 − 0.309 0.719 0.760 0.671 0.880

p =  1000

MICE-DURR(Lasso) − 0.435 0.677 0.470 0.409 0.970 − 0.401 0.673 0.461 0.372 0.964 − 0.471 0.679 0.437 0.412 0.976

MICE-DURR(EN) − 0.443 0.673 0.476 0.422 0.964 − 0.403 0.669 0.476 0.387 0.952 − 0.451 0.678 0.463 0.416 0.982

MICE-DURR(Alasso) − 0.434 0.678 0.475 0.412 0.976 − 0.401 0.681 0.451 0.363 0.982 − 0.474 0.683 0.433 0.411 0.970

MICE-IURR(Lasso) 0.095 0.686 0.781 0.616 0.909 − 0.019 0.687 0.858 0.732 0.885 − 0.073 0.711 0.737 0.545 0.933

MICE-IURR(EN) 0.082 0.689 0.776 0.606 0.897 − 0.009 0.687 0.870 0.752 0.867 − 0.069 0.705 0.749 0.562 0.915

MICE-IURR(Alasso) − 0.212 0.739 0.758 0.615 0.927 − 0.352 0.721 0.767 0.708 0.897 − 0.394 0.732 0.745 0.707 0.885

Table 1.  Simulation results for estimating β1 = β2 = β3 = 1 in the presence of missing data based on 200 
monte carlo data sets, where n = 100 and ρ = 0.1. Bias, mean bias; SE, mean standard error; SD, Monte Carlo 
standard deviation; MSE, mean square error; CR, coverage rate of 95% confidence interval; GS, gold standard; 
CC, complete-case; KNN-V, KNN by nearest variables; KNN-S, KNN by nearest subjects; MICE-DURR, 
MICE through direct use of regularized regressions; MICE-IURR, MICE through indirect use of regularized 
regressions; EN, elastic net; Alasso, adaptive lasso.
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race are fully observed among 13 variables. A CC analysis is conducted which uses only 15% of the original 
subjects after the removal of incomplete cases. In addition, MI methods are also used. We first remove variables 
that have missing rate greater than 40% and the remaining variables are used to impute the missing values of 
partially observed variables that are of interest. After imputations, each imputed datasets of 86,322 subjects are 
used to fit the regression models separately and results are combined by Robin’s rules. We use a straightforward 
and popular strategy to handle skip pattern: first treat skipped item as missing data and impute them along with 
other real missing values, then restore the imputed values for skipped items back to skips in the imputed data sets 
to preserve skip patterns. We apply five MI methods, namely, the MICE method proposed by van Buuren et al.3 
(mice), the MI method proposed by Su et al.5 (mi), the random forest MICE method proposed by Shah et al.16  

β1 β2 β3

Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

q =  4

GS 0.007 0.515 0.478 0.228 0.970 − 0.014 0.515 0.533 0.283 0.940 − 0.037 0.519 0.496 0.246 0.970

CC − 0.274 0.569 0.560 0.387 0.890 − 0.272 0.570 0.588 0.418 0.910 − 0.265 0.573 0.529 0.349 0.935

MI-true − 0.068 0.687 0.687 0.474 0.925 0.010 0.698 0.717 0.512 0.915 − 0.062 0.693 0.685 0.470 0.925

p =  200

MICE-RF − 0.628 0.747 0.352 0.518 0.960 − 0.355 0.711 0.371 0.263 0.980 − 0.510 0.725 0.349 0.382 0.975

KNN-V − 0.930 0.708 0.545 1.160 0.800 − 0.242 0.711 0.535 0.343 0.980 − 0.655 0.720 0.557 0.738 0.925

KNN-S − 0.274 0.569 0.560 0.387 0.890 − 0.272 0.570 0.588 0.418 0.910 − 0.265 0.573 0.529 0.349 0.935

MICE-DURR(Lasso) − 0.853 0.548 0.407 0.892 0.720 − 0.475 0.544 0.384 0.373 0.925 − 0.688 0.546 0.418 0.647 0.860

MICE-DURR(EN) − 0.852 0.548 0.412 0.894 0.695 − 0.474 0.541 0.386 0.372 0.935 − 0.688 0.550 0.411 0.641 0.845

MICE-DURR(Alasso) − 0.844 0.566 0.349 0.834 0.785 − 0.486 0.563 0.351 0.359 0.945 − 0.701 0.570 0.374 0.631 0.870

MICE-IURR(Lasso) − 0.094 0.668 0.690 0.483 0.930 − 0.080 0.669 0.729 0.536 0.885 − 0.068 0.661 0.703 0.496 0.925

MICE-IURR(EN) − 0.092 0.653 0.701 0.498 0.935 − 0.074 0.667 0.724 0.527 0.910 − 0.069 0.647 0.705 0.499 0.915

MICE-IURR(Alasso) − 0.091 0.720 0.744 0.559 0.940 − 0.076 0.710 0.790 0.626 0.880 − 0.123 0.719 0.761 0.592 0.920

p =  1000

MICE-DURR(Lasso) − 0.809 0.560 0.392 0.807 0.715 − 0.534 0.558 0.445 0.482 0.905 − 0.713 0.568 0.437 0.698 0.825

MICE-DURR(EN) − 0.806 0.560 0.398 0.808 0.710 − 0.530 0.560 0.458 0.490 0.920 − 0.711 0.568 0.433 0.693 0.815

MICE-DURR(Alasso) − 0.803 0.567 0.354 0.770 0.755 − 0.544 0.565 0.409 0.463 0.905 − 0.730 0.577 0.379 0.676 0.840

MICE-IURR(Lasso) 0.058 0.677 0.836 0.698 0.860 − 0.040 0.676 0.811 0.656 0.890 − 0.197 0.677 0.752 0.601 0.905

MICE-IURR(EN) 0.073 0.664 0.808 0.655 0.850 − 0.041 0.667 0.800 0.638 0.890 − 0.192 0.670 0.739 0.581 0.885

MICE-IURR(Alasso) − 0.036 0.793 0.912 0.829 0.865 − 0.209 0.783 0.852 0.765 0.885 − 0.335 0.779 0.792 0.737 0.910

q =  20

GS 0.014 0.521 0.500 0.249 0.950 − 0.008 0.523 0.550 0.301 0.920 − 0.023 0.527 0.506 0.255 0.970

CC − 0.352 0.525 0.536 0.410 0.855 − 0.357 0.529 0.541 0.418 0.875 − 0.387 0.533 0.520 0.419 0.890

MI-true − 0.077 0.689 0.593 0.356 0.965 − 0.047 0.688 0.675 0.456 0.920 − 0.092 0.692 0.628 0.401 0.965

p =  200

MICE-RF − 0.390 0.717 0.427 0.333 0.990 − 0.286 0.708 0.466 0.298 0.985 − 0.412 0.721 0.382 0.315 0.995

KNN-V − 0.450 0.685 0.530 0.482 0.950 − 0.214 0.697 0.561 0.359 0.970 − 0.441 0.703 0.469 0.413 0.980

KNN-S − 0.352 0.525 0.536 0.410 0.855 − 0.357 0.529 0.541 0.418 0.875 − 0.387 0.533 0.520 0.419 0.890

MICE-DURR(Lasso) − 0.491 0.631 0.451 0.444 0.955 − 0.329 0.633 0.486 0.343 0.970 − 0.532 0.644 0.421 0.459 0.975

MICE-DURR(EN) − 0.489 0.631 0.455 0.445 0.920 − 0.340 0.627 0.486 0.351 0.970 − 0.518 0.641 0.401 0.428 0.970

MICE-DURR(Alasso) − 0.481 0.655 0.425 0.412 0.940 − 0.348 0.653 0.452 0.325 0.975 − 0.529 0.668 0.377 0.422 0.960

MICE-IURR(Lasso) − 0.022 0.678 0.729 0.530 0.905 − 0.024 0.684 0.752 0.563 0.870 − 0.057 0.683 0.689 0.475 0.905

MICE-IURR(EN) − 0.023 0.666 0.695 0.481 0.920 − 0.022 0.670 0.730 0.531 0.855 − 0.036 0.675 0.674 0.453 0.925

MICE-IURR(Alasso) − 0.144 0.731 0.721 0.539 0.910 − 0.103 0.719 0.764 0.591 0.895 − 0.181 0.720 0.718 0.546 0.955

p =  1000

MICE-DURR(Lasso) − 0.436 0.640 0.415 0.361 0.978 − 0.399 0.628 0.490 0.396 0.956 − 0.458 0.640 0.393 0.363 0.989

MICE-DURR(EN) − 0.459 0.631 0.437 0.399 0.978 − 0.375 0.626 0.492 0.380 0.967 − 0.460 0.636 0.407 0.375 1.000

MICE-DURR(Alasso) − 0.450 0.651 0.419 0.376 0.978 − 0.387 0.642 0.482 0.380 0.978 − 0.487 0.655 0.384 0.382 0.989

MICE-IURR(Lasso) 0.012 0.682 0.750 0.556 0.900 0.004 0.660 0.712 0.502 0.956 − 0.079 0.687 0.630 0.398 0.933

MICE-IURR(EN) 0.020 0.672 0.738 0.539 0.878 0.018 0.662 0.725 0.521 0.911 − 0.086 0.653 0.660 0.438 0.933

MICE-IURR(Alasso) − 0.204 0.766 0.767 0.624 0.878 − 0.135 0.745 0.778 0.617 0.889 − 0.318 0.737 0.666 0.540 0.911

Table 2.  Simulation results for estimating β1 = β2 = β3 = 1 in the presence of missing data based on 200 
monte carlo data sets, where n = 100 and ρ = 0.5. Bias, mean bias; SE, mean standard error; SD, Monte Carlo 
standard deviation; MSE, mean square error; CR, coverage rate of 95% confidence interval; GS, gold standard; 
CC, complete-case; KNN-V, KNN by nearest variables; KNN-S, KNN by nearest subjects; MICE-DURR, 
MICE through direct use of regularized regressions; MICE-IURR, MICE through indirect use of regularized 
regressions; EN, elastic net; Alasso, adaptive lasso.
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(MICE-RF), and our MICE-DURR and MICE-IURR methods. When applying KNN-V and KNN-S, the R soft-
ware returned errors. Thus, KNN-V and KNN-S are not included in this data example.

Table 4 provides the results from our data analyses. In the CC analysis, only NIH stroke score and race are 
shown to be associated with the arrival-to-CT time. The results from all five MI methods are similar in terms of 
the p-value and the direction of the association. By comparison, while only 2 variables are shown to be statistically 
significant in the CC analysis, this number increases to 11, 11, 10, 9 and 9 for mi, mice, MICE-RF, MICE-DURR, 
and MICE-IURR, respectively. For example, after adjusting for other variables, the mean arrival-to-CT time in 
patients that arrive during the day time (Day) was 18.4 minutes shorter than that in patients arriving at night 
( = .p 0 036) based on MICE-IURR imputation. Health insurance and three variables about history of diseases 

β1 β2 β3

Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

q =  4

GS 0.029 0.515 0.476 0.226 0.960 0.003 0.512 0.521 0.270 0.945 0.008 0.517 0.489 0.238 0.970

CC − 0.219 0.583 0.609 0.417 0.905 − 0.245 0.585 0.560 0.371 0.925 − 0.242 0.582 0.582 0.395 0.945

MI-true − 0.012 0.711 0.699 0.487 0.935 − 0.027 0.710 0.715 0.509 0.915 − 0.007 0.701 0.685 0.467 0.940

p =  200

MICE-RF − 0.483 0.721 0.358 0.361 0.980 − 0.277 0.704 0.376 0.218 1.000 − 0.372 0.722 0.380 0.283 0.975

KNN-V − 1.034 0.747 0.584 1.408 0.765 − 0.113 0.741 0.596 0.366 0.990 − 0.676 0.758 0.630 0.852 0.895

KNN-S − 0.219 0.583 0.609 0.417 0.905 − 0.245 0.585 0.560 0.371 0.925 − 0.242 0.582 0.582 0.395 0.945

MICE-DURR(Lasso) − 0.857 0.547 0.435 0.922 0.670 − 0.549 0.532 0.417 0.475 0.905 − 0.643 0.545 0.441 0.606 0.835

MICE-DURR(EN) − 0.862 0.548 0.443 0.939 0.670 − 0.534 0.537 0.420 0.461 0.880 − 0.649 0.550 0.438 0.612 0.815

MICE-DURR(Alasso) − 0.841 0.571 0.409 0.874 0.745 − 0.525 0.564 0.377 0.417 0.935 − 0.677 0.576 0.396 0.615 0.855

MICE-IURR(Lasso) − 0.049 0.676 0.701 0.491 0.915 − 0.047 0.671 0.694 0.481 0.920 − 0.027 0.669 0.702 0.492 0.920

MICE-IURR(EN) − 0.028 0.671 0.716 0.511 0.915 − 0.059 0.676 0.707 0.501 0.910 − 0.052 0.677 0.706 0.498 0.935

MICE-IURR(Alasso) − 0.005 0.684 0.710 0.502 0.920 − 0.024 0.685 0.727 0.526 0.915 − 0.031 0.679 0.710 0.503 0.935

p =  1000

MICE-DURR(Lasso) − 0.787 0.556 0.399 0.778 0.740 − 0.494 0.538 0.405 0.408 0.920 − 0.688 0.559 0.375 0.613 0.845

MICE-DURR(EN) − 0.793 0.554 0.414 0.799 0.715 − 0.490 0.534 0.410 0.407 0.900 − 0.681 0.562 0.373 0.603 0.840

MICE-DURR(Alasso) − 0.801 0.572 0.363 0.772 0.775 − 0.496 0.557 0.369 0.382 0.930 − 0.705 0.577 0.339 0.611 0.880

MICE-IURR(Lasso) − 0.014 0.682 0.744 0.550 0.930 − 0.058 0.672 0.763 0.582 0.915 − 0.144 0.680 0.709 0.521 0.920

MICE-IURR(EN) 0.009 0.679 0.729 0.529 0.935 − 0.062 0.667 0.744 0.555 0.915 − 0.155 0.672 0.702 0.515 0.930

MICE-IURR(Alasso) − 0.029 0.729 0.739 0.545 0.935 − 0.024 0.716 0.818 0.666 0.895 − 0.130 0.715 0.760 0.592 0.910

q =  20

GS 0.018 0.514 0.478 0.228 0.945 − 0.010 0.512 0.519 0.268 0.945 − 0.003 0.515 0.488 0.237 0.975

CC − 0.260 0.570 0.562 0.382 0.930 − 0.295 0.566 0.533 0.370 0.930 − 0.304 0.568 0.537 0.379 0.925

MI-true − 0.056 0.681 0.561 0.316 0.975 − 0.075 0.671 0.590 0.352 0.980 − 0.009 0.667 0.566 0.319 0.960

p =  200

MICE-RF − 0.334 0.747 0.361 0.241 0.995 − 0.153 0.707 0.362 0.154 1.000 − 0.269 0.756 0.398 0.230 1.000

KNN-V − 0.798 0.749 0.555 0.943 0.895 − 0.108 0.739 0.555 0.318 1.000 − 0.506 0.757 0.569 0.578 0.960

KNN-S − 0.260 0.570 0.562 0.382 0.930 − 0.295 0.566 0.533 0.370 0.930 − 0.304 0.568 0.537 0.379 0.925

MICE-DURR(Lasso) − 0.690 0.576 0.412 0.645 0.880 − 0.392 0.557 0.404 0.316 0.945 − 0.575 0.574 0.406 0.495 0.930

MICE-DURR(EN) − 0.679 0.579 0.420 0.636 0.880 − 0.379 0.556 0.404 0.306 0.955 − 0.591 0.572 0.414 0.520 0.920

MICE-DURR(Alasso) − 0.668 0.616 0.382 0.592 0.915 − 0.393 0.593 0.391 0.306 0.970 − 0.611 0.611 0.381 0.519 0.945

MICE-IURR(Lasso) − 0.051 0.665 0.646 0.418 0.935 − 0.031 0.666 0.678 0.458 0.910 0.007 0.660 0.658 0.431 0.950

MICE-IURR(EN) − 0.031 0.665 0.645 0.415 0.935 − 0.057 0.662 0.660 0.436 0.930 0.006 0.659 0.655 0.427 0.945

MICE-IURR(Alasso) − 0.035 0.668 0.691 0.476 0.915 − 0.063 0.667 0.660 0.437 0.935 − 0.003 0.667 0.684 0.466 0.935

p =  1000

MICE-DURR(Lasso) − 0.738 0.582 0.417 0.717 0.850 − 0.408 0.569 0.417 0.340 0.955 − 0.531 0.586 0.444 0.478 0.905

MICE-DURR(EN) − 0.729 0.587 0.416 0.704 0.860 − 0.416 0.569 0.421 0.350 0.945 − 0.526 0.587 0.443 0.472 0.925

MICE-DURR(Alasso) − 0.723 0.614 0.384 0.670 0.920 − 0.433 0.600 0.374 0.327 0.950 − 0.540 0.612 0.401 0.451 0.945

MICE-IURR(Lasso) 0.055 0.687 0.725 0.526 0.905 − 0.057 0.676 0.770 0.593 0.890 − 0.124 0.676 0.735 0.553 0.895

MICE-IURR(EN) 0.052 0.675 0.746 0.556 0.900 − 0.053 0.673 0.782 0.611 0.910 − 0.113 0.669 0.751 0.573 0.915

MICE-IURR(Alasso) − 0.003 0.742 0.769 0.589 0.930 − 0.105 0.728 0.803 0.653 0.920 − 0.082 0.732 0.792 0.631 0.915

Table 3.  Simulation results for estimating β1 = β2 = β3 = 1 in the presence of missing data based on 200 
monte carlo data sets, where n = 100 and ρ = 0.9. Bias, mean bias; SE, mean standard error; SD, Monte Carlo 
standard deviation; MSE, mean square error; CR, coverage rate of 95% confidence interval; GS, gold standard; 
CC, complete-case; KNN-V, KNN by nearest variables; KNN-S, KNN by nearest subjects; MICE-DURR, 
MICE through direct use of regularized regressions; MICE-IURR, MICE through indirect use of regularized 
regressions; EN, elastic net; Alasso, adaptive lasso.
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become statistically significant after we apply the MI methods. However, NIH stroke score and race, which are 
shown to be statistically significant by CC analysis, turn out to be not significant by MICE-DURR and 
MICE-IURR.

Prostate cancer data. The second data set is from a prostate cancer study (GEO GDS3289). It contains 99 
samples, including 34 benign epithelium samples and 65 non-benign samples, with 20,000 genomic biomarkers. 
Missing values are present for 17,893 biomarkers, nearly 89% of all genomic biomarkers in this data set. In this 
analysis, we consider a binary outcome y, defined as =y 1 if it is a benign sample and =y 0 if otherwise, and test 
whether some genomic biomarkers are associated with the outcome. For the purpose of illustration, we choose 
three biomarkers (FAM178A, IMAGE:813259 and UGP2), for which the missing rates are 31.3%, 45.5% and 
26.3%, respectively. We conduct a logistic regression of y on the three biomarkers. In this analysis, mi and mice 
packages give error messages and MICE-RF approach is computationally very expensive. Therefore, we only use 
our two proposed MI methods (MICE-DURR and MICE-IURR) and the KNN-V and KNN-S methods in addi-
tion to the complete-case analysis. All 2107 biomarkers that do not have missing values are used to impute miss-
ing values in the three biomarkers.

Table 5 presents the results on logistic regression for the prostate cancer data. Based on our results, all three 
biomarkers become statistically significant after using our multiple imputation methods, except in one case that 
the p-value of UGP2 after MICE-DURR method is slightly larger than 0.05. In addition, in most cases, the esti-
mates and p-values by MICE-DURR are consistent with those results by MICE-IURR. For example, the regres-
sion coefficients of biomarker (IMAGE:813259) after using two different multiple imputations (MICE-DURR and 
MICE-IURR) are 3.47 and 3.50, with p-values of 0.031 and 0.039, respectively.

Discussion
We investigate two approaches for multiple imputation for general missing data patterns in the presence of 
high-dimensional data. Our numerical results demonstrate that the MICE-IURR approach performs better than 
the other imputation methods considered in terms of bias, whereas the MICE-DURR approach exhibits large bias 
and MSE. Of note, while MICE-RF leads to substantial bias in subsequent analysis of imputed data sets, it tends to 
yield smaller MSE than MICE-IURR due to smaller SD. In the case of comparing multiple imputation methods, it 
can be argued when one imputation method leads to substantial bias and hence incorrect inference in subsequent 

Characteristics CC mi mice MICE-RF MICE-DURR MICE-IURR

NIH stroke score
− 1.95 (< 0.001) − 2.04 (0.010) − 6.07 (< 0.001) − 5.01 (< 0.001) − 1.10 (0.236) − 1.00 (0.176)

[− 2.7, − 1.2] [− 3.48, − 0.6] [− 8.5, − 3.64] [− 6.38, − 3.63] [− 3.04, 0.84] [− 2.5, 0.49]

EMS pre-notification
− 3.17 (0.590) − 19.83 (0.043) − 0.82 (0.957) − 5.23 (0.604) − 2.22 (0.819) − 5.92 (0.658)

[− 14.69, 8.35] [− 38.7, − 0.96] [− 34.04, 32.4] [− 25.35, 14.9] [− 21.59, 17.14] [− 34.44, 22.59]

Serum total lipid
− 0.07 (0.201) − 0.47 (< 0.001) − 0.52 (< 0.001) − 0.36 (< 0.001) − 0.26 (0.036) − 0.26 (0.005)

[− 0.18, 0.04] [− 0.62, − 0.32] [− 0.7, − 0.33] [− 0.53, − 0.19] [− 0.49, − 0.02] [− 0.43, − 0.08]

Age
0.02 (0.936) − 0.87 (0.022) − 0.78 (0.042) − 0.71 (0.061) − 0.76 (0.045) − 0.80 (0.037)

[− 0.51, 0.56] [− 1.62, − 0.12] [− 1.53, − 0.03] [− 1.46, 0.03] [− 1.51, − 0.02] [− 1.54, − 0.05]

Male(referent: female)
5.33 (0.372) 21.20 (0.013) 24.83 (0.004) 19.15 (0.025) 16.57 (0.053) 16.54 (0.053)

[− 6.37, 17.02] [4.41, 37.98] [8, 41.66] [2.41, 35.89] [− 0.24, 33.38] [− 0.19, 33.27]

White(referent: African American)
− 16.64 (0.007) − 14.44 (0.107) − 20.07 (0.028) − 17.64 (0.048) − 14.11 (0.114) − 13.85 (0.121)

[− 28.82, − 4.45] [− 32.01, 3.14] [− 37.98, − 2.15] [− 35.16, − 0.12] [− 31.62, 3.41] [− 31.34, 3.65]

Health insurance by medicare
− 4.07 (0.617) − 24.95 (0.032) − 24.89 (0.032) − 24.35 (0.036) − 24.36 (0.036) − 24.05 (0.038)

[− 20.04, 11.9] [− 47.72, − 2.19] [− 47.7, − 2.08] [− 47.13, − 1.57] [− 47.11, − 1.6] [− 46.8, − 1.3]

Arrive in the daytime
4.94 (0.420) − 23.10 (0.011) − 24.64 (0.006) − 10.27 (0.275) − 18.97 (0.043) − 18.41 (0.045)

[− 7.07, 16.96] [− 40.89, − 5.31] [− 42.35, − 6.94] [− 28.74, 8.2] [− 37.38, − 0.56] [− 36.39, − 0.42]

NPO
8.37 (0.393) 58.79 (0.001) 121.04 (< 0.001) 81.03 (0.001) 39.98 (0.006) 43.31 (0.001)

[− 10.84, 27.58] [26.65, 90.93] [76.21, 165.88] [39.6, 122.45] [11.87, 68.08] [17.25, 69.37]

History of stroke
− 2.57 (0.695) − 36.55 (0.001) − 34.10 (0.002) − 28.99 (0.009) − 31.96 (0.008) − 33.24 (0.002)

[− 15.43, 10.29] [− 57.15, − 15.96] [− 55.86, − 12.35] [− 50.72, − 7.27] [− 55.52, − 8.41] [− 54.47, − 12]

History of TIA
− 16.30 (0.097) − 64.53 (< 0.001) − 89.47 (< 0.001) − 64.94 (< 0.001) − 62.39 (< 0.001) − 60.34 (< 0.001)

[− 35.54, 2.94] [− 95.93, − 33.13] [− 123.95, − 55] [− 97.47, − 32.41] [− 96.59, − 28.19] [− 92.47, − 28.2]

History of cardiac valve prosthesis
− 27.25 (0.349) 89.28 (0.016) 136.94 (< 0.001) 126.22 (0.022) 103.18 (0.008) 104.15 (0.007)

[− 84.27, 29.78] [16.98, 161.59] [79.4, 194.48] [19.67, 232.77] [27.19, 179.16] [28.31, 179.98]

Family history of stroke
− 17.33 (0.406) − 85.07 (0.014) − 51.10 (0.078) − 82.91 (0.022) − 79.79 (0.028) − 76.82 (0.034)

[− 58.18, 23.51] [− 153.23, − 16.92] [− 107.91, 5.72] [− 153.95, − 11.87] [− 150.94, − 8.65] [− 147.91, − 5.74]

Table 4.  Regression coefficients estimates of the Georgia stroke registry data. KNN-V and KNN-S are not 
included because of errors. NPO, nil per os, Latin for “nothing by mouth”, a medical instruction to withhold oral 
intake of food and fluids from a patient. P-value, (); 95% confidence interval, [].
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analysis of imputed data sets then whether this method yields smaller MSE may not be very relevant. Two data 
examples are used to further showcase the limitations of the existing imputation methods considered.

As alluded to earlier, while MICE is a flexible approach for handling different data types, its theoretical prop-
erties are not well-established. The specification of a set of conditional regression models may not be compati-
ble with a joint distribution of the variables being imputed. Liu et al. (2013)27 established technical conditions 
for the convergence of the sequential conditional regression approach if the stationary joint distribution exists, 
which, however, may not happen in practice. Zhu and Raghunathan (2014)28 assessed theoretical properties of 
MI for both compatible and incompatible sequences of conditional regression models. However, their results are 
established for the missing data pattern where each subject may have missing values in at most one variable. One 
direction for future work is to extend these results to the settings of our interest.
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Biomarkers CC KNN-V KNN-S MICE-DURR MICE-IURR Missing-rate

FAM178A 
5.80 (< 0.119) 5.62 (< 0.001) 5.33 (0.001) 4.43(0.003) 4.70(0.002)

31.3%
[− 1.49, 13.09] [2.62, 8.62] [2.31, 8.35] [1.61, 7.25] [1.76, 7.64]

IMAGE:813259 
6.03 (0.151) 4.20 (0.009) 4.43 (0.016) 3.47 (0.031) 3.50 (0.039)

45.5%
[− 2.2, 14.26] [1.06, 7.34] [0.82, 8.04] [0.37, 6.57] [0.23, 6.77]

UGP2
− 2.57 (0.386) − 3.44 (0.021) − 3.45 (0.021) − 2.32 (0.067) − 3.15 (0.025)

26.3%
[− 8.37, 3.23] [− 6.36, − 0.52] [− 6.37, − 0.53] [− 4.77, 0.13] [− 5.85, − 0.45]

Table 5.  Regression coefficients estimates of the prostate cancer data. MICE-RF is not included because of 
errors. P-value, (); 95% confidence interval, [].
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