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Thermodynamics and efficiency of 
an autonomous on-chip Maxwell’s 
demon
Aki Kutvonen1, Jonne Koski2 & Tapio Ala-Nissila1,3

In his famous letter in 1870, Maxwell describes how Joule’s law can be violated “only by the intelligent 
action of a mere guiding agent”, later coined as Maxwell’s demon by Lord Kelvin. In this letter we study 
thermodynamics of information using an experimentally feasible Maxwell’s demon setup based a single 
electron transistor capacitively coupled to a single electron box, where both the system and the Demon 
can be clearly identified. Such an engineered on-chip Demon measures and performes feedback on 
the system, which can be observed as cooling whose efficiency can be adjusted. We present a detailed 
analysis of the system and the Demon, including the second law of thermodynamics for bare and coarse 
grained entropy production and the flow of information as well as efficiency of information production 
and utilization. Our results demonstrate how information thermodynamics can be used to improve 
functionality of modern nanoscale devices.

Recent development of stochastic thermodynamics has extended the traditional macroscopic theory to small 
scales and non-equilibrium processes beyond linear response1–4. Information thermodynamics5–9, which addi-
tionally considers processes that include information, measurement, and feedback, allows quantified studies on 
problems such as Maxwell’s demon10. The Demon is known as an object that acquires microscopic information 
of a system and applies feedback to decrease its entropy while, to retain the second law of thermodynamics, 
generates at least an equal amount of entropy. The emergence of nanotechnology has given rise to various theo-
retical proposals11–15 as well as experimental realizations5,16–20 of a Maxwell’s demon. The most recent studies in 
the field consider autonomous Demons - setups containing both the system measured and the Demon such that 
both the measurement and feedback are performed internally and no microscopic information needs to exit the 
system8,9,12,13,21,22.

Recently it has been experimentally shown that an autonomous Maxwell’s demon20 device based on single 
electron tunneling at low temperatures14,23–26 can produce negative entropy in form of cooling its environment. 
More precicely, in the setup, a single electron transistor (SET)27, acts as the system to be measured, while the 
measurement and feedback is performed internally based on Coulomb interaction by a capacitively coupled 
single electron box, which acts as the Demon. The device has a limited number of relevant degrees of freedom, 
clear separation of different time scales, and well defined and measurable energy scales making it particularly 
suitable for studying dissipation at microscopic scales. In addition the device only requires fixed external voltage 
sources and a sufficiently low bath temperature to produce apparent negative entropy. The tunneling rates are not 
controlled externally during the operation. Here we study the role of information in the operation of the device in 
detail and show that by adjusting the properties of the Demon, the system’s performance as a nanoscale cooling 
machine, including its efficiency, can be analyzed and tuned with thermodynamics of information.

Results
Model.  Figure 1(a) shows a schematic of the device. A metallic island is connected to two external leads via 
tunnel junctions, both with an equal tunneling resistance of RL =  RR =  R, where the indices refer to ‘left’ and the 
‘right’ junctions. This forms the SET system that is measured. A detector - the actual Maxwell’s demon is a single 
electron box, consisting of a metallic island connected to a grounded lead by a tunnel junction with tunneling 
resistance RD. The system and the Demon islands are capacitively coupled to each other, and the whole setup is 
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coupled to a phonon bath at inverse temperature β =  1/(kBT). Finally, the system is biased by voltage V so that the 
current runs from left to right, and the total Hamiltonian is given by
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where EC
sys and EC

dem denote the charging energies of the system and the Demon island, respectively, λx and λy are 
external electrostatic control parameters, x and y denote the number of excess electrons in the system and the 
Demon, respectively, l is the number of electrons on the left lead, and κ is the coupling energy. The dynamics are 
bipartite meaning that state (l, x, y) may change by consecutive single electron tunneling events through the left 
junction (l, x, y) →  (l ±  1, x ±  1, y), the right junction (l, x, y) →  (l, x ±  1, y), or the Demon junction (l, x, y) →  (l, 
x, y ±  1). Each tunneling event i →  f, as a short notation of (li, xi, yi) →  (lf, xf, yf), has an energy cost directly given 
by Eq. (1) as Ei→f =  H(lf, xf, yf) −  H(li, xi, yi), and the corresponding tunneling rate is given by
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where υ =  L, R, D refers to the junction associated with the transition i →  f (cf. Fig. 1). Higher order tunneling 
events are neglected, which is justified when tunneling resistances are much higher than the quantum resistance, 
i.e. R, RD ≫  RK =  h/e2.

Energetics of electron tunneling in the setup.  Next, we consider the operation of the setup at λx =  λy =  1/2, 
eV <  κ, and κ, ,k T E EB C

sys
C
dem. It is then sufficient to consider only the lowest energy states (x, y) ∈  {(0, 0), (0, 1), 

(1, 0), (1, 1)}. The energy cost for a tunneling event in the system is
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where the +  and −  signs are used in case of tunnelling through the left (L) or right junction (R), respectively, as 
indicated in the superscript on the left of E. The energy cost for a Demon tunneling event is
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where D denotes for the Demon. Note that neither Eq. (3) nor (4) depend on l. The energy is minimized when the 
islands have a single excess electron in total. Escaping the corresponding states (0, 1) and (1, 0) has an energy cost 
κ/2 for the Demon, and (κ −  eV)/2 for the system. Relaxing back from (1, 1) or (0, 0) has an energy cost − κ/2 for 
the Demon, and − (κ +  eV)/2 for the system. With an appropriate choice of RD ≪  R and V, it is possible to realize a 
situation, where the energetically unfavored states (1, 1) and (0, 0) tend to relax through the Demon tunnel junc-
tion. As a result, when a tunneling event occurs in the system, cooling it by (κ −  eV)/2, the Demon rapidly reacts 

Figure 1.  Schematic of the setup and the cooling cycle. Left panel: A schematic picture of voltage biased SET 
capacitively coupled to an SEB detector, which acts as the Demon in the setup. Without seeing the Demon, 
the observer sees the SET system cooling even though the current runs through it. This would be a violation 
of Joule’s law and second law of thermodynamics. However, the second law is retained by the heat dissipation 
in the Demon. Image by Heikka Valja. Right panel: The cooling cycle and dissipation in each step of the cycle. 
System tunneling events use thermal fluctuations to move the electron against the energy barrier. These events, 
illustrated in up and bottom images are accompanied by negative dissipation and cooling of the system. The 
Demon tunneling events on the contrary dissipate and thus heat up the Demon.
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through another tunneling event, resuming the setup back to its ground state. This forms a cycle, illustrated in 
Fig. 1(b), where electric current flows through the SET while cooling it down by κ −  eV for each passing electron 
apparently violating Joule’s law20. However, Joule’s law is retained by noting the heat κ dissipated in the Demon.

Thermodynamics of the Demon.  The probability distribution of the state (li, xi, yi), ≡p pi l x yi i i
, follows the 

master equation = −∑ ,→p Ji f i f  where

= Γ − Γ , ( )→ → →J p p 5i f i f i f i f

is the particle current from (li, xi, yi) to (lf, xf, yf). We are interested in performance of the setup at steady state 
=, ,

p 0l x y . Such a state has no knowledge on the actual value of number of electrons on the left lead, l, i.e. 
pl,x,y =  p0px,y. The total entropy Stot is a sum of the (dimensionless) Shannon entropy = −∑S p plnk k k and the 
reservoir entropy Sr =  βQT

28. The entropy production rate can be expressed as
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which is always non-negative. Further, proceeding as proposed in ref. 8, Eq. (6) splits in two non-negative contri-
butions: One produced by tunneling events in the system,
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and another describing entropy produced by tunneling events in the Demon:
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where I X and IY  are the changes in the mutual information = /(∑ ∑ ), , ,I p p pln[ ]x y x x y y x y  due to the tunneling 
events in the Demon and the system, respectively, and = +  Q Q QS L R and QD are the heat dissipation rates in the 
system and the Demon. The heat dissipation rate in each junction is
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The substitution with Q as in Eqs (7) and (8) results from local detailed balance, Qi→f =  −Ei→f =  kBTυl-
n(Γ i→f/Γ f→i)29. The term
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. The term IY  is the rate of mutual information produced by the Demon and 

quantifies how much transitions in y increase correlation between x and y5. In steady state the total time derivative 
of I vanishes, but there is a flow of information = − I IY X between the Demon and the system. The terms I X and 
IY  also give the change in the Shannon entropy of the total system induced by a transition in the system and the 
Demon, respectively.

Demon as a refrigerator.  In the low temperature regime, where both the system and the Demon have only 
two possible values of charge occupancy, the probability distribution is given by
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tion rate. For any V ≠ 0, >I 0Y , implying that the tunneling events over the Demon junction on average increase 
the correlation between x and y. Since = − I IX Y , the mutual information produced by the Demon is consumed 
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in the system. To satisfy Eq. (8) the Demon must dissipate enough heat to its environment. The negative flow of 
information I X allows for negative β <Q 0S  dissipation rate for the system without breaking the second law of Eq. 
(7), as shown in Fig. 2(a).

The heat dissipation rate in the system, Eq. (9), may be written as:
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where the first term is always negative, and the second term is always positive. Thus increasing the probability p0,1 
increases the cooling power. Therefore, as can be seen from Eq. (11), the maximum cooling power is obtained 
when the tunneling rate over the Demon junction is maximized20. This is in agreement with the numerical results 
which show that a faster Demon (RD <  R) gives rise to more cooling power as shown in Fig. 2(b). The operating 
temperature T has to be sufficiently low, less than κ. −k0 13 B

1 , in order to obtain cooling. In addition, if RD <  R, the 
optimal temperature, where the cooling power is maximized is roughly at κ. −k0 08 B

1 .

Coarse grained entropy.  We next examine entropy production in the setup, but now assuming that only the 
states of the system and the Demon, x and y, are observed, and focus on the information exchange between the 
system and the Demon similar to refs 8,13. Therefore, we only consider the change xi →  xf but do not distinguish 
whether the electron tunnels through the left or the right junction. With this approach the total entropy produc-
tion rate is again given by Eq. (6), but the x degree of freedom changes at the effective rate 
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y L
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. The total entropy production rate of the system is (cf. Eq. (7))
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the transition xi →  xf. In our setup, for non-zero bias, the entropy σ X is always negative and thus the device works 
as a Maxwell’s Demon, as shown in Fig. 2(a).

Efficiency of production and utilization of information.  As shown in Fig. 3(a), a Demon with higher 
reaction rate ( )−RD

1  is able to produce more information IY . The entropic cost for sustaining the flow of informa-
tion is the dissipation rate in the Demon β QD through heat8. We define  β= / I QY

Y
D that characterizes the effi-

ciency of the Demon information production. In Fig. 3(b) we show that a faster Demon is more efficient and in 
the limit of extremely fast reacting Demon, the flow of information IY  coincides with the heat dissipation rate, i.e. 

β= I QY
D, corresponding the maximum efficiency of = 1Y . The same result is obtained analytically by assum-

ing the Demon is fast enough to thermalize on a time scale faster than the transitions occur in the system.

Figure 2.  Entropy production rate and cooling power dependence on temperature and bias voltage.  
(a) Entropy production rate β QS and the coarse grained entropy production rate σ X in the fast Demon limit 
(RD =  10−3R) in different operating temperatures as a function of bias to coupling energy ratio. The coarse 
grained entropy is always negative and underestimates the entropy production. At low enough operating 
temperatures, there exists an optimal non zero bias voltage where the cooling is maximized. In higher 
temperatures no cooling is obtained. Temperatures used here are κ= . −T k0 05 B1

1, κ= . −T k0 08 B2
1 and 

κ= . −T k0 13 B3
1. (b) Minimum system dissipation rate QS (with optimal bias voltage) as a function of operating 

temperature with three different Demon reaction rates ( )−RD
1 . Smaller resistance RD makes the Demon faster and 

more cooling is obtained. At temperatures higher than T3 no cooling is obtained, while there exists an optimal 
operating temperature T2 where the cooling power is maximized. Results are obtained by numerically solving 
the master equation with rates of Eq. (2).
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On the system side the apparent violation of the second law (σ < 0X ) is provided by the flow of information IY , 
which the system is able to utilize with efficiency  σ= − /



IX
X Y . Contrary to Y , X  increases when the Demon is 

slower (large RD) as shown in Fig. 3(a,b). We obtain, both analytically and numerically, that in the case of a very 
slow Demon, we have σ= −


IY X, which corresponds to the maximum efficiency of  = 1X .

Furthermore, a straightforward calculation shows that the efficiency of the whole measurement-feedback 
cycle, defined as    σ β= = − /



QT X Y
X

D is given by

βκ σ= /( ) , ( )2 14T r
X

where σ = /→ →W Wln[ ]r
X

0 1
0

1 0
0  is the coarse grained entropy production in the relaxation from (0, 0) to (1, 0) or 

equivalently from (1, 1) to (0, 1). Furthermore, this efficiency is independent of the Demon reaction rate −RD
1, and 

thus a better Demon performance decreases the efficiency X  of the system as shown in Fig. 3(b). The flow of 
mutual information in the fast and slow demon regimes is analyzed in the Supplementary material in detail.

Relation between coarse grained and bare entropies.  We next study the relation between the entropy 
production rate β QS and σ X. Because the rates W do not satisfy local detailed balance condition, σX differs from 
the entropy βQS. However, as shown in the Supplementary material, the entropies are related as

= , ( )β σ− −e e 15QS
X
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y
xx L

y
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y
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y
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y
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y
xx  to tunnel over the left and right junctions, respectively. Furthermore, Eq. (15) results 

in an integral fluctuation theorem for the coarse graining cost Scg =  βQS −  σX:

= , ( )−e 1 16Scg

which by using Jensen’s inequality gives

≥ , ( )S 0 17cg

implying that the coarse grained entropy underestimates the bare entropy production. This can also be seen in 
Fig. 2(a), while in the small bias eV/κ ≪  1 and at low temperature T the entropy production rates β QS and σ X 
coincide. By observing only the x degree of freedom there can be an apparent violation of the second law, σ < 0X , 
even in the regime where the bare entropy production rate β QS is positive. However, as can also be seen in Fig. 3(a), 
the coarse grained entropy production rate including the information, σ= +



S IX X Y
cg  is positive (Eq. (13)).  

Figure 3.  Flow of information and the efficiency of its production and utilization. (a) Entropy production 
rate in the Demon β QD, flow of information IY , and the coarse grained entropy production rate σ X in the system 
as a function of Demon tunneling resistance (RD). Smaller resistance makes the Demon faster. While the 
apparent entropy production rate in the system σ < 0X , the total entropy production rate σ= + ≥



S I 0X X Y
cg  

(Eq. (13)). In addition, the Demon entropy production rate is always the largest of the three ensuring the 
inequality β= + ≥  S Q I 0tot

Y
D

Y  (Eq. (8)). (b) The efficiency of information production, Y , its utilization, X, 
and that of the whole production-utilization, T. In the fast Demon limit (RD < <  R), the flow of information in 
the Demon equals the heat dissipation rate ( = 1Y ), while in the slow limit the utilization of information flow 
becomes efficient ( = 1X ). Parameters in both (a,b) are those optimal for maximum cooling power, 

κ= . −T k0 08 B
1 and eV/κ =  0.72, extracted from data shown in Fig. 2 of the main text.
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The positivity of the coarse graining cost, Eq. (17), then also ensures positivity of the entropy production rate 
β= + ≥  S Q S 0X

S
X

tot  (Eq. (7)).

Discussion
To summarize, we have analyzed entropy production and flow of information in the experimentally feasible 
isothermal nanoscale device described in Fig. 1(a). The setup works as a Maxwell’s demon device, where both the 
system and the Demon can be identified and where the measurement and the feedback are performed internally 
by the on-chip Demon. We have shown that depending on which variables are accessible for measurement, dif-
ferent apparent negative entropy productions result, however, the second law of thermodynamics always holds 
for the total combined system. Nevertheless, the performance and efficiency of the device to function as a cooler 
can be analyzed and adjusted by using thermodynamics of information. Thus, we conclude that information ther-
modynamics can be used to construct nanoscale devices with desired thermodynamic properties, e.g. to design 
dissipation in the device.
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