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Model predictions of features 
in microsaccade-related neural 
responses in a feedforward 
network with short-term synaptic 
depression
Jian-Fang Zhou1, Wu-Jie Yuan1,2, Zhao Zhou1 & Changsong Zhou2,3,4

Recently, the significant microsaccade-induced neural responses have been extensively observed in 
experiments. To explore the underlying mechanisms of the observed neural responses, a feedforward 
network model with short-term synaptic depression has been proposed [Yuan, W.-J., Dimigen, O., 
Sommer, W. and Zhou, C. Front. Comput. Neurosci. 7, 47 (2013)]. The depression model not only gave 
an explanation for microsaccades in counteracting visual fading, but also successfully reproduced 
several microsaccade-related features in experimental findings. These results strongly suggest that, 
the depression model is very useful to investigate microsaccade-related neural responses. In this 
paper, by using the model, we extensively study and predict the dependance of microsaccade-related 
neural responses on several key parameters, which could be tuned in experiments. Particularly, we 
provide a significant prediction that microsaccade-related neural response also complies with the 
property “sharper is better” observed in many contexts in neuroscience. Importantly, the property 
exhibits a power-law relationship between the width of input signal and the responsive effectiveness, 
which is robust against many parameters in the model. By using mean field theory, we analytically 
investigate the robust power-law property. Our predictions would give theoretical guidance for further 
experimental investigations of the functional role of microsaccades in visual information processing.

Microsaccades are the involuntary, fast, and very small eye movements that occur during visual fixation. Over 
the past decade, the behavioral properties and functional role of microsaccades have been widely investigated1–13. 
It has been found that microsaccades play an important functional role in counteracting visual fading. In order 
to study neural dynamical mechanism of microsaccades for counteracting perceptual fading, neural responses 
correlated with microsaccades have been extensively studied in experiments at different levels—from neuronal 
activities7,11,14,15 to electroencephalogram (EEG)9,16 and functional magnetic resonance imaging (fMRI)5,12—in a 
number of cortical areas involved in visual information processing, including V15,7,12, V25,12,14, V312, V414, and 
MT12,15.

Recently, a report gave an explanation for microsaccades in counteracting visual fading by constructing a 
feedforward network model with short-term depression (STD) at thalamocortical synapses17, alternative to the 
assumption of retinal adaptation. The adapted synapses subjected to STD led to response depression in V1, which 
induces visual fading because of sustained depression during fixation. Therefore, it is possible that the genera-
tion of microsaccades serves to counteract the STD-induced depression of neuronal activity in order to coun-
teract visual fading. In particular, the depressed model successfully reproduced several microsaccade-related 
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experimental observations. For example, the neural response after microsaccade is stronger when a rhythmically 
flashing stimulus bar is on during fixation, as compared to a condition in which the bar is always on (stationary, 
i.e., non-flashing). The response peak induced by microsaccade increases with the increasing of microsaccadic 
magnitude or velocity. Moreover, the increasing response reaches saturation for large microsaccadic magnitude 
or velocity.

It was found by model simulations, that the above results are attributed to the sensitivity of STD to the 
change of stimuli17. These findings strongly suggest that the depression model is very useful to investigate 
microsaccade-related neural responses. Indeed, computational studies have explored the effect of STD on net-
work dynamics and found various rich dynamical behaviors18–21, suggesting many important roles of STD in 
neural computations. Thus, the depression model can be expected to produce other abundant features in 
microsaccade-related neural responses. Model predictions of such features would provide theoretical guid-
ance for experimental investigations. In this paper, by using the model, we extensively study the features of 
microsaccade-related neural responses with respect to several key parameters, which could be experimentally 
tested in future.

Methods
According to visual pathway22,23, a feedforward network model consisting of two layers corresponding to LGN 
and V1 with STD at thalamocortical synapses was proposed in Fig. 117. Evoked by fixated dot, the LGN neuron j 
fires with rate Rj following Gaussian tuning curve G1 (shown in Fig. 1). Then, the firings Rj are straightly projected 
to V1 neuron i by STD synapses with linking weights Wij following Gaussian tuning curve G2 (shown in Fig. 1). 
The membrane potential Vi of V1 neuron i in output layer is described by

( )∑τ δ= − + ( )( − ) − .
( )=
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Here, we adopt the experimentally fitted parameter values τ = 30m  ms, V0 =  − 70 mV and VE =  0 mV24,25. Each 
V1 neuron i integrates inputs coming from LGN neurons j at spike time tsp

j  distributed as Poisson spike trains Rj 
by chemical couplings of δ function. When Vi reaches the threshold value − 55 mV, neuron i emits a spike, and 
then Vi is reset to − 58 mV. The parameter g denotes the maximal synaptic conductance. The synaptic strength 
Sj(t) at thalamocortical system is subjected to the STD mechanism,
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The parameter f (0.0 <  f <  1.0) determines the amount of depression at synapse j induced by each spike in 
neuron j. The parameter τS denotes the depression recovery time. When the afferent neuron j fires a Poisson spike 
train at rate Rj, the synaptic strength will quickly decrease to the approximate steady state (SS, for a high rate Rj)24,

Figure 1.  (Adapted from Ref. 17) The feedforward network model including STD during fixation with 
microsaccade. Here, neurons in LGN and V1 are labeled and arranged by the center positions xj and xi of their 
receptive fields in the ranges from − L to L, respectively. Gaussian filters (receptive fields) in LGN layer 
transform the afferent stimuli evoked by fixated dot into the inputs with Gaussian firing rate profile: 
= ( ) = =σ σ−( − ) / − /( + )/R G x A Aexp expj j

x x x
1

j N j1 2
2

1
2 2

1
2
. The A represents the amplitude of a visual input at 

fixated-dot position =( + )/x 0N 1 2 . The σ1 is width of the tuning curve. The output layer V1 is connected to input 
layer LGN by thalamocortical synapses with synaptic strengths Sj, which are subjected to the modification: STD. 
These connecting weights Wij follow the Gaussian tuning curve: = ( − ) = σ−( − ) /W G x x expij j i

x x
2

j i
2

2
2
, where 

−x xj i denotes denotes the position difference of receptive field centers between the input neuron j and the 
output neuron i. The microsaccade during fixation can be regarded as relative movement of the fixated dot over 
LGN with microsaccadic magnitude Δ M. In order to eliminate the effect of boundary owing to the limited scale 
of network, the corresponding input tuning curve G1 is extended to a period function with period 2L.
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But, for a small firing rate Rj, the synaptic strength approximately maintains its original value 1. This depres-
sion model gives a good fit of experimental data24. In the following simulations, we take f =  0.75 and τ = 200S  ms 
(except for parameter values in Fig. 8(a,b) for comparison), which lie within the range indicated in the experi-
mental data26,27. The main qualitative results do not depend on the two parameters.

Experimentally, microsaccades are very fast movements3. In Ref. 17, we have studied the effect of finite micro-
saccadic speed and compared to experimental observations9. For simplicity, we here ignore the time course of 
microsaccades. In our simulations, microsaccade is regarded as a relative displacement Δ Μ  of the tuning curve 
G1, which happens immediately. N neurons in LGN and V1 are spread uniformly in the ranges from − L to L 
(shown in Fig. 1), respectively. We count the total number of spikes N sp of the V1 neurons in a moving time bin T 
as a measure of the neural response. N =  1000 (except for parameter values in Fig. 8(d) for comparison), L =  10 
and T =  50 ms (except for parameter values in Fig. 8(e) for comparison) are given. Choosing different parameter 
values N, L and T, however, does not alter the qualitative results.

Results
In this section, our model predicts several new features of microsaccade-related neural responses which are likely 
testable in experiments. We first describe the dependence of microsaccade-induced neural responses on stimulus 
brightness, represented by the input amplitude A. Then, we study the effect of widths σ1 and σ2 of the two tuning 
curves G1 and G2. Finally, we provide a significant prediction that microsaccade-related neural response complies 
with a property “sharper is better”, which has been observed in many contexts in neuroscience, including orien-
tation selectivity28, perceptual learning29,30 and auditory processing31. Interestingly, the property exhibits a robust 
power-law relationship between effectiveness of microsaccades and the width of Gaussian tuning curve G1.

Dependence on stimulus brightness.  As shown in Eq. (3), the depression of synapse depends on the 
firing rate of the presynaptic LGN neuron. The higher the firing rate, the smaller the steady strength of the  
synapses. The stimulus brightness of fixation dot is denoted by amplitude A of the LGN neuron firing rate  
Rj in our model (shown in Fig. 1). Therefore, the stimulus brightness is expected to impact strongly  
on the microsaccade-related responses. Here, we simulated the effect of the amplitude A on neural responses 
induced by microsaccades. As shown in Fig. 2(a), a response peak appears soon after microsaccade, and the value 
depends strongly on A. In detail, we measure the dependance of baseline of neural activity before microsaccade, 
peak of neural activity after microsaccade, change as the difference between peak and baseline, and effectiveness 
as the ratio of change to baseline. Clearly, both the response baseline and peak increase linearly with the increas-
ing of A when clear response can be induced for A >  50 (Fig. 2(b)) because the input = σ− /R A expj

x j
2

1
2
  

from LGN neuron is proportional to A. We can write the linear relations of ≈ ( − )Baseline k A 501  and 
≈ ( − ) +Peak k A c502 , respectively. Here k1 and k2 denote the slopes of the two linear relations, and c is the 

value of peak when A is 50. Since the peak is always larger than the baseline, there is k2 >  k1 >  0. So, the change 
− ≈ ( − )( − ) +Peak Baseline k k A c502 1  increases roughly linearly as the increasing of A (Fig. 2(c)). But, the 

effectiveness / ≈ +
( − )

−Change Baseline c
k A

k k
k501

2 1

1
 decreases as A becomes larger (Fig. 2(d)).

Next, we studied effect of parameter A on the saturation of microsaccade-induced neural activity. In EEG 
experiment data, it has been recently found that9, neural response related with microsaccade increases with the 
increasing of microsaccade magnitude within the small region. The increasing response reaches a saturation value 
for larger microsaccade magnitudes. In our simulations, the response peak increases as the microsaccade magni-
tude Δ Μ  with small size in Fig. 3. When the microsaccade magnitude increases to a threshold, the increasing 
response peak reaches to saturation, consistent with the experimental results in ref. 9. This saturation can be well 
explained as follows in our model17. When the moving distance due to large microsaccade exceeds the region with 
strong synapse-depression, the synaptic input will increase to the largest value (Sj =  1) and become independent 
of the microsaccade magnitude, leading to saturated response. Here, we focus on effect of parameter A on the 
saturation. It is found that in Fig. 3, the saturation value becomes larger and larger with the increasing of A. It is 
because A denotes the stimulus strength of fixated dot. The large A corresponds to the large neural response 
= σ− /R A expj

x j
2

1
2
 in LGN, and so the large neural response and the responsive saturation value are produced in 

V1. We note that the threshold of microsaccade magnitude producing saturation is independent of A, since size 
of the synaptic depression region due to fixation is determined by the width of tuning curve G1 of firing Rj, which 
is fixed in these simulations.

Effect of width of tuning curves.  We simulate the effect of the width σ1 of tuning curve Rj on 
microsaccade-induced neural responses in Fig. 4. It is found that, both of the response baseline and peak increase 
with the increasing of σ1 within the small region (Fig. 4(b)), because the larger σ1 denotes the larger inputs from 
LGN neurons due to the broader firing region of Rj. When the σ1 increases to a certain value, the microsaccade 
with the fixed magnitude Δ Μ  cannot move the fixated dot out of the depressed region of the synapses. The high 
response peak compared to baseline after microsaccade does not appear for the large σ1, i.e. the response peak 
tends to the response baseline (Fig. 4(b)). So, the change −Peak Baseline decreases approximately to zero with 
the increasing of σ1 (Fig. 4(c)). The decreasing Change and the increasing Baseline lead to the decreasing 

= /Effectiveness Change Baseline (Fig. 4(d)).



www.nature.com/scientificreports/

4Scientific Reports | 6:20888 | DOI: 10.1038/srep20888

Meanwhile, we simulate the effect of the width σ2 of tuning curve Wij on microsaccade-induced neural 
responses in Fig. 5. Since the larger σ2 reflects the larger inputs from LGN neurons due to the broader coupling 
region of Wij, the response baseline and peak in V1 increase linearly as the increasing of σ2 (Fig. 5(b)). Similar to 
the effect of A in Fig. 2, the linear increasings of Baseline and Peak lead to the increasing of Change (Fig. 5(c)) and 
the decreasing of Effectiveness (Fig. 5(d)).

Next, we study effects of parameters σ1 and σ2 on the saturation of microsaccade-induced neural activity 
with respect to size Δ Μ . As shown in Fig. 6, the saturation value becomes larger and larger with increasing σ1 
or σ2. Since the σ1 denotes the response region in LGN and the σ2 reflects the coupling region from LGN to V1, 
larger neural response and the responsive saturation value are produced in V1 for larger σ1 or σ2. Particularly, a 
threshold of microsaccade magnitude producing the saturation depends strongly on σ1 (Fig. 6(a)), but not much 
on σ2 (Fig. 6(b)). With the smaller width σ1, the smaller microsaccade magnitude is required for producing a 
saturated response. Here, we can give the following understanding. The threshold of microsaccade magnitude is 

Figure 2.  (a) Microsaccade-related neural activity for different brightness A. Microsaccade-related response 
baseline and peak (b), change (c) and effectiveness (d) for different brightness A. The parameters are g =  0.15, 
Δ M =  0.8 and σ1 =  σ2 =  1.5. Data are averaged over 20 independent runs.

Figure 3.  Saturation of the response peak for large microsaccades for different A. Dashed line denotes the 
similar threshold of microsaccade magnitude producing saturation for different A. Here g =  0.2, σ2 =  1.5 and 
σ1 =  1.5. Data are averaged over 20 independent runs.
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Figure 4.  The same as in Fig. 2, but for different σ1. The parameters are g =  0.2, A =  100, Δ M =  2.0 and 
σ2 =  1.5.

Figure 5.  The same as in Fig. 2, but for different σ2. The parameters are g =  0.2, A =  100, Δ M =  2.0 and 
σ1 =  1.5.
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determined by the depressed region of synapse strength Sj in space (in Eq. (3)), which strongly depends on the 
width σ1 of tuning curve Rj. The input to V1 neurons depends more strongly on the depressed region, but weakly 
on the width σ2 of tuning curve Wij. The smaller the width σ1, the smaller the synapse depressed region, leading 
to the smaller the threshold of microsaccade magnitude.

“Sharper is better” for microsaccades.  Bell-shaped tuning curves are widely used to encode variables in 
the external world by many sensory and cortical neurons. Several studies have indicated that information con-
veyed by bell-shaped tuning curves increases as they decrease in width28–30,31. This is the so-called “sharper is 
better” effect. Especially, for the visual system, this has been experimentally found in many aspects of perceptual 
learning29,30. For example, the ability of trained monkeys to discriminate small changes is improved by sharpening 
of tuning curves in V1 neurons29. In our model, the microsaccade-related effectiveness reflects the relative change 
of neural responses after the onset of microsaccade, which supports the view: our neural system has evolved to 
optimally detect changes in our environment by moving eyes6. So, the effectiveness could be used to denote per-
ceptual function. We focus on the effects of tuning curves G1 and G2 on the effectiveness. Clearly, Fig. 7 shows that 
microsaccade-related neural response displays the property “sharper is better”: the smaller the width (σ1 or σ2) of 

Figure 6.  The same as in Fig. 3, but for different σ1 (a) and σ2 (b). Dashed lines denote the different thresholds 
of microsaccade magnitude producing saturation for different σ1 and σ2. Here g =  0.2, A =  100, σ2 =  1.5 (a) and 
σ1 =  1.5 (b).

Figure 7.  Microsaccade-related effectiveness as a function of the widths σ1 (a) and σ2 (b) of Gaussian tuning 
curves G1 and G2, respectively. The insets in (a) show a power-law behavior with an exponent − 2 as the increase 
of σ1. The inset in (b): similar power law does not hold for σ2. The parameters are = .g 0 2, =A 100, ∆ = .M 2 0, 
σ = .1 52  (a) and σ = .1 51  (b). Data are averaged over 20 independent runs.
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the Gaussian tuning curve (i.e., the sharper the curve), the larger the effectiveness. Particularly, the 
microsaccade-related effectiveness exhibits a power-law property as a function of σ1 with an exponent − 2 (inset 
of Fig. 7(a)). A similar power law does not hold for σ2 (inset of Fig. 7(b)), while the effectiveness also decreases as 
the increasing of σ2. This power-law falloff is unusual, as it implies high effectiveness of response to microsaccades 
for broad range of σ1, indicating that this decrease is slower than exponential decay. In addition, we find that the 
exponent − 2 is quite robust against some parameters, such as f, τS, g, N, T, A, σ2 and so on (Fig. 8).

Figure 8.  Robust power-law behavior with exponent − 2 as the increase of σ 1 against some parameters, f (a), τS 
(b), g (c), N (d), T (e), A (f) and σ2 (g). The parameters are ∆ = .M 2 0 (a–g), = .f 0 75 (b–g), τ = 200S  ms (a,c–
g), = .g 0 2 (a,b,d–g), =N 1000 (a–c,e–g), =T 50 ms (a–d,f,g), =A 100 (a–e,g) and σ = .0 152  (a–f). Data are 
averaged over 20 independent runs.
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To explore the robust power-law property of effectiveness as a function of σ1, we give the following approxi-
mate calculation. With STD of synapses, it is found that24, the total steady-state synaptic conductance resulting 
from a set of afferents firing at rate σ2 is proportional to RjSj. So, in the network described by Eq. (1), the V1 
response baseline is proportional to the sum ∑ = R Sj

N
j j1  of synaptical inputs from LGN before microsaccade and 

the V1 response peak is proportional to the sum ∑ ′= R Sj
N

j j1  after microsaccade (if we make the approximation that 
synapses add linearly), where ′Rj  denotes the firing rate in LGN after a microsaccade with small magnitude Δ M. 
We let the small Δ M not to exceed the synaptic depressed region. By using mean field theory and using the steady 
synapses in Eq. (3), we can get,
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where σ( )−0 1
2  denotes higher order infinitesimal of σ−1

2 for large σ1. In Fig. 7(a) and Fig. 8, the power-law rela-
tions are given for large σ1 >  1. In the regime of large σ1, we here focus on the relation. We can approximately get 

σ∝ ∆ −Effectiveness M5
3

2
1

2. So, the effectiveness can be described by ( )σ≈ ∆ +−Effectiveness k M c5
3

2
1

2
0, where k 

and c0 are independent of σ1 and Δ M and are determined by other parameters of V1 neural dynamics in Eqs. (1) 
and (2). Moreover, the effectiveness is zero for the larger σ1 because response peak is equal to response baseline in 
Fig. 4. So, the c0 is identical to 0. We finally get,

Figure 9.  Power-law property with exponent 2 as the increase of ΔΜ. The parameters are given by = .g 0 2, 
=A 100, σ = .1 51  and σ = .1 52 . Data are averaged over 20 independent runs.
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σ≈ ∆ . ( )
−Effectiveness k M5

3 4
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Obviously, the effectiveness exhibits an approximate power-law form as a function of σ1 with a robust expo-
nent − 2 irrespective of any parameters, such as f, τS, g, N, T, A and σ2, which is consistent with our simulations in 
Fig. 8. It is noted that, in the derivation of Eq. (4), the microsaccadic size Δ M is assumed to be small enough that 
the microsaccade does not exceed the synaptic depressed region. The effectiveness exhibits another power-law 
property as a function of small Δ M with a positive exponent 2 in Eq. (4). In our simulations, the property is ver-
ified for the microsaccade magnitudes smaller than the threshold value producing responsive saturation, shown 
in Fig. 9. The effectiveness maintains constant for further increasing of the large microsaccade magnitude Δ M 
(shown in the right side of Fig. 9) because of the responsive saturation (see Fig. 6).

Discussion
By using our model, we extensively study and predict the dependance of microsaccade-related neural responses 
and responsive saturation value on several key parameters A, σ1 and σ2, which could be tuned in experiments. For 
possible verification of our theoretical predictions based on the model, we propose the following feasible experi-
mental designs. The amplitude A and width σ1 of Gaussian tuning curve G1 evoked by fixated dot can be modified 
by changing brightness and size of the dot, which can be easily implemented in experiments. Specifically, the 
more brightness corresponds to the larger amplitude A, and larger dot corresponds to larger width σ1. In addition, 
the width σ2 of Gaussian orientation tuning curve G2 of thalamocortical connecting weights may be modified by 
training certain microsaccade-related ability, motivated by ref. 29 where the orientation tuning curve at trained 
orientation became sharper for trained monkey, while modifications of tuning curve were not observed for the 
monkey which had not been trained. Then results similar to our simulations could be expected.

Particularly, the change of effectiveness due to change of σ1 displays strong robustness against other param-
eters with power-law relation. It is plausible that this property reinforces the idea that microsaccades contribute 
to the vision-detection function: the same microsaccade exhibits different effectiveness for different distribution 
width σ1 of light evoked by fixation dot, which seems to support the view: our neural system has evolved to opti-
mally detect changes in our environment by moving eyes6.

In conclusion, by using a feedforward network model with STD, several new features of microsaccade-related 
neural responses are theoretically predicted, which could be tested in experiments. Particularly, we provide a sig-
nificant prediction “sharper is better”, which has been extensively found in many aspects of perceptual learning. 
By using mean field theory, we give analytical study on the robust power-law property for “sharper is better”. This 
prediction, if experimentally verified, would strongly suggest STD in thalamocortical synapses as an important 
contributor to “sharper is better”. Generally, our study is the first to theoretically predict microsaccade-related 
neural responses by using biologically plausible model, which could be further tested in experiments. These pre-
dictions can give guidance for further experimental studies of the role of microsaccades in visual information 
processing. These modelling results suggest that, the depression model may be very useful for further investigat-
ing behavioral properties and functional roles of microsaccades.
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