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A Radio-genomics Approach for 
Identifying High Risk Estrogen 
Receptor-positive Breast Cancers 
on DCE-MRI: Preliminary Results in 
Predicting OncotypeDX Risk Scores
Tao Wan1,2,3, B. Nicolas Bloch3, Donna Plecha4, CheryI L. Thompson5, Hannah Gilmore6, 
Carl Jaffe3, Lyndsay Harris7 & Anant Madabhushi2

To identify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers 
on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX 
risk categories. We collected 96 ER-positivebreast lesions with low (<18, N = 55) and high (>30, 
N = 41) OncotypeDX recurrence scores. Each lesion was quantitatively charac-terize via 6 shape 
features, 3 pharmacokinetics, 4 enhancement kinetics, 4 intensity kinetics, 148 textural kinetics, 5 
dynamic histogram of oriented gradient (DHoG), and 6 dynamic local binary pattern (DLBP) features. 
The extracted features were evaluated by a linear discriminant analysis (LDA) classifier in terms of 
their ability to distinguish low and high OncotypeDX risk categories. Classification performance was 
evaluated by area under the receiver operator characteristic curve (Az). The DHoG and DLBP achieved 
Az values of 0.84 and 0.80, respectively. The 6 top features identified via feature selection were 
subsequently combined with the LDA classifier to yield an Az of 0.87. The correlation analysis showed 
that DHoG (ρ = 0.85, P < 0.001) and DLBP (ρ = 0.83, P < 0.01) were significantly associated with the low 
and high risk classifications from the OncotypeDX assay. Our results indicated that computer extracted 
texture features of DCE-MRI were highly correlated with the high and low OncotypeDX risk categories 
for ER-positive cancers.

In the United States, approximately 70% of all breast cancer patients are diagnosed with estrogen receptor 
(ER)-positive primary tumors, and many of these women will receive hormonal therapy and adjuvant chemo-
therapy1,2. Identifying patients who can be treated with hormonal therapy alone would limit toxicity to those most 
likely to benefit3. Currently, the selection of individualized therapy for patients with ER-positive, human epider-
mal growth factor receptor type 2 (HER2)-negative early stage breast cancers is guided by the OncotypeDX gene 
expression assay (Genomic Health Inc., Redwood City, CA)4, which produces a recurrence score between 0–100 
to predict the likelihood of disease recurrence with tamoxifen and improves the oncologist’s ability to estimate 
benefit from adjuvant hormonal and chemotherapy5,6. However, the OncotypeDX assay is performed on tissue 
biopsy specimens and involves additional tumor handling and shipping of tissue, and delays in time to treatment, 
all of which add costs and anxiety for patients3,7.

Computer-aided diagnosis (CAD) systems have been previously used with dynamic contrast enhanced mag-
netic resonance imaging (DCE-MRI) of the breast to predict the presence or absence of cancer8. These CAD tools 
aim to increase the accuracy of diagnosis of breast cancer on MRI while also aiming to reduce inter-observer 
variability. However, more recently a number of groups have begun to focus on identifying computer extracted 
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features on MRI that might be associated with underlying biology molecular subtype and risk of recurrence of 
the tumor9–11. A radiogenomic approach presented by Yamamoto et al.12 found a significant correlation between 
breast MRI (1.5 Tesla) features and a number of important breast cancer related gene sets. Correlation studies by 
Vassiou et al.13 and Chang et al.14 showed that DCE-MRI (1.5 Tesla) based imaging features, such as tumor mar-
gin, enhancement pattern, and kinetic characteristics, were associated with pathological prognostic factors for 
the prediction of clinical outcome during treatment of breast cancer. A recent study conducted by Sutton et al.15  
showed that two MRI (1.5 or 3.0 Tesla) derived statistical image features were significantly correlated with the 

Feature Class Feature Name Az PPV NPV ρ* P value RSD% err

DHoG
4 bins 0.84 (0.74, 0.94) 0.81 (0.76, 0.86) 0.87 (0.81, 0.93) 0.85 (0.83, 0.87) 0.006 4.76 0.157

6 bins 0.82 (0.71, 0.93) 0.78 (0.70, 0.86) 0.85 (0.78, 0.92) 0.82 (0.79, 0.85) 0.008 6.09 0.174

DLBP
256 bins 0.80 (0.70, 0.90) 0.74 (0.68, 0.80) 0.85 (0.80, 0.90) 0.83 (0.80, 0.86) 0.008 5.01 0.141

128 bins 0.79 (0.67, 0.91) 0.74 (0.66, 0.82) 0.83 (0.76, 0.90) 0.83 (0.81, 0.85) 0.013 7.59 0.184

PK
Ktrans 0.74 (0.60, 0.88) 0.70 (0.63, 0.77) 0.78 (0.70, 0.86) 0.79 (0.73, 0.85) 0.021 8.11 0.202

Kep 0.70 (0.55, 0.85) 0.71 (0.61, 0.81) 0.66 (0.61, 0.71) 0.71 (0.67, 0.75) 0.032 8.57 0.245

EK
Uptake rate 0.72 (0.59, 0.85) 0.63 (0.59, 0.67) 0.74 (0.67, 0.81) 0.65 (0.61, 0.69) 0.064 7.64 0.211

Time to peak 0.63 (0.52, 0.74) 0.56 (0.51, 0.60) 0.65 (0.57, 0.73) − 0.52 (− 0.47, − 0.57) 0.212 7.94 0.298

TK
Haralick (Energy) 0.70 (0.57, 0.83) 0.64 (0.59, 0.69) 0.71 (0.63, 0.79) 0.73 (0.70, 0.76) 0.017 7.86 0.257

Kirsch (Magnitude) 0.68 (0.52, 0.84) 0.60 (0.54, 0.66) 0.72 (0.65, 0.79) 0.72 (0.67, 0.77) 0.052 8.82 0.319

IK
1st fitting coefficient 0.64 (0.52, 0.76) 0.60 (0.53, 0.67) 0.64 (0.58, 0.70) − 0.43 (− 0.37, − 0.49) 0.286 10.16 0.326

4th fitting coefficient 0.63 (0.52, 0.74) 0.58 (0.51, 0.65) 0.64 (0.54, 0.74) − 0.39 (− 0.32, − 0.46) 0.483 8.73 0.293

Shape
Compactness 0.64 (0.53, 0.75) 0.58 (0.51, 0.65) 0.66 (0.60, 0.72) − 0.57 (− 0.52, − 0.62) 0.338 7.81 0.334

Normalized average 
radial distance ratio 0.60 (0.52, 0.72) 0.53 (0.48, 0.58) 0.67 (0.59, 0.75) 0.53 (0.48, 0.58) 0.502 8.33 0.377

Table 1.  The best two identified features in each feature class associated with their performance 
measures in distinguishing low and high risk estrogen receptor (ER)-positive breast cancers. Note. 
-Numbers in parentheses are 95% confidence intervals. Az =  area under the receiver operating characteristic 
curve; PPV =  positive predictive value; NPV =  negative predictive value; DHoG =  dynamic histogram 
of oriented gradient; DLBP =  dynamic local binary pattern; PK =  pharmacokinetics; EK =  enhancement 
kinetics; TK =  textural kinetics; IK =  intensity kinetics; RSD =  relative standard deviation; err =  error rate of 
classification. *ρ denotes correlation coefficient.

Parameters Site I Site II

P valueOncotypeDX recurrence score Low (<18) High (>30) Low (<18) High (>30)

No. of Patients (N =  96) 12 (12%) 5 (5%) 43 (45%) 36 (38%)

Age (y)* 52 (37–68) 47 (36–55) 55 (40–77) 54 (29–70) 0.27

Lesion Size (mm)* 13 (12–30) 21 (7–33) 18 (5–50) 17 (9–40) 0.18

Patient ethnicity

 White 7 (7%) 2 (2%) 36 (38%) 29 (31%) 0.24

 African American 3 (3%) 0 7 (7%) 7 (7%) 0.12

 Unknown 2 (2%) 3(3%) 0 0 0.08

PR status

 Positive 12 (12%) 3 (3%) 42 (44%) 26 (27%) 0.43

 Negative 0 2 (2%) 1 (1%) 10 (11%) 0.21

HER2 status

 Positive 7 (7%) 4 (4%) 18 (19%) 29 (31%) 0.48

 Negative 5 (5%) 1 (1%) 25 (26%) 7 (7%) 0.37

Histologic Tumor Grade

 Low 4 (4%) 1 (1%) 10 (11%) 8 (8%) 0.15

 Moderate 8 (8%) 2 (2%) 29 (31%) 21 (22%) 0.57

 High 0 2 (2%) 4 (4%) 7 (7%) 0.19

Tumor type

 IDC 8 (8%) 3 (3%) 33 (35%) 22 (23%) 0.32

 ILC 3 (3%) 0 6 (6%) 11 (12%) 0.16

 Mixed 1 (1%) 2 (2%) 4 (4%) 3 (3%) 0.09

Table 2.  Characteristics of patients with estrogen receptor (ER)-positive breast cancers. Note. -Unless 
otherwise indicated, data are numbers of patients, with percentages in parentheses. IDC =  invasive ductal 
carcinoma; ILC =  invasive lobular carcinoma. *Data are means, with ranges in parentheses.
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median OncotypeDX recurrence scores with a range of 0–45. Ashraf et al.9 presented a method for identifying 
correlation between computer-extracted morphologic and kinetic features from DCE-MRI sequences obtained 
at a 1.5T magnet with validated prognostic gene expression profiles of breast cancers. In addition, Agner et al.8 
presented an approach called textural kinetics (TK), which involved measuring dynamic changes in breast lesion 
texture during contrast uptake. These TK features were able to separate different molecular subtypes of breast 
cancers (triple negative, ER-positive, HER2-positive, fibroadenoma) on DCE-MRI obtained at either 1.5T or 3T16.

In this work, we investigate the ability of TK features on DCE-MRI to distinguish ER-positive breast cancers 
between low and high OncotypeDX risk categories (i.e., OncotypeDX recurrence score <18 and OncotypeDX 
recurrence score > 30). Our approach is different from the work presented by Ashraf et al.9, in which dynamic 
features were computed based on the estimation of parameters on time-intensity curve, e.g., peak enhancement, 
wash-in and wash-out slop. Our approach is also different from the work published by Sutton et al.15, in which the 
image features (i.e., morphological, static first-order, and Haralick texture features) were extracted from breast 
lesions on pre- and three post-contrast MR images. In this study, we focus on TK features that allow for charac-
terization of dynamic texture changes, specifically texture involving dynamic histograms in tumors on 1.5 Tesla 
DCE-MRI. Also our TK features are different from the approach by Agner et al.8,16, in that it involves quantifica-
tion of kinetic texture in a new way - dynamic histogram of oriented gradients (DHoG) and dynamic local binary 
patterns (DLBP).

The histogram of oriented gradients (HoG)17, local binary patterns (LBP)18, and their spatio-temporal rep-
resentations19,20 are image texture features that have been previously employed for detecting breast masses on 
mammographic images21,22. Unlike the approach in Agner et al.8,16 which attempted to fit a single parametric 
curve to explain the changes in lesion texture during the contrast wash-in and wash-out, the DHoG and DLBP 
approaches allow for construction of a unique lesion signature that captures the frequency of occurrence of dif-
ferent spatio-temporal textural patterns.

In this study, we evaluate the ability of the DHoG and DLBP features extracted from DCE-MRI at 1.5 Tesla, 
via a linear discriminant analysis (LDA) classifier to distinguish low and high risk ER-positive breast cancers, risk 
having been established via the OncotypeDX assay.

Results
Table 1 shows the best two identified features in each feature class (shape, PK, EK, IK, TK, DHoG, DLBP) associ-
ated with Az, PPV, NPV, ρ (correlation coefficient), RSD, and err (error rate of classification). The numbers of bins 
used in the DHoG and DLBP features were {2, 4, 6, 8, 10} and {8, 16, 33, 64, 128, 256}, respectively. Higher ρ value 
indicates a stronger relationship between risk stratification via the features and OncotypeDX. The post-hoc power 
analysis revealed no significant difference between features identified from imaging data acquired at Sites I and 
II which were found to discriminate high versus low OncotypeDX risk categories. The heat map (Fig. 1) shows 
the values of all the features listed in Table 1 for all the patient studies. The values of best two identified features in 
each feature class and the six top performing features obtained from the LDA based feature selection method are 
listed in Supplementary Table S1 online.

Shape Features for Discriminating ER-positive Breast Cancers. The feature compactness used to 
measure the speculation of tumor margin yielded the best discriminability among the computerized shape fea-
tures. The lower values of compactness for the high OncotypeDX breast cancers (− 20.76 ±  7.32) compared with 
the low OncotypeDX cancers (− 19.05 ±  9.14) appears to suggest that higher OncotypeDX score cancers tend 
to be associated with more speculation compared to cancers with low OncotypeDX risk scores. Table 1 appears 
to suggest that shape features are less useful for differentiating between low and high OncotypeDX risk score 
ER-positive lesions compared to pharmacokinetic and textural kinetic features (i.e., PK, EK, IK, TK, DHoG, and 
DLBP).

PK Features for Discriminating ER-positive Breast Cancers. Among the PK parameters, Ktrans was 
found to be the most effective in distinguishing low and high OncotypeDX risk score ER-positive breast lesions 
(Fig. 2). While compared to Kep, Ktrans appeared to have a stronger correlation with the OncotypeDX risk scores. 
Kep appeared to be more predictive in identifying lesions on DCE-MRI that had a high OncotypeDX risk score.

EK Features for Discriminating ER-positive Breast Cancers. The EK features were extracted to quan-
titatively characterize the contrast enhancement patterns within ROIs in the lesion. Although the uptake rate 
achieved the best classification performance among all the EK features, these features generally had weaker cor-
relation with the OncotypeDX risk scores compared to the TK features.

IK and TK Features for Discriminating ER-positive Breast Cancers. The TK features outperformed 
the IK features by up to 10% in terms of Az and NPV (Table 1). Further, the TK features had a higher degree of 
positive correlation with the OncotypeDX risk categories compared to the IK features which had a lower degree 
of negative correlation. These trends are consistent with the performance of the classifier (Table 1).

DHoG and DLBP Features for Discriminating ER-positive Breast Cancers. Both DHoG and DLBP 
yielded good discrimination for separating lesions corresponding to the low and high OncotypeDX risk catego-
ries, achieving the highest values of Az, PPV, and NPV among all computer extracted MRI features. The DHoG 
and DLBP features were significantly correlated with the OncotypeDX risk categories.

Figures 3 and 4 illustrate the textural kinetic curves corresponding to contrast uptake and enhancement 
appearance of the DHoG and DLBP features for representative low and high OncotypeDX risk breast lesions. 
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The average features values of the top DHoG and DLBP features obtained across all patient studies are shown in 
Fig. 5(a,b) in comparison with the PK features (Fig. 5(c)).

Performance of the Feature Combination for Discriminating ER-positive Breast Cancers. The 
top performing features from each of the 4 classes, including PK (Ktrans), TK (Energy, Sobel x-direction gradient), 
DHoG (4-bin, 6-bin), and DLBP (256-bin), were combined using a linear discriminant classifier. The combined 
LDA classifier was able to differentiate between low and high OncotypeDX ER-positive breast cancers with an Az 
of 0.87 (95% confidence interval: 0.78, 0.96), PPV of 0.76 (95% confidence interval: 0.68, 0.84), NPV of 0.89 (95% 
confidence interval: 0.83, 0.95), RSD of 5.75, and err of 0.147.

Stability and Predictive Performance. The stability and error of LDA classification were measured by the 
relative standard deviation and the inverse power law model. It can be observed that DHoG and DLBP outper-
formed the other feature classes (i.e., shape, PK, EK, TK, IK) and achieved the smallest RSD values and error rates. 
The IK feature (1st fitting coefficient) has the highest RSD values indicating the lowest stability in classification. 
The shape features produced the largest error rates among all the feature classes.

Discussion
We presented a computerized image analysis framework for identification of breast MR imaging markers to dis-
tinguish between low and high risk ER-positive breast cancers via a correlation of computer extracted DCE-MRI 
attributes and the OncotypeDX assay. Although tumor margin, tumor size, rim enhancement on DCE-MRI have 
been previously correlated with pathological factors and have been reported to be associated with disease out-
come11–14,23, to the best of our knowledge, this is the first attempt to investigate the association between textural 
kinetic features on DCE-MRI with OncotypeDX recurrence scores for ER-positive breast cancers. This is impor-
tant because the OncotypeDX is an assay with proven clinical utility that has been shown to be both prognostic 
and predictive in ER-positive breast cancers24. Hence by demonstrating computer extracted imaging features on 
DCE-MRI can predict the OncotypeDX risk category of the lesion, we might be able to non-invasively identify 
which patients would benefit from adjuvant therapy. This could pave the way for non-invasive risk assessment of 
the lesion even prior to biopsy. Furthermore, this is the first systematic comparison of various kinetic (PK, EK, IK, 

Feature Class Lesion Feature Definition

Shape (k* =  6)

Area overlap ratio

Quantitative measures on lesion shape and lesion margin
Variance of distance ratio, Compactness, Smoothness

Normalized average radial distance ratio

Standard deviation of normalized distance ratio

PK (k =  3)

Ktrans Transfer constant between plasma and tissue compartments

Ve The extracellular extravascular volume fraction

Kep The ratio of Ktrans/ve

EK (k =  4)
Maximal uptake, Time to peak

Transfer constant between plasma and tissue compartments
Uptake rate, Washout rate

IK (k =  4) Third polynomial fitting on intensity curve Intensity kinetic descriptors

TK - first order 
statistics (k =  48)

Mean, Median
Region intensity statistics derived from lesion area Window 
size, w ∈ , ,3 5 7Range

Standard deviation

TK - Sobel filter 
(k =  12)

x-direction gradient, y-direction gradient Edge detectors

Magnitude of gradient Window size is 3 ×  3

TK - Kirsch filter 
(k =  36)

Directions: 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4
Non-linear edge detector through eight compass directions

Magnitude of the Kirsch operator

TK - Haralick (k =  52)

Contrast energy, Contrast inverse moment

Features derived from grey-level co-occurrence matrices

Contrast average, Contrast variance

Contrast entropy

Intensity average, intensity variance, intensity entropy

Entropy, Energy, Correlation

Information Measure 1, Information Measure 2

DHoG (k =  5) The number of bins: 2, 4, 6, 8, 10 Histogram based descriptor for gradient orientation on 
DCE-MRI

DLBP (k =  6) The number of bins: 8, 16, 32,64, 128, 256 Dynamic local binary pattern features based on texture 
spectrum

Table 3.  Description of all features used to distinguish low and high risk estrogen receptor (ER)-positive 
breast cancers. PK =  pharmacokinetics; EK =  enhancement kinetics; IK =  intensity kinetics; TK =  textural 
kinetics; DHoG =  dynamic histogram of oriented gradient; DLBP =  dynamic local binary pattern. *k denotes 
the number of features.
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TK, DHoG and DLBP) and shape features, to discriminate high and low OncotypeDX categories of ER-positive 
breast lesions.

There has been recent interest in identifying radiogenomic correlates of breast lesions on MRI. In16, Agner 
et al. showed that textural kinetic features extracted from routine clinical DCE-MRI appeared to be associated 
with the biologic heterogeneity and molecular subtype of breast cancers. Giger et al.25,26 computed enhancement 
kinetic features, such as time to peak, uptake rate, maximal uptake, from a characteristic time curse curve to dis-
tinguish benign and malignant breast masses. Ashraf et al.9 also utilized curve-based kinetic features to construct 
breast DCE-MRI phenotypes and showed their correlation with the OncotypeDX assay.

In this study, we attempted to identify whether there was an association between textural kinetic features 
extracted from ER-positive breast lesions on 1.5 Tesla DCE-MRI and their corresponding OncotypeDX risk cate-
gories. While Ashraf et al.9 focused on the association between lesion shape, contrast kinetic features and spatial 
heterogeneity features and the continuous OncotypeDX recurrence scores, our approach was focused on eval-
uating the ability of quantitative image features and spatio-temporal patterns within the lesion to distinguish 
between the low (< 18 risk score) and high (> 30 risk score) OncotypeDX risk categories. Additionally in con-
junction with a LDA classifier, the textural kinetic features yielded an Az =  0.84 in distinguishing low and high 
OncotypeDX risk category lesions, compared to Ashraf et al.9 where the Az was 0.77.

Our approach was also different from that of Agner et al.8 in that we employed two new textural kinetic fea-
tures, DHoG and DLBP, which unlike EK, IK and TK features, seek to capture contextual textural changes during 
contrast uptake by considering changes in spatial intensity patterns within divided grid cells in the lesion ROI. 
Unlike the approach in Agner et al.16 which attempted to fit a single parametric curve to characterize the tempo-
ral changes in lesion texture, the DHoG and DLBP approaches capture the frequency of occurrence of different 
spatio-temporal textural patterns within the lesion.

A systematic and quantitative analysis of different computer extracted features demonstrated that curve-based 
kinetic features (i.e., EK, TK, IK) were less discriminating compared to the other three feature classes (i.e., 
DHoG, DLBP, PK) in distinguishing high and low OncotypeDX risk score ER-positive cancers. Consistently, 
the feature combination identified through the feature selection process contained the important features from 
4 feature classes (DHoG, DLBP, PK, and TK). While the PK features showed moderate correlation, lesion shape 
features were even less correlated with the OncotypeDX risk categories for the lesions evaluated. The DHoG 
and DLBP appeared to be the most discriminative features in differentiating low and high OncotypeDX risk 
score ER-positive breast lesions on DCE-MRI. Figures 3 and 4 which show the normalized mean DHoG and 
DLBP curves plotted as a function of contrast uptake, appear to illustrate a high degree of heterogeneity in high 
OncotypeDX risk score cancers compared to low OncotypeDX risk score cancers. The corresponding color-coded 
DHoG and DLBP feature maps at peak enhancement (Figs 3 and 4) also suggest that high OncotypeDX risk score 
breast cancers may appear to be more heterogeneous at peak contrast compared to low OncotypeDX risk score 
cancers. The Spearmen’s rank correlation test showed that DHoG and DLBP are significantly correlated (DHoG: 
ρ =  0.85, P <  0.01; DLBP: ρ =  0.83, P <  0.01) with the high and low OncotypeDX risk score categories. These 
results are consistent with the findings of Ashraf et al.9, who showed that DCE-MRI based heterogeneity kinetic 
features were correlated with OncotypeDX recurrence scores (ρ =  0.71, P <  0.001). However unlike Ashraf et 
al. where image data from only a single institute was considered, our approach included image data from two 
different clinical sites.

Our study did have its limitations, and as such, it is important to acknowledge that this is a preliminary study 
with need for additional independent validation of our initial findings. Additionally, we only included those 
patients having low (< 18) and high (> 30) OncotypeDX recurrence scores and excluded intermediate risk scores 
(> 18 and < 30) as the contrast was greatest between these categories and further work is needed to evaluate 
the intermediate category. Further, the extracted features were computed based on the automated segmentation 
method due to lack of precise lesion boundary for the data from Site II. Owing to the limited size of the dataset 
considered in this study, we did not conduct multiple statistical tests of comparisons on the features. We also did 
not explicitly quantify the inter-observer variability in segmentation of the dominant masses between multiple 
readers. One problem was the fact that we were identifying imaging markers correlated with a surrogate of out-
come (OncotypeDX) instead of actual outcome itself- unfortunately this information was not available for the 
patients considered in this study.

Concluding Remarks. We identified a set of computer extracted image texture features on DCE-MRI that 
appear to be able to segregate high and low OncotypeDX risk scores in ER-positive breast cancers. The texture 
features so identified may allow for non-invasively predicting which ER-positive patients might benefit from 
adjuvant hormonal and chemotherapy.

Materials and Methods
This study was approved by the institutional review board and compliant with Health Insurance Portability and 
Accountability Act. Written informed consent was obtained from all subjects. The experimental protocols were 
approved by the Case Western Reserve University Faculty of Biomedical Engineering Ethics Committee. The 
methods were carried out in accordance with the approved guidelines and regulations.

Patients. The breast DCE-MRI data were retrospectively collected from two institutions (Site I: Boston 
Medical Center; Site II: UH MacDonald Women’s Hospital) between 2006 and 2012. All the cases were 
anonymised. In Site I, women patients who presented with a suspicious breast lesion on screening mammogram, 
then had diagnostic MRI, were recruited to a large study of MRI in the staging, diagnosis, and screening of 
breast cancer. In Site II, women whose pathology revealed node-negative, ER-positive invasive breast cancer who 
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participated in a large breast cancer case-control study were utilized for this study27. All the DCE-MRI images at 
1.5T were obtained within 3–7 days after diagnostic biopsy. The lesion diagnosis for both cohorts was confirmed 
by ultrasound guided core needle biopsies or MRI guided biopsies, followed by the histopathologic examination 
of 3–10 specimens obtained by core biopsy sampling. A total of 89 patient studies were collected from the Site I, 
and only 17 patients with both pathology reports and available low or high OncotypeDX scores were included 
in this study. From the Site II, we acquired 101 ER-positive stage I-III female breast cancer patients. Of those, 
79 patients had both associated pathology reports and available low and high OncotypeDX recurrence scores. 
Patients with intermediate OncotypeDX recurrence scores (18–30) were deemed to not be informative of cancer 
risk and hence excluded from the analysis. Three patient studies and one patient study from the Site I had two and 
three separate lesions respectively. All other patients only had a single lesion. For each patient, the OncotypeDX 
test was performed for the dominant mass (index lesion), hence only the index lesion in the case of the patient 
with multiple masses was considered. The patient selection criteria for our study are summarized in Fig. 6.

DCE-MRI. Of the 96 patients for whom pathology reports and OncotypeDX results were available, 17 breast 
MRIs were acquired from the Site I as multiplanar T1- and T2-weighted images on a 1.5T magnet with an 
8-channel breast coil (Achieva; Philips, Best, The Netherlands). The imaging parameters for DCE-MRI were: 
matrix size, 252 ×  286; in-plane resolution, 0.20C0.70 mm per pixel; number of temporal positions: 5–10; echo 
train length: 50/60; section thickness, 1.5 mmC4 mm; 4.9C7.8/2.3C4.9 [repetition time msec/echo time msec]; 
flip angle, 10°C30°. The remaining 79 patient studies were acquired from Site II with T1-weighted images using a 
1.5T unit (MAGNETOM Avanto; Siemens, Berlin, Germany), and the imaging parameters for DCE-MRI were: 
matrix size, 230 ×  320 C 269 ×  384; in-plane resolution, 0.40C0.80 mm per pixel; number of temporal positions: 
6C8; echo train length: 50; section thickness, 1.0 mmC2.5 mm; 4.7C8.1/1.5C4.5 [repetition time msec/echo time 
msec]; flip angle, 10°C25°. Both DCE-MRI data sets were obtained prior to, during, and after administration 
of 0.1 mmol/kg body weighted of gadolinium-DTPA at a flow of 4cc/second, for a total imaging duration of  
5–10 minutes. Each patient study was accompanied by: i) private health information free clinical metadata con-
taining clinical history, age range, and radiology report; ii) pathological reports containing ER-positive scale 
values denoting low (17–34%), moderate (34–50%), or high (50–100%); and iii) recurrence score denoting lower 
relapse rate and improved overall survival with adjuvant tamoxifen (< 18), or the converse (> 30) outcome. Table 
2 summarizes the patient characteristics.

Lesion Segmentation and Feature Extraction. For each patient study, a representative section of the 
DCE-MRI volume, containing the largest diameter of the dominant mass, was chosen by a radiologist (B.N.B 
or D.P, both with more than 10 years of experience in the interpretation of breast MRIs) who was blinded to 
pathologic diagnosis. The lesion boundary was automatically delineated via an automated lesion segmentation 
method specifically developed and evaluated on breast DCE-MRI28. The computer derived features, including 
shape features, pharmacokinetics (PK), enhancement kinetics (EK), intensity kinetics (IK), TK, DHoG, and 
DLBP, were calculated based on the pixels enclosed by the delineated regions of interest (ROI) containing breast 
masses. A flowchart demonstrating the use of computerized features for lesion class discrimination is shown in 
Supplementary Figure S1 online. Table 3 describes the extracted features. All feature calculations were performed 
by using software developed in-house and was implemented using the MATLAB© programming platform (ver-
sion R2013a, MathWorks, Natick, MA).

Shape features. Six shape features8 were included: (a) area overlap ratio, (b) variance of distance ratio, (c) com-
pactness, (d) smoothness, (e) normalized average radial distance ratio, and (f) standard deviation of normalized 
distance ratio. These attributes were used to measure the roundness, smoothness, spiculation, and regularity of 
the lesion margin.

Pharmacokinetics. Toft’s PK model29,30 is most commonly used in DCE-MRI to provide a physiologic interpre-
tation of the breast MRI images via three parameters31, i.e., Ktrans (the transfer constant between the plasma and 
tissue compartments), ve (the extracellular extravascular volume fraction), and Kep (the ratio of Ktrans/ve). The PK 
parameters were estimated on the MRI dynamic signal enhancement curves plotted as a function of time after a 
bolus injection of Gd-DTPA.

Enhancement Kinetics. Breast lesion enhancement can be qualitatively characterized by assessing the enhance-
ment curve obtained by plotting the signal intensity values over time after contrast injection. The mean signal 
intensity at each time point was calculated on the entire lesion ROI. A total of four intensity kinetic features 
(maximal uptake, time to peak, uptake rate, and washout rate) were computed to measure the amount and rate 
of contrast uptake25,26.

Intensity Kinetics and Textural Kinetics. A third-order polynomial was fitted to the enhancement curve to char-
acterize its shape via a set of four model coefficients16. For each lesion, we computed five types of textural features, 
including Kirsch, Sobel, Haralick, and first-order textural features. Table 3 summarizes all the textural features 
considered in this study. The mean textural feature of lesion ROI was plotted as a function of time during the 
period of contrast administration. These polynomial coefficients represent the corresponding intensity and tex-
tural kinetic behavior of the lesion and represent the corresponding IK and TK features.
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Dynamic Histogram of Oriented Gradient Features. We computed a multi-grid based DHoG at each phase or 
time point during the DCE-MRI exam. First, a gradient image at each phase was obtained via a gradient fil-
ter applied to both horizontal and vertical directions of the ROI containing the lesion. The gradient image was 
divided into a sequence of increasingly finer spatial grids by repeatedly doubling the number of divisions in 
each direction. For each grid cell, we calculated the cell histograms by counting the number of occurrences of 
gradient values in the histogram channels that were evenly distributed from 0 to 360 degrees. An orientation his-
togram was obtained by aggregating all the cell histograms. The DHoG features for the MRI time series were then 
obtained by averaging the orientation histograms over the course of different phases. More details on the DHoG 
features are described in Supplementary-A (online).

Dynamic Local Binary Pattern Features. Similar to the computation of the DHoG features, the lesion ROI was 
divided into multiple grid cells. For each pixel in the cell, we compared the pixel value to that of each of its 8 
neighbors. This yielded an 8-digit binary number for the pixel under consideration. A cell histogram based on the 
binary numbers was then computed and normalized. An average cell histogram was calculated across phases. The 
DLBP features were then extracted by combining all the average cell histograms via a process of matrix concate-
nation. More details on the DLBP features can be obtained from Supplementary-A (online).

Linear Discriminant Analysis based Classification via Cross-validation. To determine computer 
extracted imaging features on DCE-MRI that best discriminated the low from high OncotypeDX risk categories, 
the LDA based classification was performed on the individual feature of each feature class (i.e., shape, PK, EK, 
IK, TK, DHoG, DLBP) and entire feature set containing all the feature classes (176 features in total). A LDA clas-
sifier34 was trained using the extracted features to classify images with low or high OncotypeDX via an iterative 
2-fold cross-validation scheme. To reduce overfitting, feature selection was performed on the entire feature set 

Figure 1. Heat map showing the values of best two identified features in each feature class (DHoG, DLBP, 
PK, EK, TK, IK, shape). The columns represent breast tumors and rows represent features. DHoG =  dynamic 
histogram of oriented gradient; DLBP =  dynamic local binary pattern; PK =  pharmacokinetics; 
EK =  enhancement kinetics; TK =  textural kinetics; IK =  intensity kinetics.

Figure 2. Comparison of pharmacokinetic feature (Ktrans) of estrogen receptor (ER)-positive breast lesions 
with low and high OncotypeDX recurrence scores. (a) Ktrans in 47-year-old women with low OncotypeDX 
(= 8), low grade ER-positive breast lesion, and (b) Ktrans in 54-year-old women with high OncotypeDX (= 58), 
high grade ER-positive breast lesion. The Ktrans values are encoded in a color scale, where large values are 
represented in dark red and small values are represented in yellow. Note a greater heterogeneity within the high 
risk ER-positive breast cancers compared to low risk breast cancers.
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via a sequential floating forward based LDA selection method35. Further description regarding the theoretical 
formulation of feature selection problem and LDA classification can be obtained from Supplementary-B online. 
The important features were identified during the feature selection process were combined with equal weighting 
and used in conjunction with the LDA classifier. We assume that the condition probability density function with 
respect to the low and high OncotypeDX classes is normally distributed with equal class covariance.

Analysis. Statistical Analysis. The Student t test was used to verify that there was no tumor size-related bias 
or age-related bias between low and high OncotypeDX risk categories (Table 2). To confirm that our classifiers 
and features were robust to the choice of MRI scanners and clinical sites, we used a paired t test to test the null 
hypothesis that there were no difference in feature values between data acquired from the two sites. A post-hoc 
power analysis of the 95% confidence interval was performed. The Spearman’s rank correlation tests measured by 
correlation coefficient (ρ) were performed to determine the relationship between the computer extracted features 
and the low/high OncotypeDX risk categories. All analyses were performed by using the IBM SPSS software (ver-
sion 21.0; IBM, Chicago, IL). A value of P <  0.05 was considered to indicate a statistically significant difference.

Figure 3. Comparison of contrast enhancement pattern and dynamic histogram of oriented gradient 
(DHoG) features (4 bins) of estrogen receptor (ER)-positive breast lesions between low OncotypeDX 
recurrence score (=15), moderate grade in 49-year-old woman and high OncotypeDX recurrence score 
(=40), high grade in 64-year-old woman. (a) Normalized mean DHoG values versus time points. (b) DHoG 
feature map of low OncotypeDX at peak enhancement (7th phase, 1.5T). (c) DHoG feature map of high 
OncotypeDX at peak enhancement (6th phase, 1.5T). The green contour indicates tumor boundary. Note that 
the two curves have distinct enhancement patterns. Feature maps associated at peak enhancement reflect great 
intensity variance between two tumors.

Figure 4. Comparison of contrast enhancement pattern and dynamic local binary pattern (DLBP) features 
(256 bins) of estrogen receptor (ER)-positive breast lesions between low OncotypeDX recurrence score 
(=11), low grade in 53-year-old woman and high OncotypeDX recurrence score (=41), high grade in 
48-year-old woman. (a) Normalized mean DLBP values versus time points, and the color-coded DLBP image 
of (b) low OncotypeDX at peak enhancement (6th phase, 1.5T), and (c) high OncotypeDX at peak enhancement 
(6th phase, 1.5T). Note that the enhancement patterns vary widely in contrast uptake from time point to time 
point between two tumors.
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Stability of Classification Performance. In the LDA classification, area under the receiver operating characteristic 
curve (Az), positive predictive value (PPV), negative predictive value (NPV) were used as performance measures 
for evaluating the discriminability of each of the individual computer extracted features. In order to assess the 
stability of LDA classifier, the classification was performed via a 2-fold cross validation strategy. We computed the 
performance measures 100 times and reported the mean values with 95% confidence interval in the results. We 
employed a stability measure that Parmar et al. used to evaluate the performance of classification methods in their 
recent radiomic work34. The classifier stability was empirically quantified using the relative standard deviation 
(RSD %), which can be defined as:

Figure 5. Box-and-whisker plots for mean feature values of three best features corresponding to (a) dynamic 
histogram of oriented gradient (DHoG), (b) dynamic local binary pattern (DLBP), and (c) pharmacokinetic 
(PK) feature across all patient studies. The plots suggest that DHoG and DLBP have improved separability 
between low versus high OncotypeDX estrogen receptor (ER)-positive breast tumors compared to the PK 
features.

Figure 6. Flowchart of our study population with the patient inclusion and exclusion criteria. 
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where µAz and σAz are the mean and standard deviation of the Az values, respectively. The higher RSD values 
indicate the lower stability in the classification.

Stability and Predictive Performance. In order to identify most accurate and highly reliable image features, we 
used mean values of Az and RSD as feature ranking measures. According to Parmar et al.’s selection criterion32, 
the features ranked in the top half of both measures are considered as highly accurate and reliable ones. For each 
feature class (i.e., shape, PK, EK, IK, TK, DHoG, DLBP), the best identified features have Az greater than the 
mean Az of all classifiers and RSD less than the mean RSD of all classifiers.

Further, we utilized an inverse power law model35 of statistical learning to estimate the error rate associated 
with the classification performance on the currently available data samples. The estimation procedure comprised 
the following steps: (i) The dataset was divided into a training pool and a testing set via a random sampling;  
(ii) Ensured that the number of training samples in each set was statistically significant for calculating the power 
law parameters; (iii) The power law model was applied to describe the relationship between error rate and training 
set size:

ε( ) = + ( )α−err n an 2

where err(n) is the error rate for training set size n, a is the learning rate, α is the decay rate, and ε is the Bayes 
error. The model parameters [a, α, ε] can be estimated via a constrained non-linear minimization35.
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