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Assortativity and leadership 
emerge from anti-preferential 
attachment in heterogeneous 
networks
I. Sendiña-Nadal1,2, M. M. Danziger3, Z. Wang4,5, S. Havlin3 & S. Boccaletti6,7

Real-world networks have distinct topologies, with marked deviations from purely random networks. 
Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one 
another. Though microscopic mechanisms have been suggested for the emergence of other topological 
features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via 
degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and 
does not correspond to any microscopic mechanism. Here, we propose the first generative model which 
creates heterogeneous networks with scale-free-like properties in degree and clustering distributions 
and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to 
an initial network by selecting a subgraph to connect to at random. One population (the followers) 
follows preferential attachment, while the other population (the potential leaders) connects via anti-
preferential attachment: they link to lower degree nodes when added to the network. By selecting 
the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, 
eventually growing into hubs. The evolution of links in Facebook empirically validates the connection 
between the initial anti-preferential attachment and long term high degree. In this way, our work sheds 
new light on the structure and evolution of social networks.

Networks with scale-free(SF)-like degree distributions represent a wide range of systems1–6. The topology of 
real-world networks (RWNs) often features deviations from a pure power-law distribution2 γ−~P kk , together 
with hierarchical clustering7 ω−~C kk . One ubiquitous feature of many RWNs is degree-degree correlations: two 
nodes are more likely to be linked to one another if they are of similar (assortative) or dissimilar (disassortative) 
degree. Assortativity is generally found in social and collaboration RWNs, while disassortativity is common in 
technological and biological RWNs8,9.

SF networks have been studied in the context of generative models, and simple rules relating to the formation 
of new links have been shown to lead to power-law degree distributions with non-hierarchical10,11 and hierarchi-
cal12–18 traits. Static SF network models19 have also been proposed with controlled assortativity20,21, and growing 
SF networks have been studied with assortative22–26, disassortative10,27 and both types11 of degree mixing.

In particular, a wide range of RWNs features assortativity28, including online social29, and neural30,31 networks. 
As it reflects a basic birds of a feather flock together property, it is not surprising that it is so ubiquitous. Rather, 
what is really surprising is that the contributions of different nodes to the graph assortativity level r strongly 
depend on the degree. Decomposing the assortativity spectrum, one can indeed describe the local assortativity or 
assortativeness32 rk of each set of nodes with a given degree k (see the Methods section). Many RWNs have a pro-
nounced local maximum in rk located near (but above) the average degree k . In social networks such a feature 
even appears to be generic, while in technological and biological networks the maximum is less pronounced or 
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even entirely absent. In Fig. 1 we show the qualitative difference in the inherent patterns of rk between typical 
social networks (the friendship structure of Facebook users29, Fig. 1a, and the Authors’ collaboration graph from 
the arXiv’s Astrophysics section33–35, Fig. 1d) and a technological one (the flights connecting the 500 busiest com-
mercial airports in the United States36, Fig. 1b).

Results
Empirical observations. The way traditional methods imprint assortativity into pre-generated networks 
is via degree-preserving link permutations9,37. This approach yet presents a number of problems. On the one 
hand, generating a graph with an ad-hoc imprinted SF distribution (Fig. 1c) and then rewiring connections does 
not yield the observed pattern of local assortativity, on the other hand, even starting from a configuration model 
(CM) retaining the original degree distribution19, this procedure is only able to reproduce the real assortativity 
pattern at the expense of destroying the other significant features, such as the hierarchical inherent structure 
of clustering (Fig. 1d and its bottom-right inset). This indicates that the systemic mechanisms leading to the 
emergence of degree-correlation have a special signature, which is not captured when generating assortativity 
artificially, i.e., ex post facto.

Further striking evidence comes to light from a deeper analysis of social RWNs: in some cases the final leaders 
(i.e. the nodes that, at the end of the process, do acquire a leading role in terms of their degree) actually behave 
anti-preferentially when entering the network. In Fig. 2, the Facebook network of Fig. 1a is examined, and one sees 
that, plotting the degree of the first linked node as a function of time, those nodes eventually becoming the net-
work’s leaders (i.e. the final hubs, red triangles) tend initially (at the moment at which they start forming part of 
the network) to link existing nodes with low degree values (Fig. 2a). This is clearer from Fig. 2b where the final 
degree k f  achieved by a given node, labeled as a red triangle ( > )k 400f , a black square ( < < )k40 400f  or a blue 
circle ( < )k 40f , is compared to the degree of its first neighbor at the time that node entered the network. A 
straightforward statistical analysis of the data shows in Fig. 2c that indeed the fraction of final hubs forming initial 

Figure 1. Local assortativity rk vs. the node degree k for real28 and artificial networks. (a) Data from 
friendships of Facebook users29 ( = ,N 63 392, = ,L 816 886, =k 26, = . )r 0 1768 . (b) Network of the 500 
busiest commercial airports in the United States36. A tie exists between two airports if a flight was scheduled in 
2002 ( =N 500, = ,L 2 980, = .k 11 92, = − . )r 0 2678 . (c) Random SF networks ( = ,N 10 000, = )k 10  with 
almost neutral ( = − .r 0 03, blue dots), disassortative ( = − .r 0 1, black circles) and assortative ( = .r 0 2, red 
stars) mixing. (d) The Authors’ collaboration graph from the arXiv’s Astrophysics section33 ( = ,N 17 903, 
= ,L 196 972, =k 22, = . )r 0 2013 . Together with the real data (blue triangles), rk is reported for a 

configuration model (CM) reproducing the real degree sequence, after classical permutation methods have been 
applied, imposing the same r value observed in the real network (red stars) and a negative ( = − . )r 0 3  value 
(black circles). Insets in panels (a–d) show the log-log plots of the degree distributions Pk and clustering 
coefficient Ck.
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connections with nodes of low-medium degrees is far larger than that of the nodes which ultimately acquire 
intermediate and low degrees.

The generative model. Following the empirical observation in Fig. 2 of a nexus between initial 
anti-preferential attachments and long-term high degrees, we propose a generative model which creates SF-like 
networks with tunable global assortativity and realistic local assortativity patterns, while also reproducing the 
hierarchical structure of the network’s clustering. The model reflects a microscopic mechanism for a struggle for 
leadership between two competing populations of nodes: type I nodes (acting as followers and selecting connec-
tions so that a preferential attachment rule spontaneously emerges10) and type II nodes (acting as potential lead-
ers, i.e. adopting anti-preferential behavior which leads them to prefer lower degree nodes for the establishment 
of their initial links).

Under such a mechanism, a network of N nodes is created by sequentially adding units to an initial clique of 
≤m N N0  vertices. The growing process occurs at discrete times: at each time step ≤ ≤ −t N N1 0 a new 

node enters the graph, and forms m links with existing nodes according to an attachment rule that is illustrated 
schematically in Fig. 3 and summarized as follows:

Figure 2. Nodes’ selection mechanisms of their initial neighbors in RWNs. The Facebook network analyzed 
in Fig. 1a.(a) Degree of the nodes chosen as first connections by those nodes whose final (i.e. at the end of the 
growth process) degree k f  is low ( <k 40f , blue circles), high ( >k 400f , red triangles), and intermediate 
( ≤ ≤k40 400f , black squares). The reported values are from the largest connected component of the Facebook 
network of Fig. 1a formed only by those edges that are time-stamped ( = ,N 60 663, = ,L 614 541, =k 20, 
= . )r 0 1851 . (b) Log-linear plot of of the final degree k f  of each node (labeled according to the legend in Fig. 2c) 

as a function of the degree of its first connection. (c) Log-linear plot of the fraction of high (red triangles), 
medium (black squares) and low (blue circles) degree nodes establishing their first link with a node of a given 
degree.

Figure 3. The network growth process. At time t, the graph ( )G t  is updated with a new node (blue circle) 
which forms m connections (in the example =m 2, dashed lines) within the subgraph ( − )G t 1j  with a 
probability p to the lowest degree nodes (nodes 1 and 2) or with probability − p1  at random (nodes 3 and 5). 
The subgraph ( − )G t 1j  is composed of a randomly chosen node j (node 5, green circle) and its nearest 
neighbors at time −t 1.
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1. An anchor node j is selected uniformly at random from the nodes existing at time −t 1.
2. The subgraph Gj composed of node j and all other nodes that are at distance less than or equal to  from j is 

examined.
3. With probability − p1 , the new node behaves as a follower (type I): it selects m nodes from Gj uniformly at 

random, and links to them. With probability p, the new node behaves instead as a potential leader (type II): 
it forms links with the m lowest degree nodes in Gj.

The parameter  is defined as the so called penetration depth, i.e. the extent of local information (around the 
anchor j) accessible to the entering node. In the following, we set = 1, so that Gj is the subgraph containing j 
and all its nearest neighbors. Once = 1 is set, the model is uniquely determined by two parameters: the average 
degree =k m2  and p, the fraction of type II nodes. In the absence of potential leaders ( = )p 0 , the growth of the 
resulting network exhibits emergent preferential attachment and hierarchical clustering10: the =p 0 case pro-
duces a pure SF network with degree distribution2,4 −~P kk

3, and with additional hierarchical SF clustering7 
−~C kk

1. This is actually due to the so called friendship paradox38, stating that, averaged across the network, the 
neighbors of a node i will always have a higher average degree than ki. Since, indeed, the number of subgraphs Gj 
in which a node i appears is equal to +k 1i , higher degree nodes will tend to naturally receive more and more 
links. It is important to note that this preferential behavior is in fact, emergent: the entering nodes do not require 
global knowledge of the degree levels in the system, nor any explicit preference for high degree nodes. In that 
sense, preferential attachment can be viewed as a kind of null behavior in which the rate of growth increases with 
size, as the analogous Yule process is understood in evolutionary dynamics39,40.

When instead the population is split (with some nodes following the null preferential attachment, and some 
others linking in an anti-preferential manner), the local assortativity pattern shown in Fig. 1a, characterizing 
social systems, emerges. Namely, the contribution to assortativity from nodes of degree k i) increases with k from 
=k 1 to a local maximum located just above the average degree, ii) decreases to a subsequent local minimum, and 

then iii) increases again as → ∞k , i.e. qualitatively reproducing the generic tendency observed in social RWNs, 
which is only captured in random generated networks with artificially induced assortativity at the expense of 
obliterating the graph’s clustering traits. The results of the model are summarized in Fig. 4. As p increases, the 
degree distribution of the resulting network deviates more and more from a pure SF configuration (Fig. 4a), but 

Figure 4. Emergent topology in the generated network. (a) Normalized degree distribution Pk (log10 scale) vs. 
the logarithm (base 10) of k, and (b) −log log10 10 plot of Ck vs. k, for =m 5 and different values of the 
probability p (see legend for color-coding). (c) Assortativity coefficient r vs. p, for different values of m (see 
legend for color-coding). (d) Log-linear plot of the local assortativity rk (main panel) and average local 
assortativity rk  (inset) vs. k, for =m 5 and several values of p (see legend for color-coding). In all cases, 
=N 104, =N 100 , and each point refers to an ensemble average over 20 network realizations. As a guide for the 

eyes, the straight lines in (a,b) stay for the functions ∝ −P kk
3 and ∝ −C kk

1, respectively.
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at the same time the hierarchical clustering traits are entirely preserved (Fig. 4b). The generated network is actu-
ally endowed with a fully controllable and tunable level of global assortativity r (as a function of m, as shown in 
Fig. 4c), while, more remarkably, the assortativity local pattern is fully reproduced (Fig. 4d).

Analytical description. We next move toward giving a more analytic description of the motivations and 
roots underlying the proposed model and the observed, emergent phenomena. We start by noting that links in 
this model are undirected, and this leads to a symmetry of interpretations: one can describe the type II nodes as 
preferring low-degree units (as it is described in our generative model), or one can state that low-degree nodes are 
more likely to create links with type II newcomers. The second interpretation is actually in line with what arises 
from recent sociological studies, which indeed indicate that people are limited in the number of relationships they 
can maintain over time (with the exact number of maximal relationships being an open question). Starting from 
the seminal works by Dunbar41,42, the limitations on the number of active social connections have been exten-
sively studied and empirical support from online social networks has also been adduced43. In the present case, 
the emergence of positive assortativity is associated with the interplay of two mechanisms: an innate preferential 
attachment (resulting from nodes that nonhierarchically form connections with a pre-existing growing structure) 
and a limited ability of human beings to maintain many relationships.

By comparing the average contribution of assortativity per node of degree k, rk , and the total contribution of 
nodes of degree k, rk, one can actually understand the origin of the peak in the local assortativity. The average 
contribution for nodes of degree k increases monotonically with k (inset of Fig. 4d). However, the frequency of 
nodes decreases monotonically with k in pure scale-free networks (Fig. 4a). With the introduction of type II 
nodes, lower-medium degree nodes become more frequent, as observed in Fig. 4a for = .p 0 6, even though an 
overall scale-free-like degree distribution is maintained. The combination of more-common than expected 
medium degree nodes and per-node contribution to assortativity that increases with k leads to the characteristic 
bump observed in the model and the data.

As the network’s growth proceeds, type II nodes actually tend to develop a higher degree on average. This is 
because new links are obtained with probability

| | ( )
~P

N
m
G

1
1t j

where Nt is the number of nodes in the system at time t and | |Gj  is the size of the neighborhood of the subgraph 
of a given anchor node j. By choosing anchor nodes with small | |Gj  (low degree), type II nodes actually increase 
their likelihood of being linked from future, incoming, nodes. Because this increased likelihood can be under-
stood as type II nodes “placing themselves” in smaller neighborhoods so that they are more likely to be linked to 
than when chosen at random, we understand this advantage as a kind of improved visibility to the linking 
process.

In fact, one can measure the number of neighbors at time t for each node type as described in the Methods 
section. The results are shown in Fig. 5, and point to the emergence of leadership of type II nodes at low values of 
p (Fig. 5a). At intermediate values of p (not shown) no significant differences are observed between the two nodes’ 
populations in the way the average increased degree evolves in time. Only at large p values (Fig. 5b), where 
anti-preferential nodes are vastly predominant in number the trend is actually reversed and type I nodes (the 
followers) now seem to be favored in attracting connections. Such a latter situation corresponds however to a 
rather homogeneous network, where a SF-like distribution is no longer observed (see Fig. 4 for comparing the 
large deviations in the degree distribution already observed at = . )p 0 6 .

Figure 5. Emergence of leadership during the growth process. Average increased degree (the degree acquired 
after nodes have first appeared in the graph, vertical axes) as a function of time (horizontal axis), for type I 
(followers) and type II (potential leaders) nodes, and for (a) = .p 0 2, and (b) = .p 0 8. See the Methods section 
for the explanation on how the reported values are calculated. Panels report the average increased degree ( )αf t  
of the nodes of different types (α =  type I or II), after having been in the system for t steps. =N 104, =N 50  and 
=m 5. Color and line style codes are defined in the legend of panel (a).
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Discussion
In summary, assortativity, hierarchical structure and fat-tailed degree distributions (well-approximated by power 
laws) are structural features manifested almost ubiquitously by RWNs, and until now no model had ever linked 
their emergence with microscopic growing assumptions. Furthermore, these features have a fundamental role in 
determining many relevant processes, and/or regulating the network’s dynamics and functioning. Guided by the 
empirical observation of the growth of the friendship network of Facebook users, we have shown how the combi-
nation of preferential and anti-preferential attachment mechanisms acting together in the same generative model 
(via two distinct node populations), leads to the growth of heterogeneous networks with modified scale-free 
properties and tunable realistic assortativity, while maintaining the hierarchical clustering. Both our analytical 
predictions and numerical results indicate that networks constructed in this way match the patterns of local 
assortativity measured in real-world graphs. By presenting the first generative model with tunable assortativity, 
this work sheds new light on the structure and evolution of social networks, and counterintuitively suggests that 
anti-preferential attachment is a mechanism adopted by a fraction of the nodes during the network’s growth, as a 
strategy for increasing their own leadership.

Methods
Local assortativity/assortativeness. In a network with N nodes, L links and degree distribution Pk, the 
local assortativity or assortativeness32 r j is defined as the contribution of each node to the network assortativity r 
and it is calculated as

α β σ= ( − )/ ,r j j j q
2

with = ∑ =r rk j k k jj
 being the total of the local assortativity values of nodes with a given degree k such that 

= ∑r rk k. In the above expression, α = ∑ ,=
ˆ

ˆ
kj

k
L i

k
i2 1

j j  and β =
µ

kj j L2
q
2

, being = −k̂ k 1j j  the remaining degree of 
node j, k̂i the remaining degrees , , …,ˆ ˆ ˆk k kk1 2 j

 of the k j nodes connected to node j, and µq and σq the first and 
second moments of the remaining degree distribution =

( + )

∑
+qk

k P
jP

1 k

j j

1 .

Measuring the average degree of each node type. In order to compare the average degree of the two 
node populations as the model evolves, we label each node uniquely by the step in which it entered the network. 
This way, at time t, every node i will have m neighbors with indices <j i, and ( ) −k t mi  neighbors with indices 
>j i. To compare the degree growth rates of type I and type II nodes, we need to measure the characteristic time 

for new links to form. To do so, we consider the set of differences in index values, −j i, for each neighbor which 
linked to i at step j

τ = ( − ) ∈ ∧ ( > ) , ( )α j i j N j i{ with } 2i i

with α = ,I II  designating the node type and  ∧ ( > )j ii  the neighborhood of i. Combining these sets for all 
nodes of each type, one obtains the non-unique set

∪τ τ= .
( )

α α

= 3i
i

1

Using Eq. (3), one can measure the expected number of neighbors (after t steps) for each node type via

τ( ) = ∈ ∧ < , ( )
α

α
αf t

N
i i i t1 { } 4

where αN  is the total number of nodes of type α. Thus ( )αf t  provides the average number of new neighbors 
( − )k m  that a node of type α will acquire after t steps.
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