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Quantitative molecular 
phenotyping with topically 
applied SERS nanoparticles for 
intraoperative guidance of breast 
cancer lumpectomy
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Sanjee Abeytunge4, Gary Peterson4, Milind Rajadhyaksha4, Suzanne Dintzis5, Sara Javid6 & 
Jonathan T.C. Liu1

There is a need to image excised tissues during tumor-resection procedures in order to identify 
residual tumors at the margins and to guide their complete removal. The imaging of dysregulated 
cell-surface receptors is a potential means of identifying the presence of diseases with high sensitivity 
and specificity. However, due to heterogeneities in the expression of protein biomarkers in tumors, 
molecular-imaging technologies should ideally be capable of visualizing a multiplexed panel of cancer 
biomarkers. Here, we demonstrate that the topical application and quantification of a multiplexed 
cocktail of receptor-targeted surface-enhanced Raman scattering (SERS) nanoparticles (NPs) enables 
rapid quantitative molecular phenotyping (QMP) of the surface of freshly excised tissues to determine 
the presence of disease. In order to mitigate the ambiguity due to nonspecific sources of contrast such 
as off-target binding or uneven delivery, a ratiometric method is employed to quantify the specific vs. 
nonspecific binding of the multiplexed NPs. Validation experiments with human tumor cell lines, fresh 
human tumor xenografts in mice, and fresh human breast specimens demonstrate that QMP imaging of 
excised tissues agrees with flow cytometry and immunohistochemistry, and that this technique may be 
achieved in less than 15 minutes for potential intraoperative use in guiding breast-conserving surgeries.

Breast-conserving surgery, or lumpectomy, has superseded mastectomy as the most common surgical method 
for the removal of breast tumors, comprising 70% of surgeries for early-stage breast cancer. Multiple randomized 
controlled clinical trials have demonstrated similar survival outcomes and low local-recurrence rates for both 
lumpectomy and mastectomy1,2. Unfortunately, amongst various clinical institutions, anywhere from 20–60% of 
lumpectomy patients must undergo additional surgery when post-operative pathology reveals tumor at or near 
the surgical margins, indicating an incomplete removal of the tumor mass3,4. Such re-excision surgeries are costly, 
inconvenient for patients, increase the risk of iatrogenic injury, and may result in delayed adjuvant therapies with 
inferior patient outcomes.

There is controversy amongst breast-cancer oncologists over the criteria that warrant re-excision following 
initial lumpectomy. Many institutions advocate re-excision procedures for close margins, in which tumor is found 
within a certain distance (often 2 to 3 mm) of the surgical margin, particularly for ductal carcinoma in situ. 
However, a national consensus that defined a negative margin as “no tumor at the inked margin” (i.e. no tumor at 
the surface of the surgical excision) for invasive breast cancer was reached in 20145. Regardless of one’s position 
on these issues, there is little debate over the necessity for re-excision surgeries when a lumpectomy margin is 
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positive for tumor (tumor at the surface of the final excised specimen, i.e. “tumor on ink”). Intraoperative speci-
men X-ray imaging of lumpectomy specimens helps guide the surgeon in detecting grossly positive margins (i.e. 
calcifications or tumor present at the radiographic margins). However, specimen X-ray (as with mammography) 
is diagnostically inaccurate, and there are currently no tools to enable surgeons to detect positive margins with 
high sensitivity and specificity. In particular, frozen-section pathology, which is often utilized to guide the resec-
tion of other tumor types, is difficult to perform for breast tissues, and often inaccurate due to their high lipid 
content. Furthermore, post-operative pathology of formalin-fixed breast tissues, though microscopically precise 
and highly accurate for identifying tumors, suffers from sampling errors due to the impracticality of micron-level 
sectioning and microscopic interrogation of entire resection margins6,7. There is therefore a need for an intraop-
erative technique to accurately identify residual tumors at the margins of freshly resected tissues to reduce the 
number of costly and potentially harmful re-excision surgeries for patients undergoing breast cancer lumpectomy 
(Fig. 1).

Molecular-imaging approaches have the potential to identify tumors with a high degree of sensitivity and 
specificity8–11. However, a confounding factor is that disease biomarkers vary greatly between patients, within a 
tumor over time, as well as at different locations within a tumor mass12,13. Therefore, exogenous probes should 
ideally be capable of being multiplexed to image a diverse panel of disease-related biomarkers simultaneously 
and to determine a “quantitative molecular phenotype (QMP)” of the tissue under consideration. In recent years, 
surface-enhanced Raman-scattering (SERS) nanoparticles (NPs), hereafter referred to as “SERS NPs” or “NPs”, 
have attracted interest due to their brightness, photostability, and especially their multiplexing capability with 
laser illumination at a single wavelength14. The SERS NPs utilized in this study exist as various “flavors,” each 
of which generates a characteristic spectral “fingerprint” or “barcode” that uniquely identifies that NP flavor 
(Fig. 2d). By targeting various flavors of SERS NPs to different biomarkers and applying them simultaneously on 
tissues, multiplexed molecular imaging is possible in which mixed SERS spectra are detected and computationally 
demultiplexed to determine the relative concentrations of the individual SERS NP flavors within a mixture15–17. 
The QMP technology described here is a surface-imaging approach that can potentially identify residual tumors 
at the surgical margins, for which there is an unequivocal need for additional resection. While this large-area 
imaging approach lacks the cellular-level resolution of microscopic pathology, it offers the potential for compre-
hensive imaging of large tissue areas with sub-millimeter resolution during surgery without the sampling errors 
inherent to conventional post-operative pathology.

A number of groups have begun to explore the potential of SERS NPs for tumor detection in tissues14,15,18,19. A 
few studies have explored the behavior of SERS NPs in tumor-bearing mice after intravenous injection and imag-
ing with a Raman microscope system18,19 whereas others have demonstrated the multiplexed detection of large 
panels of nontargeted SERS NPs in living mice20–24. The relatively large size of SERS NPs (20–120 nm) hampers 
their extravasation and penetration into most tissues when delivered systemically. While this feature has been 
utilized for the imaging of tumors through enhanced permeability and retention (EPR) mechanisms25,26, these 
passive delivery effects complicate molecular-imaging efforts and can lead to a high degree of ambiguity when 
one wishes to determine if image contrast is due to true molecular binding rather than passive accumulation. 
Alternatively, the topical application of SERS NPs has been proposed as a means of labeling disease biomarkers 
that are located on exposed surfaces such as epithelial cancers or surgically exposed/resected tissues. For example, 

Figure 1. Schematic of an intraoperative imaging technique to rapidly identify residual tumors at the 
margins of freshly resected tissues for guiding breast-conserving surgeries. A ratiometric strategy (right 
inset) quantifies biomarker expression by comparing the signal from targeted NPs and nontargeted NPs. Y.W. 
drew the figure.
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one study demonstrated the feasibility of detecting a single biomarker after topically staining ex vivo tissues from 
mice for 1 h with targeted SERS-NPs27. More recently, we demonstrated that multiplexed SERS NPs could be 
topically applied for just 5 min on fresh tumor xenografts in mice, followed by a rapid rinse-removal step (20 s), 
to enable the simultaneous quantification of multiple biomarkers using a single-point contact probe17. Topical 
delivery of SERS NPs on ex vivo resected tissues is attractive because it circumvents toxicity issues and can poten-
tially expedite the regulatory-approval process compared with contrast agents that are administered systemically.

In the study described here, we demonstrate the feasibility of utilizing SERS NPs to enable quantita-
tive multiplexed molecular imaging of freshly excised human tissues for surgical-guidance applications. A 
topical-application protocol was first optimized to maximize the molecular image contrast between tumor and 
normal tissues. Previously we demonstrated that the manual positioning of a contact Raman probe (a single-point 
measurement device) enabled the identification of tumor xenografts topically stained with targeted SERS NPs17. 
Here, by integrating a spatially offset Raman probe with a 2D-raster-scanning platform, large tissue areas could 
be spectrally imaged with tunable spatial resolution (0.2–1 mm). We further demonstrate that the staining and 
QMP imaging of fresh tissue surfaces (approx. 4-cm2) can be achieved within 15 minutes and that the QMP 
images agree with flow cytometry and immunohistochemistry (IHC) validation data. Experiments with human 
breast tissues demonstrate that this technique can achieve rapid comprehensive imaging of biopsy shavings to 
potentially guide the final stages of breast-conserving surgeries.

A critical component of our imaging technique, which eliminates the ambiguities due to nonspecific sources 
of contrast, is the use of a quantitative ratiometric-imaging method (Fig. 1). As an example to motivate the need 
for this strategy, this study and previous studies have shown that increased diffusion and passive retention can 
occasionally result in higher accumulated concentrations of topically applied NPs in normal tissues in compar-
ison to denser tumor tissues, i.e. inverse contrast17. Other sources of misleading nonspecific contrast include 
off-target chemical binding, variations in detector working distance and illumination power, as well as uneven 

Figure 2. Raman imaging system. (a) Schematic of the spectral-imaging system. A 785-nm laser is used 
to illuminate the NP-stained tissue, creating a submillimeter-diameter laser spot. Raman-scattered photons 
from illuminated NPs are collected by 36 multimode fibers and transmitted to a customized spectrometer 
(Andor Holospec), where they are dispersed onto a cooled deep-depletion spectroscopic CCD (Andor). For 
raster-scanning imaging, a two-axis stage is controlled through a custom LabVIEW program to translate the 
tissue sample. (b) A photograph of the raster-scanned tissue-imaging device. (c) A depiction of the structure 
of the targeted and nontargeted SERS NPs and (d) the Raman spectra of the various SERS NPs (targeted and 
nontargeted) used in this study. Y.W. drew the figure.
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NP delivery and removal. However, by simultaneously delivering one nontargeted NP flavor to control for the 
nonspecific behavior of one or more biomarker-targeted NP flavors, a calibrated ratiometric image of specific vs. 
nonspecific binding can be generated to identify elevated molecular expression for the purposes of differentiat-
ing between tumors and normal tissues24,26,28–31. Note that SERS NPs are particularly well-suited for ratiometric 
detection due to their excellent multiplexing capabilities, the identical geometry of all NP flavors, and the fact that 
they can be excited at a single illumination wavelength, ensuring that all NP flavors are interrogated identically in 
terms of optical irradiance and penetration depth (see Methods and Supplementary information for additional 
details). In contrast, fluorescent reporters imaged at disparate excitation and emission wavelengths often must 
account for variations in tissue optical properties as a function of wavelength8,32,33.

Results
Optimization of a topical-application protocol. A custom spectral-imaging system was utilized to visu-
alize the retention of SERS NPs topically applied on tissues (Fig. 2a). Linearity tests demonstrate the accuracy of the 
system for quantitatively imaging SERS NPs within a concentration range of 1–400 pM (Supplementary Fig. S1).  
A multi-stage rinsing method (see Methods) was first utilized to optimize the staining and rinsing conditions on 
tumor xenografts in order to generate maximum tumor-to-normal contrast. A 1 by 1-cm tissue sample (either 
an EGFR-positive tumor xenograft or EGFR-negative normal mouse tissue) was placed on a glass slide. The 
tissue was stained with a 10-μ L NP mixture (equimolar ratio of EGFR-targeted NPs and isotype-control NPs), 
followed by 10 sequential rinse-and-image steps (see Methods). Progressive washout of topically applied NPs led 
to changes in the absolute concentrations and the concentration ratio of targeted vs. nontargeted NPs (Fig. 3a,b). 
On EGFR-positive tumor xenograft specimens, the concentration ratio of EGFR-NPs vs. isotype-NPs rapidly 
increased to ~2.0 after three rinse steps (Fig. 3b), whereas the concentration ratio remained at unity for normal 
(EGFR-negative) tissues. There was some variability in the results between different tissue specimens (Fig. 3b), 
possibly due to structural heterogeneities and varying degrees of necrosis.

Figure  3c,d show four experimental conditions (normal-noBSA, normal-BSA, tumor-noBSA, and 
tumor-BSA) each of which utilized 5 tissue specimens that were imaged at three locations (regions of interest) 
for a total of 15 data points per dataset. In these experiments, the use of BSA was explored as a blocking agent to 
reduce nonspecific binding34. The addition of 1% BSA to the staining solution reduced the non-specific accumu-
lation of NPs within tissues, as is evidenced by the significant increase in the specific to nonspecific uptake ratio 
(EGFR-NP/isotype-NP) seen in Fig. 3d. Therefore, 1% BSA was employed as a nonspecific blocking agent in all 
subsequent experiments.

Staining concentrations and durations were optimized empirically using a matrix of conditions (Fig. 3e,f). 
While the absolute NP concentrations increased monotonically with increased staining concentration and stain-
ing duration (Fig. 3e), the concentration ratio of targeted vs. nontargeted NPs reached a maximum at a 150-pM 
staining concentration (per NP flavor) and a 10-min staining time (Fig. 3f). We hypothesize that nonspecific 
binding of the NPs continues to increase while specific binding begins to plateau at higher staining concentrations 
and longer staining times. In addition, longer staining durations may result in increased diffusion and irreversible 
trapping of the NPs in the tissues (or cellular internalization). Therefore, there appears to be both an optimal 
staining concentration and an optimal staining duration for maximizing the specific vs. nonspecific accumulation 
of NPs that are topically applied on tissues.

QMP of tumor xenografts. By utilizing a custom raster-scanned imaging system, we demonstrated the 
ability to image and accurately quantify relative biomarker expression levels in fresh tissues with topically applied 
SERS NPs (Fig. 2, see Methods for details). An imaging rate of 2 mm/s was utilized with an illumination spot 
size (resolution) of 0.5 mm and a sampling pitch of 0.5 mm/pixel. To validate this system, we first imaged tumor 
xenografts that were stained with an equimolar mixture of EGFR-NPs and isotype-NPs. As shown in Fig. 4b,c, 
the ratiometric image provides a quantitative representation of EGFR expression that is consistent with IHC and 
flow cytometry results (Fig. 4c, Supplementary Fig. S2). IHC results with an isotype-control (negative-control) 
antibody are provided in the Supplementary Fig. S4.

To demonstrate the ability to image multiple biomarkers simultaneously, we stained various tumor xeno-
grafts with an equimolar mixture of three NP flavors - EGFR-NPs, HER2-NPs and isotype-NPs (Fig. 5). Previous 
flow-cytometry experiments demonstrated the high binding affinity of our targeted NPs to the cell lines that were 
used to generate tumor xenografts in this study (see Supplementary Fig. S2). As shown in Fig. 5b–d, the QMP 
images of EGFR and HER2 expression in various tumor xenografts show excellent quantitative agreement with 
corresponding flow-cytometry results (R >  0.98).

QMP of human breast tissues. To further demonstrate the feasibility of the ratiometric QMP imaging 
technique for intraoperative assessment of surgical margins, we imaged 10 fresh human breast tissue specimens 
resected from five patients (Fig. 6). Each tissue specimen was stained with an equimolar mixture of HER2-NPs 
and isotype-NPs for 10 min, followed by a 20-s rinse step in PBS. An area of up to 2 ×  2 cm2 was raster-scanned 
within 2 min. The entire staining-and-imaging procedure was performed in less than 15 min, a time frame that 
is consistent with current intraoperative guidance techniques such as 2D specimen X-ray and frozen-section 
pathology (not typically done for breast tissues due to their high lipid content). The concentration ratio of 
HER2-NPs vs. isotype-NPs measured from 10 tissue specimens ranged from 1.7 to 4.3 (Fig. 6b), which is higher 
than the ratio of 1.4 to 2.5 measured in HER2-positive tumor xenografts (Fig. 5d). This higher level of HER2 
expression is consistent with published reports showing that HER2 expression in human breast tumors can reach 
2 ×  106 receptors/cell or higher35, as compared to ~1 ×  106 receptors/cell in SkBr3 cells36. QMP images from 4 dif-
ferent patient specimens are shown in Fig. 6d, including a tumor-to-normal tissue junction, a sparse and spatially 
heterogeneous tumor junction, a HER2-negative tumor, and a normal (HER2-negative) tissue specimen. As with 
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tumor xenografts in mice (Fig. 3c and our recent publication17), measurements of absolute NP concentrations 
are misleading: the NPs accumulate more (nonspecifically) on normal tissue regions than on the tumor regions 
(Fig. 6a and Supplementary Fig. S6) because the tumor xenografts and human breast tumors are denser and less 
porous than the surrounding normal tissues. These differences in passive delivery and nonspecific retention are 
a significant problem for the accurate interpretation of molecular images when only a single targeted contrast 
agent is used. However, ratiometric imaging of a targeted vs. untargeted NP provides accurate quantification of 
specific vs. nonspecific NP accumulation, and provides a measure of relative biomarker-expression levels that is 
in agreement with IHC validation data (Fig. 6e). Recently, we have also investigated compartmental modeling 
approaches to extract accurate measurements of receptor binding potential (proportional to receptor density) 
based on kinetic paired-agent imaging data37. Results of competitive-binding experiments provide additional 
confirmation that the targeted NPs are binding specifically to HER2 receptors in tissues (Supplementary Fig. S7). 
Note that in these preliminary studies, QMP imaging exhibits the sensitivity to identify submillimeter regions of 
HER2-positive tumor, as shown in the second HER2-positive specimen in Fig. 6d.

Discussion
Through a series of imaging experiments with fresh tumor xenografts and fresh human breast tissues, we have 
demonstrated that the topical application and quantification of receptor-targeted (and non-targeted) SERS NPs 

Figure 3. Optimization of a topical-staining procedure with tumor xenografts. (a,b) Multi-stage rinsing of 
tissue samples after they have been stained for 10 min with a 1:1 mixture of EGFR-NPs and isotype-NPs (150 pM/
flavor). (a) Measured NP concentrations on tumor and normal tissue. (b) Targeted vs. nontargeted NP ratios 
for 3 tumors and 3 normal samples. (c,d) Comparison of staining efficiency with and without 1% BSA in the 
staining solution (150 pM per NP flavor, 10 min staining). (c) Measured NP concentrations. (d) Concentration 
ratio of targeted vs. nontargeted NPs. (e) NP concentration on A431 tumors as a function of staining duration 
and staining concentration. (f) Targeted vs. nontargeted NP ratio as a function of staining duration and staining 
concentration.
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allows for the rapid (< 15 min) quantitative molecular phenotyping (QMP) of tissues to potentially enable the 
intraoperative detection of residual carcinoma at lumpectomy margins. Several features make this rapid QMP 
technique accurate and sensitive for the intraoperative examination of resected tissues, in excellent agreement 
with flow-cytometry and IHC validation data: (i) Multiplexed SERS NPs may be excited at a single illumination 
wavelength (785 nm), ensuring that all NP reporters in a measurement are interrogated identically in terms of 
illumination intensity, detection area, and effective excitation depth. This allows for the robust ratiometric quanti-
fication of specific vs. nonspecific accumulation of targeted NPs that is insensitive to off-target binding effects, the 
uneven topical delivery of NPs, and variations in working distance and tissue geometry. (ii) The relatively large 
size of these NPs (~120 nm) allows them to remain at the tissue surface rather than diffusing extensively into the 

Figure 4. QMP imaging of normal tissue (EGFR-negative) and tumor xenografts (SkBr3, U251, and A431) 
that express various levels of EGFR. The tissues were stained with a two-flavor NP mixture (EGFR-NPs and 
isotype-NPs) and the staining-and-imaging procedure was achieved in less than 15 min. (a) Photographs of 
resected normal tissue (muscle) and tumor xenografts. (b) QMP images of the concentration ratio of EGFR-NPs 
vs. isotype-NPs. The line profiles at the bottom of the image indicate the QMP ratios along the gray line through 
the center of each tissue specimen. (c) Validation data: IHC for EGFR (10X and 40X views), and H&E staining 
(10X and 40X views). The scale bars represent 100 μ m.
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tissue and being trapped (Supplementary Fig. S3), such that high molecular image contrast between tumor and 
normal tissues may be rapidly achieved (< 15 min) with an optimized staining and rinsing procedure.

While the QMP technique is a surface-imaging method, unlike conventional pathology (which provides depth 
information), QMP enables the rapid intraoperative assessment of large tissue surfaces without the sampling 
errors that are inevitable for conventional post-operative pathology. For example, post-operative histology sec-
tions are typically cut at 5- to 10-mm intervals on lumpectomy specimens that are manually “bread loafed.” 
Therefore, the sub-millimeter resolution of our QMP imaging technique greatly surpasses the sampling interval 
of “gold-standard” histopathology. In terms of clinical translation, it is important to note that the application of 
targeted SERS NPs does not interfere with downstream IHC (see Figs 4 and 6), and that standard post-operative 

Figure 5. QMP imaging, with 0.5-mm spatial resolution, of tumor-xenograft specimens stained with 
a three-flavor NP mixture (EGFR-NPs, HER2-NPs and isotype-NPs). (a) Photograph of resected tumor 
xenografts and normal tissue. (b) A multiplexed QMP image generated by overlaying the ratiometric images 
of EGFR-NPs/isotype-NPs (plotted with a green colormap) and HER2-NPs/isotype-NPs (plotted with a red 
colormap). Images showing the concentration ratio of (c) EGFR-NPs/isotype-NPs and (d) HER2-NPs/isotype-
NPs. The bottom plots show the correlation between the QMP ratio of a particular tissue specimen (in c,d) and 
the corresponding fluorescence ratio (targeted NP vs. isotype NP) from flow-cytometry experiments with the 
cell lines used to generate the various tumor xenografts (Supplementary Fig. S2). R >  0.98. Scale bars represent 
2 mm.
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histopathology can still be performed on tissues after intraoperative QMP imaging. Consequently, QMP is not 
required to be a gold-standard diagnostic technique. Rather, the purpose of QMP is to greatly reduce the number 
of re-excision surgeries for breast cancer lumpectomy patients by helping surgeons to intraoperatively identify 
surgical margins that are positive for carcinoma in which there is an unequivocal need for additional resection. 
Conventional post-operative pathologic examination of tissue may still be performed as a gold standard to iden-
tify microscopic tumor burden or close margins (for institutions that continue to maintain a conservative crite-
rion for re-excision).

Figure 6. QMP imaging of human breast tissues stained with a 2-flavor NP mixture (HER2-NPs and 
isotype-NPs, 150 pM/flavor). (a) Absolute NP concentrations and (b) NP concentration ratios on normal 
tissues and tumors (10 tissue specimens from 5 patients). (c) Photographs of four tissue specimens from four 
patients: two HER2-positive specimens containing both tumor and normal tissue regions and two HER2-
negative specimens (one tumor and one normal tissue). (d) Images of the concentration ratio of HER2-NPs vs. 
isotype-NPs and (e) IHC staining with an anti-HER2 mAb. Unlabeled scale bars represent 2 mm.
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Our studies with fresh tissues from animal models and human patients have shown that hemoglobin does not 
interfere with the acquisition and demultiplexing of topically applied SERS NPs. This is due to the high bright-
ness of SERS NPs compared to intrinsic Raman scattering from blood or other tissue components. However, 
if necessary, reference Raman spectra can be included into demultiplexing algorithms to account for a variety 
of such background components. Another potential challenge is that cauterization of tissues may denature the 
cell-surface proteins targeted by SERS NPs. Note that cautery, used by many but not all surgeons when perform-
ing a lumpectomy, is also a challenge for conventional pathology, where it has been observed that certain protein 
targets and epitopes are more adversely affected than others by cautery38. A major advantage of QMP is the 
potential to perform multiplexed molecular analysis of a large panel of biomarkers (potentially 5 to 10) in order 
to mitigate the effects of cautery. Future studies will examine the effects of surgical cautery on the performance 
of intraoperative QMP.

Additional work is necessary to further improve the QMP technique. Brighter NPs would be of value to 
improve signal vs. background ratio, sensitivity and imaging speed. To promote the ease of intraoperative imag-
ing, enhanced protocols and devices should be developed to hold, stain and rinse tissue specimens (e.g. biopsy 
shavings) obtained from the margins of a resection cavity. In addition, while a few studies have shown the feasi-
bility of detecting and demultiplexing large panels (5–10) of nontargeted SERS NPs in animal models and ex vivo 
human tissues15,39, further work is needed to demonstrate the ability to quantify a large panel of disease-related 
biomarkers with targeted SERS NPs such that the QMP technique may accurately identify tumors in a variety 
of patients with heterogeneous biomarker expression patterns. These efforts will benefit from improvements in 
imaging hardware (e.g. spectrometer resolution, optical throughput, and fiber probe designs) as well as demul-
tiplexing algorithms and the chemistry of the NPs themselves (e.g. binding avidity and brightness). Recently, we 
have also explored kinetic-modeling approaches to improve the quantification of QMP images, including the 
derivation of receptor binding potentials that correlate with the concentration of cell-surface receptors37. Similar 
approaches with systemically injected fluorescent probes have been shown to enable sensitive detection of micro-
scopic tumor burden in lymph nodes26.

Finally, the QMP technique may potentially be combined with other imaging techniques, such as such as 
confocal mosaicing microscopy (CMM)40,41, light reflectance spectroscopy (LRS)42–46, autofluorescence life-
time measurement (AFLM)43, intrinsic Raman spectroscopy47–49, touch-prep cytology50,51, and intraoperative 
frozen-section pathology7,52. The alternative optical strategies mentioned above are in various stages of preclinical 
and/or clinical development, and all have the potential to improve lumpectomy procedures, but with certain lim-
itations. For example, CMM is a method to obtain pathology-like microscopic images over large fields-of-view 
with freshly resected tissues, either in reflectance mode40,41 or in fluorescence mode through the topical applica-
tion of passive or targeted fluorophores53–55. Spectroscopic methods (reflectance, Raman, autofluorescence life-
time) reveal the relative concentrations of basic chemical constituents such as hydrocarbons, lipids, nucleic acids, 
and/or tissue-scattering parameters, and have yielded some promising results for tumor detection in tissues but 
often with limited specificity42,43,47–49. Finally, studies on touch-prep cytology have been inconsistent in demon-
strating value for the intraoperative assessment of breast cancer margins50,51 and the high fat content in breast 
tissues makes the preparation of frozen sections difficult during lumpectomy procedures52. Our technique offers 
information about macromolecular (cell-surface receptor) biomarkers that can complement the morphological 
information provided by CMM, and the chemical-bond/tissue scattering information provided by intrinsic tissue 
spectroscopy. The ability to image a panel of cell-surface biomarkers, which are known to play a fundamental 
role in tumor biology, will enable accurate identification of tumors in spite of molecular heterogeneity between 
patients, within patients over time, and even within single tumors56,57.

In summary, the QMP technology is capable of comprehensively imaging large biopsy shavings (> 4 cm2) 
under time-constrained intraoperative conditions with sub-millimeter resolution for the detection of small 
residual tumors. QMP can quantify the expression of a multiplexed panel of well-known and well-characterized 
cell-surface biomarkers that are routinely used to accurately diagnose, stage, and personalize the treatment of can-
cer patients. Finally, QMP examines excised biopsy shavings that are commonly obtained, or could be obtained, 
at the final stages of a variety of tumor-resection procedures. Ex vivo imaging allows toxicity and sterility issues 
to be averted. Future studies will be required to assess the ability of intraoperative QMP imaging to accurately 
detect residual tumors at surgical margins in comparison to gold-standard post-operative pathology, with an 
ultimate goal of improving patient care by reducing the rate of re-excision surgeries associated with breast-cancer 
lumpectomy.

Methods
Raman imaging device and raster-scanning system. A miniature spectral-imaging probe has been 
developed to quantify the specific vs. nonspecific binding ratio of SERS NPs applied on tissue samples, and meas-
urement linearity for concentrations in the range of 1–400 pM has been demonstrated for SERS NPs topically 
applied on glass slides, mouse tissues and rat esophagus (Supplementary Fig. S1 and previous publications17,30). 
As shown in Fig. 2, a low-power 785-nm diode laser (~10 mW at the tissue) is used to illuminate the tissue via a 
singlemode fiber, creating a laser spot with a diameter that can be tuned from 0.2 to 1 mm (imaging resolution) 
by changing the working distance between the probe tip and tissue surface from 2 to 6 mm. Raman-scattered 
photons from illuminated SERS NPs are collected by 36 multimode fibers and transmitted to a customized spec-
trometer (Andor Holospec), where they are dispersed onto a cooled deep-depletion spectroscopic CCD (Andor, 
Newton DU920P-BR-DD). The detector integration time in this study was 0.5 s.

For raster-scanning imaging, a two-axis translation stage was constructed (Newmark systems Inc., ET-50-11) 
as shown in Fig. 2. A two-axis stepper-motor controller (Newmark systems Inc., NSC-A2L) actuates the two 
stages under computer control through a custom LabVIEW program, allowing for a travel range of 50 ×  50 mm2 
with a tunable velocity of 1.3 μ m/s to 20 mm/s. The raster-scanned imaging of an entire tissue sample was 
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performed by fixing the imaging probe and scanning the tissue sample. The imaging probe was positioned at a 
45-deg angle with respect to the tissue surface to minimize the collection of specular reflections.

SERS NPs and functionalization. SERS NPs were purchased from Cabot Security Materials Inc. These 
NPs consist of a 60-nm-diameter gold core, a unique layer of Raman reporters adsorbed onto the surface of the 
gold cores, surrounded by a 60-nm-thick silica coating, resulting in an overall diameter of ~120 nm (Fig. 2c). 
Three “flavors” of NPs were used here, identified as S420, S421 and S440, each of which emits a characteris-
tic Raman spectrum due to chemical differences in the Raman reporter layer (Fig. 2d, Supplementary Fig. S5). 
Additional details about the NPs are available in the literature20,58.

The SERS NPs were functionalized with monoclonal antibodies (mAb) to target the epidermal growth factor 
receptor (EGFR) or the human epidermal growth factor receptor 2 (HER2) as described in a previous conjugation 
protocol17. In addition, negative-control NPs were prepared by conjugating one flavor of NPs with an isotype 
control antibody (mouse IgG1). In brief, the NPs were first reacted with a fluorophore, Cyto 647-maleimide 
(Cytodiagnostics Inc, part No. NF647-3-01), for the purposes of flow-cytometry characterization experiments, 
and then conjugated with either an isotype control (Thermo Scientific, MA110407), an anti-EGFR (Thermo 
Scientific, MS-378-PABX), or an anti-HER2 (Thermo Scientific, MS-229-PABX) mAb at 500 molar equivalents 
per NP. The NP conjugates were stored at 4 °C and protected from light before use. UV-VIS spectrophotometry 
was used to measure the concentration of the NP conjugates.

Cell culture and flow cytometry. The three cell lines employed in this study were U251 (Krackeler 
Scientific, 45-09063001), A431 (ATCC, CRL-1555) and SkBr3 (ATCC, HTB-30D). U251 and A431 cells were 
cultured in DMEM medium (Lonza, 12-604F) and SkBr3 cells were cultured in Mccoy’s 5A medium (Lonza, 
12-688F), both of which were supplemented with 10% fetal bovine serum (FBS, Thermo Scientific, SH3008803) 
and 1% penicillin-streptomycin (Lonza, 17-602E). All cells were cultured at 37 °C with 5% CO2. Trypsin EDTA 
1X (Mediatech, MT25051CI) was used to detach cells.

Flow cytometry samples were prepared by mixing 50-uL cell suspensions (0.2 million cells) with 50 μ L of 
100-pM NP conjugates for 15 min at room temperature protected from light under gentle agitation at 300 rpm, 
followed by three rounds of purification via centrifugation (400 g for 5 min) and supernatant-replacement (500 μ L 
per rinse) with FACS buffer (20% FBS in PBS). Each cell line was split into equally sized samples which were 
individually stained by EGFR-NPs, HER2-NPs or isotype-NPs. In addition, one unstained cell sample was also 
analyzed.

Mouse xenograft model and human breast tissues. Nude mice (Taconic Farms Inc, model 
NCRNU-F) were used to develop tumor xenografts. All animal experiments were performed in accordance with 
approved guidelines and all experimental protocols were approved by the Institutional Animal Care and Use 
Committee (IACUC) at Stony Brook University (#449417) and University of Washington IACUC (#4345-01). 
The cancer cells, A431 (1 ×  106), U251 (3 ×  106) and SkBr3 (5 ×  106), were individually suspended in matrigel 
(BD biosciences, 354234) at a 1:1 volume ratio to form a 200 μ L mixture. At 7–9 weeks of age, nude mice were 
subcutaneously implanted by injecting the cell mixture at different sites on their flanks. A maximum of three sites 
were implanted on each mouse with a distance of ~2 cm between adjacent sites. After 3–5 weeks, when all tumors 
reached a size of 8 to 10 mm, the mice were euthanized by CO2 inhalation, followed by the surgical removal of 
implanted tumors as well as a few pieces of thigh muscle as normal controls. After imaging, the tissues were fixed 
with 10% formalin and submitted for histopathology (IHC and H&E staining).

Human breast tissue specimens were obtained and imaged within 1 to 2 hours after lumpectomy or mastec-
tomy at the Memorial Sloan Kettering Cancer Center (MSKCC) or University of Washington Medical Center with 
patient consent. All experiments were carried out in accordance with approved guidelines and all experimental 
protocols were approved by the Institutional Review Board and Human Subjects Division at the University of 
Washington and the Northwest BioTrust (NWBT) under an IRB exemption for these de-identified tissues. After 
imaging, the tissues were fixed with 10% formalin and submitted for histopathology (IHC staining).

Tissue staining and imaging. To optimize the staining and rinsing procedure, a step-by-step rinsing 
method was utilized. A 1-cm sized tissue sample was placed on a glass slide, and the top surface was stained with 
a 10-μ L NP mixture, rinsed and imaged at a fixed 6-mm working distance (~1 mm illumination spot). Each rinse 
step was performed by gently spraying 100-μ L of PBS onto the tissue surface and then removing any residual 
PBS. Raman spectra were acquired before rinsing (marked as Step 0 in Fig. 3a,b) and after each of ten rinse steps.

For raster scanning, tissue backgrounds were first obtained by imaging the entire tissue surface. The tissue sur-
face was then stained with a mixture of 2 or 3 flavors of conjugated NPs (20–30 μ L per 1 cm2 tissue area; 150 pM 
per flavor) with 1% BSA. After staining, the tissue sample was rinsed in 50-mL PBS with gentle agitation for 20 s, 
followed by raster-scanned imaging of the entire stained surface.

Raw NP spectra were demultiplexed to calculate the concentration and ratio of SERS NPs using a 
direct-classical-least-squares (DCLS) algorithm as described previously17. Other than sources of random noise, it 
was assumed that each measured spectrum consisted of a linear combination of individual NP spectra (obtained 
from pure NP flavors) and broadband background signals from tissues, buffers and glass substrates. Since the 
reference spectra of tissues can vary between sites due to differences in optical properties, a principal component 
analysis (PCA) was used, which has been shown to be a robust method to accommodate for variations in the 
background spectra24,31,59. In brief, before staining the human breast sample, the entire tissue was raster-scanned 
to obtain a complete set of background spectra (200–400 spectra depending on the tissue size). The acquired 
background spectra were then analyzed to calculate the first three principal components, as well as an average 
background spectrum, which were all used as background references and cumulatively could account for almost 
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all of the observed background variations. After NP staining and imaging, the spectra acquired from stained tis-
sues were demultiplexed using the DCLS algorithm to calculate the weight of each spectral component (e.g. the 
different flavors of NPs, the average tissue background, principal components of the tissue background, etc.). The 
NP concentrations were calculated based on calibration measurements with stock NPs of known concentrations.

Statistical analysis. Statistical analysis was performed in Origin or Matlab. All values in the figures are pre-
sented as mean ±  standard deviation unless otherwise noted in the text and figure captions. Statistical significance 
was calculated by a student’s t-test (two-sample, unpaired), and the level of significance was set at P <  0.001. For 
the box plots in Fig. 3d and Fig. 6b, the bottom and top of the box represent the 1st and 3rd quartiles of the data-
set, respectively, and the band inside the box represents the median (2nd quartile) of the data.
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