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Transcriptional Profiles from 
Paired Normal Samples Offer 
Complementary Information on 
Cancer Patient Survival – Evidence 
from TCGA Pan-Cancer Data
Xiu Huang1, David F. Stern2 & Hongyu Zhao1,3

Although normal tissue samples adjacent to tumors are sometimes collected from patients in cancer 
studies, they are often used as normal controls to identify genes differentially expressed between 
tumor and normal samples. However, it is in general more difficult to obtain and clearly define paired 
normal samples, and whether these samples should be treated as “normal” due to their close proximity 
to tumors. In this article, by analyzing the accrued data in The Cancer Genome Atlas (TCGA), we show 
the surprising results that the paired normal samples are in general more informative on patient survival 
than tumors. Different lines of evidence suggest that this is likely due to tumor micro-environment 
instead of tumor cell contamination or field cancerization effect. Pathway analyses suggest that 
tumor micro-environment may play an important role in cancer patient survival either by boosting the 
adjacent metabolism or the in situ immunization. Our results suggest the potential benefit of collecting 
and profiling matched normal tissues to gain more insights on disease etiology and patient progression.

Although it is common practice to collect germ line information from cancer patients to identify somatic muta-
tions in whole exome sequencing or whole genome sequencing (WGS) studies, it is much less common to have 
matched normal tissues from cancer patients for comparative gene expression studies. This is due to several rea-
sons. Firstly, normal controls are not always available since the legitimate normal control for solid tumors should 
be collected from tissues residing near the tumor tissue site, which is harder to obtain than blood samples that 
can be used for germ line DNA sequence analysis. As a result, most solid tumor studies include no or only limited 
paired normal samples. Secondly, there is the concern of whether histologically-normal samples are truly ‘normal’ 
or they are actually in an abnormal state bearing genomic and translational aberrations corresponding to tumor, 
leading to potential biases in contrasting tumor to paired normal samples1,2. As a result, paired normal samples 
are rarely used in cancer genomics studies. For example, only tumor samples are used to define cancer subtypes 
and predict cancer outcomes, such as those for breast cancer PAM50, a widely adopted breast cancer signature 
panel that was developed based solely on gene expression profiles in tumor samples3. Essentially all progress in 
cancer genomics, such as subtyping and prognosis prediction, has been based on the analysis of tumor samples 
and the foreknowledge of candidate genes based on cancer genetics and pathways.

Although the value of paired normal samples in solid tumors has not been carefully examined, recent reports 
suggest that expression level changes between tumor and paired normal samples may be more correlated with 
cancer relapse and survival than expression levels in tumor samples alone4,5. Other studies have found that gene 
expression levels in normal tissues are more predictive of patient survival than tumor samples6,7. These studies 
suggest that normal samples may offer useful information to predict disease prognosis. There are several reasons 
that may explain the information in paired normal samples: 1) tumor cell contamination theory8, which was 
originally proposed to explain the high local recurrence rates of breast cancer after surgery, resulting from tumor 
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cells extending beyond the invasive tumor margin and leading to genomic and translational signals in paired 
normal tissues; 2) field cancerization theory1, which was proposed to explain the multifocality of primary tum-
ors, suggesting that paired normal tissues are in an intermediate state between normal and tumor, thus bearing 
information on early tumor initialization and development; and 3) tumor microenvironment theory9, which 
was proposed to account for the aberrant signals observed in patients’ extracellular matrix and non-malignant 
cells compared with those of non-patients, suggesting that normal tissues contain information about microenvi-
ronment surrounding tumors that either promotes or suppresses tumor development. These three theories may 
explain the observed signals on cancer progression in the histologically normal tissues. The field cancerization 
and tumor microenvironment theories in fact suggest that the signals in paired normal samples do provide addi-
tional information beyond what is offered in tumor tissues. However, there has not been a systematic study on the 
extent to which paired normal samples offer information on cancer subtyping and prognosis in different cancer 
types.

In this study, using the large datasets from multiple cancer cohorts collected by The Cancer Genome Atlas 
(TCGA)10 (http://cancergenome.nih.gov) with paired tumor and normal samples, we performed a comprehensive 
evaluation on whether and how much the paired normal samples may contribute to survival prediction. In par-
ticular, we aim to answer the following three questions: 1) in terms of prognosis signal, do paired normal samples 
offer additional information on patient prognosis beyond what can be explained by tumor cell contamination? 
2) Across cancer types, how much benefit can we get from incorporating expression profiles from paired normal 
samples into patients’ survival prediction, and how much does the benefit vary across different cancer types? 
and 3) Do we have enough evidence to support or refute the three competing theories discussed above and what 
biological insights can be learned from analyzing paired normal samples?

Results
Paired normal samples offer additional and biologically meaningful information on patient 
clustering. To answer the first question, we first considered the TCGA breast cancer data where 60 pairs of 
matched tumor and normal tissue samples were gene expression profiled using the UNC Agilent G4502A_07 
microarrays. We investigated whether normal tissue samples carry additional information on tumor prognosis in 
addition to that from the tumor tissues. We performed hierarchical clustering on the paired tumor-normal sam-
ples with 12,000 most varying genes. There is clear clustering of two distinct groups based on tumor and normal 
tissues (see Fig. 1a). We then clustered patients based on expression profiles from tumor samples, those from nor-
mal samples, and those defined by the tumor to normal fold changes, respectively, resulting in three different sam-
ple clusters. We then evaluated clustering consistency across these three separate clusters using Backer’s Gamma 
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Figure 1. Adjacent normal samples’ transcriptional profiles offer different but clinically relevant 
information. (a) Hierarchical clustering of tumor and normal samples of 60 breast cancer patients with 6,000 
most varying genes. (b) Rand indexes comparing groupings based on clinical or genetic features with those 
based on gene expression data with the 6,000 most varying genes of each data type using k-means clustering 
with k =  5, where a higher Rand index value indicates a higher degree of similarity.

http://cancergenome.nih.gov
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index to summarize the similarities between clusters. We also varied the number of genes used in clustering and 
the results are shown in Supplementary Table S1. It can be seen that tumor and normal samples have distinct 
clustering patterns for these patients, regardless the number of genes used for clustering. As the fold change levels 
were derived from tumor and normal data, clusters based on fold changes were similar to those either derived 
from tumor samples or those derived from normal samples, respectively. This result suggests that normal samples’ 
transcriptional signals are different from those of tumor samples.

We then investigated the biological relevance of the clusters derived from tumor samples, normal samples, 
and fold changes between the tumor and normal samples by correlating these clusters with clinical informa-
tion from the patients. For these 60 patients, we extracted 17 different types of clinical features from the TCGA 
database. These clinical features include molecular features originally defined in tumor tissues, such as PAM50 
and TripleNegative; they also include survival and patient status related features, such as histology and tumor 
weight. A detailed list of the clinical features is shown in Supplementary Table S2. We then used the Rand index 
to quantify the similarity of the groupings between sample clusters from gene expression levels/changes and clin-
ical features, and evaluated the statistical significance of the similarity through permutation analysis. We formed 
sample clusters from gene expression data using the K-means method where K was set to be 5 (for other k values 
see Supplementary Fig. S2). The results are shown as the top 17 features of Fig. 1b. We found that, for molecular 
features, clusters derived from tumor samples had higher concordance with these features. These molecular level 
clinical features include hormone receptor status and also breast cancer subtypes, such as PAM50 and triple nega-
tive. This is not surprising because hormone receptor status and PAM50 subtypes are related to or derived directly 
from gene expression data from tumor tissues. On the other hand, there is better concordance between sample 
clusters defined from normal samples or fold changes and other clinical features, especially for survival related 
features, such as histology, tumor stage, tumor weight, and age at diagnosis. This suggests that not only do normal 
samples provide distinct information from that of the tumor samples, but they may also provide information that 
is more relevant to patient survival. It is unlikely that such information is derived from tumor cell contaminations 
in the normal tissues.

Besides associations with clinical features, we also explored how patient clustering is related to tumorigenesis 
and cancer progression. Cancer onset and progression result from the accumulation of somatic mutations on 
genes in the cancer-driving pathways. Mutual exclusivity refers to the observation that somatic mutations are 
often only observed in one of multiple genes in the cancer driving pathways11. Leiserson and colleagues12 used 
the same TCGA breast cancer cohort to identify driver pathways and identified four pathway modules showing 
mutually exclusive mutation patterns. A detailed list of the four gene set modules is shown in Supplementary 
Table S3. For each of the four gene set modules, we can use the exome sequencing data from the tumors to 
cluster the patients based on the mutation status for genes in this module. This resulted in four new features for 
these patients. These are represented as the 18th, 19th, 20th and 21st features in Fig. 1b. We then evaluated the 
concordance between these four new features and cancer patient clusters derived from tumor samples, paired 
normal samples, and fold changes between tumor and normal samples, respectively. The results in Fig. 1b show 
that except for the second module, the other three modules all have a better concordance with the groupings from 
either fold change or normal data than tumor data, suggesting that the information in normal data is also in some 
way related to the mutation status in the mutually exclusive components in the driver pathways. Furthermore, we 
grouped patients into 16 categories based on the joint mutation status at the module level, where we hypothesize 
that patients with different modules mutated may have different tumor genesis and cancer development mecha-
nisms. For each module, we consider this module mutated if any gene in this module is mutated. By labeling each 
module as “1” or “0” depending on whether this module is mutated or not, each patient can be assigned to one 
of the 24 =  16 different categories. The number of patients belonging to each category is listed in Supplementary 
Table S4. We studied the concordance between these 16 categories and sample clusters derived from gene expres-
sion data from tumor, normal or fold change data and the results are shown as the last feature of Fig. 1b. We can 
see that generally fold change data and normal data have higher concordance with the joint module mutation 
patterns. We further considered the somatic mutations in five key cancer driver genes in the tumor samples and 
adjacent normal samples of these 60 patients. The results shown in Supplementary Table S5 suggest that adjacent 
normal samples tend to have many fewer hits than tumor samples, and the somatic mutation profiles in tumors 
are distinct from adjacent normals. Both tumor and normal samples bear unique somatic mutations, with key 
tumor driving mutations preferentially found in tumor samples. Therefore, it is less likely that the survival related 
information in normal samples is due to the early development of cancer driving mutations, which is the key 
assumption in the field cancerization theory. This observation also contradicts expectation from the contamina-
tion theory.

Incorporating expression profiles from paired normal tissues can improve cancer patient sur-
vival predictions across multiple cancer cohorts. To directly assess the usefulness of gene expression 
data from paired normal tissues in predicting patients’ survival and to further generalize to other platforms and 
cancer cohorts, we performed survival analysis on the TCGA pan-cancer (PANCAN) data where IlluminaHiSeq_
RNASeqV2 was used to measure gene expression levels. There are a total of 12 cancer cohorts with matched 
tumor and normal sample pairs. We removed samples with incomplete survival information and cancer cohorts 
with insufficient number of matched normal samples, resulting in six cancer cohorts with sufficient numbers of 
samples and events (death). Table 1 shows the number of tumor-normal pairs and the number of cases available 
in these six cancer cohorts. For each of these six cancer cohorts, we compared the survival prediction accuracy 
using expression data from the tumor samples, the normal samples, and the fold changes between tumor and 
normal samples, respectively. We further considered four concatenated datasets using a combination of either 
two (tumor +  normal, tumor +  fold change, normal +  fold change) or all three data types to explore the benefit of 
incorporating different data sources to improve prediction. We applied two survival analysis methods to ensure 
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that the general conclusion does not depend on the specific statistical method used for cancer survival prediction. 
The results based on the penalized Cox regression survival analysis are shown in Fig. 2, and the results from the 
random forests survival analysis are shown in Supplementary Fig. S3. We can see that incorporating expres-
sion data from paired normal samples, either by directly using, contrasting or concatenating with tumor data, 
can always improve prediction accuracy. Specifically, for breast cancer, head and neck cancer and kidney clear 
cell carcinoma, expression data from paired normal samples can provide better prediction than tumor samples; 
whereas for liver cancer, lung adenocarcinoma, and lung squamous cell carcinoma, fold changes provided the 
most accurate predictions than either tumor samples or normal samples alone. The results from the random 
forests survival analysis were similar. Note that whether normal samples are more or less informative than tumor 
samples on survival does not correspond to the local recurrence rate of the specific cancer cohorts. For example, 
the recurrence rate of lung adenocarcinoma is generally higher than that of breast cancer13. However, paired 
normal samples for lung adenocarcinoma are less informative than those of breast cancer, suggesting that the 
signals in normal samples are unlikely due to the field cancerization effect, if we assume that the local recurrence 
rate is indicative of the surrounding tissue’s field cancerization level. Also, the results show that more information 
does not necessarily give better prediction result. It is possibly due to the inadequacies in the survival analysis 
methodologies to deal with high dimensional data. In fact, simple concatenation might not be an effective way to 
incorporate information from different data types in this context.

We also applied the Elastic Net Regularized Cox Regression model directly in the survival prediction scheme 
to assess survival related information contained in adjacent tumor samples in the microarray platform on the 60 
patients breast cancer data set. For each pair of samples, we calculated the relative risk predictions from the model 
built using the rest of samples. The consistency matrix C is then defined as the difference between the probability 
matrix of the relative risk comparison between each pair of samples and the correspondent probability matrix 
derived from the observed survival data. This matrix is informative as to suggest how the data perform in terms of 
survival prediction for every pair of samples. Each entry of the consistency matrix C is the consistency score of the 
predicted relative risk status for the corresponding two samples compared with the relative risk status from the 
real survival data. The heatmap plots of the matrix C for tumor data and normal data are shown in Fig. 3. Here the 
α parameter for the Elastic Net Regularized Cox Regression is set at 0.01, and the β parameter is chosen by five 
fold cross validation. It can be seen from the plot that the consistency level with the observed survival information 

Cancer Cohorts
Number of paired samples/
Number of events (death)

Breast Cancer 105/37

Kidney clear cell carcinoma 70/24

Lung adenocarcinoma 57/22

Liver Cancer 46/29

Lung Squamous cell carcinoma 42/24

Head and neck cancer 40/31

Table 1.  Sample sizes for the six cancer cohorts in the TCGA multi-cancer RNA-Seq data.

Figure 2. Normal samples consistently offer additional information to improve survival prediction 
performances across multiple cancer cohorts. The figures show the boxplots comparing distributions of 
survival prediction Mean Cross Validation Error from 20 random runs for penalized cox regression model from 
different datasets for six cancer cohorts of the RNASeq data.
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from normal data is generally higher than that from tumor data. In the left panel, the blue arrow indicates an 
outlying sample with generally very low consistency in terms of survival prediction using tumor data. While the 
same patient is also highlighted with blue arrow in the right panel, with normal data, this sample’s performance 
in terms of survival prediction consistency is generally higher, and not very outlying compared with other sam-
ples. This result suggests that with the availability of paired normal samples, we can potentially elevate the overall 
survival prediction accuracy, especially for those patients with very poor and outlying survival prediction perfor-
mance using only tumor tissue data.

Immune, metabolic and cell growth related pathways in the paired normal samples are pre-
dictive of patient survival across various cancer cohorts. We used the gene set enrichment analysis 
(GSEA) method to identify biological pathways that are enriched for genes informative for cancer patient survival 
using different data sets (tumor samples, paired normal samples, or fold changes), and looked for shared pathways 
across cancer cohorts. We hypothesize that if there is a general mechanism driving the normal tissues to offer 
additional information on tumor prognosis in all the cancer cohorts, pathway analysis may capture consistent 
changes across cancer cohorts and shed lights on this mechanism. Figure 4a shows the pathways that were found 
to be enriched for genes informative for cancer survival at the FDR cut-off of 0.25 at least five times across 18 
analyses (6 each cancer cohorts ×  3 data types). For each significant cohort-sample combination, we calculated 
the enrichment level as the z value transformed from the FDR corrected p value generated by GSEA, and it is 
represented by the shade of the color in Fig. 4a, with red corresponding positive values (i.e. higher expression 
levels lead to longer patient survival) and blue corresponding to negative values (i.e. high expression levels lead 
to poorer patient survival). The most frequently found pathway types included metabolism related pathways, 
immune related pathways and cell cycle and growth related pathways, which are colored red, yellow and purple, 
respectively, in this figure. There is a clear enrichment of immune related pathways in the up regulated gene 
sets, whereas there is an enrichment of cell cycle related pathways in the down regulated gene sets. There are 
both enrichment hits of up regulated and down regulated gene sets related metabolism. This suggests that across 
cancer types, patients with increased immune activities and reduced cellular growth activities, either in tumor 
tissues, paired normal tissues, or fold changes between tumor and normal tissues, tend to have better progno-
sis. To investigate how different data types (tumor, normal, and fold change) contribute most to the consistent 
pathways found among cancer cohorts, we calculated the overall concordance between any two pairs of cancer 
cohorts for gene sets positively correlated with survival and gene sets negatively correlated with survival and 
plot the boxplot of concordance rates against varying FDR thresholds that were used to select the top pathways  
(see Fig. 4b). We can see that in gene sets positively correlated with survival, consistency is generally higher in fold 
change data and normal data, and for gene sets negatively correlated with survival, consistency is much higher in 
normal data, suggesting that the activation of immune related pathways and down regulation of cellular growth 
pathways in surrounding normal tissue environment is associated with longer survival. This pattern is found to be 
shared across all cancer cohorts studied here. Nevertheless, we do observe distinct patterns of pathways being hit 
for different cancer cohorts. For example, immune related pathways are more activated for breast cancer patients 
to live longer while cell cycle related pathways are more suppressed for liver cancer patients and kidney clear cell 
carcinoma patients to live longer.

Figure 3. Normal samples provide an overall better prediction accuracy for patient survival and can be 
especially helpful for those patients with outlying survival prediction performances using tumor sample 
data alone. (a) Heatmap of the consistency matrix from tumor samples in the 60-patient breast cancer 
data using Elastic Net Cox Regression. Red color represents low consistency, while yellow represents high 
consistency. Individual 49 is highlighted with blue arrow as being an outlier with generally poor consistency 
of prediction with real survival using tumor data. (b) Consistency matrix calculated from correspondent 
normal data. Individual 49 is highlighted also, and is generally with comparable consistency levels with others 
individuals and no longer outlying.
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To further examine the involvement of immune related functions and oncogenic related functions driving 
the survival related information in tumor and normal samples using an independent data set, we conducted 
individualized GSEA using the 60-sample breast cancer data set. For each individual sample, the signals from all 
the genes are summarized at the gene set level using individualized GSEA method. For each gene set, we used the 
gene set level perturbation values across patients to correlate with patient survival information using Univariate 
Cox Regression model. This analysis directly shows how the gene set perturbation levels for each pre-defined 
immune related and oncogenic related gene set signature are related to survival. Figure 4c shows the density 
plots of the distributions of the significance p values from Univariate Cox Regression model for all the immune 
signatures and oncogenic signatures for each data set. As for comparisons between tumor and normal samples, 
both immune signatures and oncogenic signatures show a more enriched concentration of p values towards zero 
for normal samples than tumor samples, although the enrichment for immune signatures is moderate while the 
enrichment for oncogenic signatures is more dramatic. This is consistent with what we found previously in the 
multi-cancer analysis, that the oncogenic signatures and the immune signatures are more predictive of survival 
in normal than in tumor samples. Also surprisingly, in tumor samples the immune signatures are more predictive 
of survival than oncogenic signatures.

To identify the top differentially performing pathways between tumor and normal tissues, we calculated the 
ratios of p values from the Cox model between normal and tumor data for each gene set, and identified the 
top 100 gene sets that are mostly differentiatedly related to survival between tumor and normal samples. The 
distributions of the log ratios is shown in Fig. 4d. We defined the top gene sets as either ‘Normal Associated’ or 
‘Tumor Associated’ indicating whether this pathway is more predictive in normal or in tumor samples. We can 
see that although the overall enrichment of normal associated gene sets is moderate compared with tumor, the 
differentiated survival-associated gene sets are dramatically enriched, suggesting that more gene sets are reliably 

Figure 4. Gene set analyses show that metabolic, immune and cell growth related pathways are involved 
in boosting the survival related signals in adjacent normal samples. (a) Heat map showing the enriched 
pathways with FDR less than 0.25 consistently found at least five times across 18 cancer cohorts by data types 
considerations. Cells are colored according to the enrichment level calculated by transforming FDR p values 
to z values. The red color shows pathways that are up regulated for longer-surviving patients, while the blue 
color shows pathways that are down regulated for longer-surviving patients. Each cell has three sub cells, 
representing tumor data, normal data, and fold change data respectively from up to down. X-axis labels are 
colored according to the pathway types, with red being metabolic related pathways, yellow being immune 
related pathways, and purple being cell growth related pathways. (b) Boxplots comparing the distribution 
of concordance rates for enriched pathways found for each pair of cancer cohorts using different data types 
and different FDR thresholds to select enriched pathways. (c) Density plots of Univariate Cox Regression p 
values (representing each gene set signature’s correlation with survival using different types of data) for the 
60-patient breast cancer data. (d) Boxplots showing the distributions of the top 100 log ratios of the p values 
from Univariate Cox Regression between either normal vs. tumor (tumor associated) or tumor vs. normal 
(normal associated) for each gene set signature. This is also for the 60-patient breast cancer data set.
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and specifically predictive of survival in normal than in tumor samples. As expected, this trend is more evident 
for oncogenic signature gene sets. This result suggests that both immune and oncogenic functions are relevant in 
survival related information in adjacent normal samples. The detailed table of the top 100 ‘normal associated’ and 
‘tumor associated’ gene sets for the two signature categories is shown in Supplementary Table S6.

Discussion
In this report, we have systematically evaluated whether transcriptional profiles of tumor adjacent normal sam-
ples are predictive of patient survival across multiple cancer cohorts and different platforms using the TCGA data. 
The results show that adjacent normal samples’ transcriptional level signals likely provide more information than 
tumor samples on patient survival across cancer types and data collection platforms. This result implies that the 
tumor surrounding tissues may harbor meaningful signals for cancer biogenesis and prognosis. This phenom-
enon could possible be explained by the idea of “etiologic field effect” proposed in a recent paper14, which is an 
extension of the traditional field cancerization theory1 combined with the tumor microenvironment theory9. This 
concept gives a coherent model to explain the signals in the adjacent normal tissues by promoting the idea of the 
tissue microenvironment milieu with aberrant signals in either the genome, epigenome, transcriptome, proteome, 
metabolome or interactome that promotes the behavior of both the tumor and the host immunity.

This finding could further our understanding of cancer etiology and better identify biomarkers for more 
accurate cancer diagnosis and prognosis, as well as personalized medicine and treatment design. The collection 
and molecular characterization of adjacent normal tissues, in addition to tumor tissues, may allow researchers 
to gain more insights on disease etiology and patient progression. The contribution of paired normal samples in 
prognosis prediction can be interpreted as the contribution of “tumorigenesis code” carried by the normal tis-
sues. This code may represent the patient’s overall immunity or metabolic level, which may lead to more effective 
personalized medicine. These results also suggest that we may better understand tumorigenesis mechanisms and 
identify potential therapeutic targets through a more thorough exploration of surrounding microenvironment.

There are several limitations in our study. Firstly, there are no clear definitions for adjacent normal tissues. For 
the TCGA data set, the normal tissues were collected with an approximate 2 cm or 3 cm distance from the tumor 
margin. However, how the survival related information in normal tissues varied accordingly to the distance of 
normal towards tumor tissues needs to be assessed. The survival related information is of various relevance across 
cancer types, likely due to different tissue features and how the adjacent normal tissues were obtained. More 
needs to be done to adjust for the effects from these factors. Secondly, adjacent normal tissues bear the neighbor-
ing microenvironment signals. It is of potential interest to consider the distal environment signals’ contribution 
towards tumor progression. There are publications already discussing the possibilities of finding marker genes in 
the circulating blood tissues15. Three-way comparisons of transcriptional signals in tumor, adjacent normal, and 
blood tissues would be of great interest to detect possible survival related signals shared between adjacent and 
distal microenvironment if such data sets are available.

Methods
Overview. We applied unsupervised clustering on the tumor and normal samples, as well as gene expression 
fold changes to match with groupings using clinical variables to assess whether normal samples offer clinically 
relevant information. We used Cox based and Random Forests16 based survival analysis to evaluate the informa-
tion in gene expression data on patient survival. To identify the biological perturbations that are shared among 
different cancer cohorts, we conducted Gene Set Enrichment Analysis (GSEA)17 to identify gene sets that are 
informative on patient survival and these gene sets may lead to insights on the underlying biological processes 
informative on patient survival. An illustration of the detailed analysis workflow in correspondence to the three 
research questions is shown in Supplementary Fig. S1.

Data sets. Transcriptome data and clinical data were obtained from the TCGA Data Portal (https://tcga-data.
nci.nih.gov/tcga/tcgaHome2.jsp). We downloaded data in the category of UNC Agilent G4502A 07 microarrays 
for breast cancer with 60 pairs of paired tumor and solid normal samples. We also downloaded data in the cate-
gory of UNC IlluminaHiSeq RNASeqV2 for six cancer types with their paired tumor and normal samples. The 
numbers of pairs of tumor and normal samples for each cancer types are listed in Table 1.

Unsupervised clustering of samples. Hierarchical clustering. Genes were ranked based on the Median 
Absolute Deviance (MAD) of expression levels and those genes with the largest MAD values were selected for 
clustering. We used Euclidean distance to measure the distance between genes and complete linkage for hierarchi-
cal clustering. Backer’s Gamma index18 was used to quantify the similarity between hierarchical trees constructed 
using tumor samples, those using normal samples and those using fold change values between tumor and normal 
samples. The statistical significance of the Backer’s Gamma index was assessed through 1000 permutations of the 
samples.

Correlating gene clusters with clinical features. For each data set, we used MAD values to select the top 6000 
most varying genes for K-means clustering, where k was varied from 2–15. We performed k-means clustering on 
tumor samples, normal samples, and fold changes, respectively. We used the Rand index19 to measure the simi-
larity between the clustering from gene expression and the groupings from available clinic features. We used 1000 
permutations to estimate the significance of the Rand indexes.

Survival analysis. Because of the high dimensionality of the data, we adopted the Elastic Net Penalized Cox 
Regression method20,21 and the nonparametric method Random Forests16,22 for survival analysis. Nonetheless, 
too many variables may still cause unnecessary noises and complexities in the model. Therefore, we employed 
a dimension reduction step to alleviate the problem. More specifically, we modeled the survival outcome as a 

http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
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function of the principal components so that the dimensionality of the dataset is reduced from the total number 
of genes to at most the number of samples. By using the principal components as variables instead of the genes, 
we are able to reduce the dataset dimension and at the same time preserve most of the variance across samples.

Penalized cox regression. The elastic net regularization21 uses with the following penalization on β, which is a 
linear combination of L1 penalty and L2 penalty:

∑β λ α β α β( ) =
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λ α,

=
P 1

2
1

j

p

j j
1

2

The tuning parameters α and β were selected by grid search from five fold cross validation. The goodness of fit 
is measured by mean cross validation error20, which is defined as:
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with K being the total number of folds, and with the kth fold, D(Data, k) is defined as the residual sum of square 
deviance of real survival outcome versus predicted survival outcome using β k[ ], which is obtained from the kth 
fold of data. The cross validation error of the kth fold is defined as the difference between deviances evaluated on 
full data with that on data with the kth fold excluded. We used the mean of each fold’s cross validation error to 
assess the goodness of fit.

We also applied this method in the context of survival prediction to assess the prediction accuracy directly. For 
each pair of samples, we calculated the relative risk predictions from the Cox model built using the rest of sam-
ples. The data features were dimension-reduced and orthogonalized using PCA beforehand. The probability 
matrix M is defined as = ( > ),M Prob R Ri j i j  across 20 random runs, where Ri and Rj are the risk predictions of 
sample i and sample j from the Cox model derived using the rest of all the samples s: = ∈ , ≠ ,s s s S s i j{ : { }} 
with five fold cross validation. The consistency matrix C is then defined as = − −C M M1 r , where Mr is the 
probability matrix derived from the real survival data. The entries of Mr are either 0 or 1 where the risk compari-
sons are identifiable for the specific sample pairs from the real survival data, and 0.5 anywhere else where the risk 
comparisons are uncertain because of the presence of censored data. The consistency matrix C is informative as 
to suggest how the data perform in terms of survival prediction.

Random Forests. In addition to penalized Cox regression, we used Random Forests23 to compare survival pre-
diction accuracy from different data sources. We built 10,000 trees for Random Forests and used the out-of-bag 
error rate24 to measure prediction accuracy.

Pathway analysis. To investigate the biological relevance of the signals in normal and tumor tissues, we 
performed pathway analysis to identify pathways predictive of survival outcome in various cancers. As input for 
pathway analysis, for each gene, we calculated the association between its gene expression levels and patient sur-
vival using Univariate Cox Regression model25, and the resulting p value transformed z value was used for path-
way analysis. We adopted the Gene Set Enrichment Analysis (GSEA)17 method and used the Kyoto Encyclopedia 
of Genes and Genomes (KEGG)26 pathway database as the reference gene sets.

To further examine the relevance of immune signatures and oncogenic signatures with survival, we conducted 
individualized GSEA, which is to perform GSEA on each individual and get a summarization of gene level signal 
to pathway level signal. For gene expression data set with P genes and N samples, for each sample n, we will get 
the enrichment level of m predefined gene set signatures. For these m gene sets, we will then perform Univariate 
Cox Regression to identify gene sets that are mostly predictive of survival. The immune signature and oncogenic 
signatures are downloaded from MSigDB17.

Statistical analysis. All analyses were performed using the R programming platform27. All the plots are 
generated using R package ggplot228.
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