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Quantum dots-based double 
imaging combined with organic dye 
imaging to establish an automatic 
computerized method for cancer 
Ki67 measurement
Lin-Wei Wang1,2, Ai-Ping Qu3, Wen-Lou Liu2, Jia-Mei Chen2, Jing-Ping Yuan4, Han Wu2, 
Yan Li1,2 & Juan Liu5

As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially 
for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to 
manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging 
of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, 
and organic dye imaging of cell nucleus as blue signal by 4′,6-diamidino-2-phenylindole (DAPI), and 
to develop a computer-aided automatic method for Ki67 index measurement. The newly developed 
automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer 
cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with 
yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index 
for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% < Ki67 < 50% (moderate grade), and 
Ki67 ≥ 50% (high grade) showed computerized Ki67 counting is better than visual Ki67 counting, 
especially for Ki67 low and moderate grades. Based on QDs-based double imaging and organic dye 
imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting 
method to measure Ki67 index.

Cancer is the leading cause of death and a heavy burden to the global health1,2. Although there have been great 
progresses in screening tools and comprehensive therapies, cancer mobility and mortality is still rising, especially 
in developing countries1,3,4. Currently, recurrence and metastasis are major causes of cancer death, which are 
mainly due to high cancer cells proliferation and migration5. Therefore, great efforts have been made to explore 
cancer proliferation markers for predicting cancer prognosis and formulating more individualized treatments. 
Many proliferative markers, such as proliferating cell nuclear antigen, Ki67, cyclin D, cyclin E, p27 and p21 have 
been discovered6–8. Among these proliferative molecules, Ki67 is a widely used marker in clinical cancer treat-
ment and prognosis9–13, and can specifically label proliferative cells at mitotic phase14. And it has been recom-
mended as a key marker of breast cancer (BC) subtypes by the St Gallen International Expert Consensus in 201115 
and gastroenteropancreatic neuroendocrine tumors grading system by World Health Organization16.

Accurate counting of Ki67 is the key to appreciating its prognostic value. However, Ki67 counting has always 
been a formidable challenge for cancer research due to variability of Ki67 expression and complexity of tumor 
tissue6,10,17. Currently, the frequently used measurement of Ki67 index is based on immunohistochemical (IHC) 
staining tissue sections, which can be briefly divided into two mainstream methods: artificial method and com-
puterized method10. The former is the common method of manual counting and visual estimation. Manual 
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counting requires precisely measure Ki67 positive cells in as many as 1,000 cancer cells from at least 3 high-power 
fields at the invasive edge, which is the most frequently used method in clinical practice as recommended by the 
International Ki67 in Breast Cancer Working Group9. The visual estimation, also known as “eyeballing”, is to rap-
idly count a global subjective Ki67 index by quick scanning and rough estimating the global cancer section18–20. 
However, the two manual methods are highly experience-based and subjective, which are criticized due to their 
intra- and inter-observer variations for the same tissue section even among the experienced pathologists10,17.

The recently developed automatic Ki67 counting is considered as a promising alternative method for Ki67 
scoring. Different from traditional computer software, which only obtained Ki67 sum of the specific tumor tis-
sue (the Ki67 sum is influenced by the number of cancer cells in the analytic targets)21, the new automatic Ki67 
counting methods aimed at recognizing/counting both Ki67-positive and negative cancer cells, thus making the 
Ki67 counting more objective, efficient, and accurate12,18,22–24. The computerized methods show properties of 
objectivity, speediness and high repeatability, and have stronger prognostic value than manual counting18,20,22,25. 
However, the accuracy of these methods is also questioned because the computerized recognition of Ki67 pos-
itive and negative cancer cell nuclei was only based on the features of cell nuclei such as color, shape and size, 
and it is difficult to eliminate interferences of stroma non-cancer cells (such as lymphocyte cells, fibroblast cells, 
macrophage cells)10. Therefore, measurement of Ki67 index in cancer remains a formidable challenge for both 
oncologists and pathologists6,10,17.

The key to computer-aided automatic Ki67 measurement is to recognize Ki67 positive and negative cancer 
cells in complex background of heterogeneous tumor tissue images. Preferably, information on Ki67-postive cells, 
cancer cells, and stroma cells should be specifically labeled and accurately recognized and counted. A pixel-based 
clustering algorithm has been developed by Gustavson et al.26 to automatically and quantitatively analyze tar-
gets stained with immunofluorescence, which was applied to automatically assess Ki67 index in oral cancer13,27. 
However, multiple immunofluorescent staining could not avoid interference of tissue autofluorescence and 
mutual interferences of multiple organic dyes. Moreover, how to simultaneously obtain such multi-dimensional 
information from complex tumor tissue is also a technique challenge for organic immunofluorescent imaging 
technique28.

QDs are semiconductor nanocrystals with excellent optical properties, such as high fluorescence intensity, 
strong resistance to photobleaching and chemical degradation, size-tunable emission wavelength, and simul-
taneous multiple imaging under a single excitation source28–30. Because of these optical advantages, QDs-based 
imaging has been widely applied in cancer researches to study biomarkers interactions, evaluate prognostic bio-
markers, map axillary lymphatic system, show xenograft tumor, and detect cancer metastases28. We have estab-
lished QDs-based multiple imaging in tumor tissue sections31 and demonstrated QDs-based imaging on Ki67 of 
BC showed good correlation and consistency with conventional IHC, with better image quality and sensitivity32. 
Additionally, QDs-based double imaging on Ki67 and cytokeratin (CK, an epithelial specific marker) of BC was 
successfully developed to show a superior indicator of Ki67/CK than Ki67 sum to predict BC prognosis10.

This study is aimed at developing an automatic computerized Ki67 index recognition and measure-
ment method by integrating QDs-based multiple imaging of Ki67 and CK with organic dye imaging of 
4′ ,6-diamidino-2-phenylindole (DAPI) in BC.

Results
Typical images of different Ki67 indexes counted by computerized method. To clearly show 
the results of computerized method, we selected three typical images with Ki67 low, moderate and high grades 
counted by computerized method (Fig. 1). Figure 1A1–C1 were original BC images of Ki67 low, moderate, and 
high grades. These images could clearly showed red Ki67 positive cell nuclei, yellow cytoplasm and blue cell 
nuclei. Figure 1A2–C2 were computer-recognized BC images of cancer cells with Ki67 low, moderate, and high 
grades. These images showed cancer cell nuclei were recognized by the computer with green pseudocolor, but 
stromal cell nuclei were not. Figure 1A3,B3,C3 were computer-recognized BC images of Ki67-positive cancer cells 
with Ki67 low, moderate, and high grades. These images showed Ki67-postive cancer cell nuclei were recognized 
by the computer with cyan pseudocolor, but Ki67-positive stromal cell nuclei were not. Figure 1A4,B4,C4 showed 
merged images of recognized cancer cells and Ki67-positive cancer cells with Ki67 low, moderate, and high 
grades. These images showed cell nuclei of red Ki67 staining and blue DAPI staining outside of yellow CK stain-
ing were not recognized by the computerized method. These results indicate the computerized method could well 
recognize Ki67 index of different grades.

Results of marked Ki67 (M-Ki67) counting, computerized Ki67 (C-Ki67) counting and visual 
Ki67 (V-Ki67) counting. In the background of CK stained area to outline the cancer region, BC cells with 
DAPI staining and Ki67-positive cells with QDs-655 staining are clearly delineated, and were counted by marked 
method, computerized method and visual method, respectively. The Ki67 counting results by these three meth-
ods, divided by Ki67 grading, were listed in Table 1.

Comparisons of M-Ki67, C-Ki67 and V-Ki67 indexes by analysis of variance (ANOVA). ANOVA 
was conducted to compare Ki67 indexes by M-Ki67, C-Ki67 and V-Ki67 counting (Table 2). There was no sta-
tistical difference between M-Ki67 and C-Ki67 for low (P =  0.725), moderate (P =  0.236), and overall grades 
(P =  0.288). Likewise, there was no statistical difference between M-Ki67 and V-Ki67 for Ki67 low (P =  0.060) 
and overall grades (P =  0.068). And, there was no statistical difference between M-Ki67 and V-Ki67 for Ki67 
moderate (P =  0.513) and overall grades (P =  0.082). Moreover the results in Table 2 indicate the differences 
between M-Ki67 and C-Ki67 were lower than those between M-Ki67 and V-Ki67 for each Ki67 grade and overall 
grades.
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Consistency analysis of M-Ki67, C-Ki67 and V-Ki67 indexes by intraclass correlation coef-
ficient (ICC) test. ICC test was performed to explore inter-observer consistency of M-Ki67, C-Ki67 and 
V-Ki67 indexes (Table 3). For overall grades, M-Ki67 vs. C-Ki67 (ICC =  0.964, P <  0.001), M-Ki67 vs. V-Ki67 
(ICC =  0.923, P <  0.001), and C-Ki67 vs. V-Ki67 (ICC =  0.919, P <  0.001) had good consistency. The consisten-
cies of M-Ki67 vs. C-Ki67 in low (ICC =  0.662, P =  0.002), moderate (ICC =  0.755, P <  0.001) and high grades 
(ICC =  0.575, P =  0.012) were higher than those of M-Ki67 vs. V-Ki67 in low (ICC =  0.585, P =  0.010), moderate 
(ICC =  0.570, P =  0.013) and high grades (ICC =  0.494, P =  0.036). Only the consistency of C-Ki67 vs. V-Ki67 
in low grade (ICC =  0.320, P =  0.153) has no statistical significance. The results indicate that C-Ki67 has higher 
consistency than V-Ki67 in each Ki67 grade.

Figure 1. Typical examples of different Ki67 indexes counted by computerized method. Original images, 
recognized images of cancer cells, recognized images of Ki67-positive cancer cells, and merged images of 
recognized cancer and Ki67-positive cancer cells for BC with Ki67 low grade (A1–A4), moderate grade (B1–B4), 
and high grade (C1–C4). (Magnifications: 400×).

Ki67 grades (%) Median M-Ki67 (range) Median C-Ki67 (range) Median V-Ki67 (range)

Low (≤ 10) 8 (1–12) 6.5 (1–21) 5.5 (2–13)

Moderate (>10 
and < 50) 26 (18–41) 23.5 (6–42) 21 (8–43)

High (≥ 50) 55.5 (45–74) 49 (30–71) 43 (25–68)

Overall grades 26 (1–74) 23.5 (1–71) 21 (2–68)

Table 1. Results of M-Ki67, C-Ki67 and V-Ki67 counting for 90 multiplexed images of 30 BC patients. 
Results of Ki67 counting not located in defined ranges of Ki67 grades may be caused by following reasons: 
(1) There are variations in the Ki67 indexes of randomly acquired images; (2) There are variations in the Ki67 
indexes of Ki67 counting methods. M-Ki67: marked Ki67; C-Ki67: computerized Ki67; V-Ki67: visual Ki67.

Ki67 grades (%) M-Ki67 vs. C-Ki67 M-Ki67 vs. V-Ki67 C-Ki67 vs. V-Ki67

Low (≤ 10) P =  0.725 P =  0.060 P =  0.026

Moderate (>10 
and < 50) P =  0.236 P =  0.068 P =  0.513

High (≥ 50) P =  0.025 P <  0.001 P = 0.011

Overall grades P =  0.288 P =  0.005 P =  0.082

Table 2. Comparisons of M-Ki67, C-Ki67 and V-Ki67 counting by ANOVA analysis. ANOVA: analysis of 
variance; M-Ki67: marked Ki67; C-Ki67: computerized Ki67; V-Ki67: visual Ki67.
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Spearman correlation analysis of M-Ki67, C-Ki67 and V-Ki67 counting. The correlations among 
M-Ki67, C-Ki67 and V-Ki67 counting were tested by Spearman analysis (Table 4). The correlation coefficient 
of M-Ki67 vs. C-Ki67 for Ki67 low (r =  0.671, P <  0.001), moderate (r =  0.628, P <  0.001) and overall grades 
(r =  0.932, P <  0.001) was higher than those of M-Ki67 vs. V-Ki67 for Ki67 low (r =  0.413, P =  0.023), moderate 
(r =  0.415, P =  0.023) and overall grades (r =  0.895, P <  0.001). For Ki67 high grade, the correlation coefficient 
of M-Ki67 vs. C-Ki67 (r =  0.370, P = 0.044) was lower than that of M-Ki67 vs. V-Ki67 (r =  0.378, P =  0.039). 
And correlation coefficients of C-Ki67 vs. V-Ki67 for Ki67 moderate (r =  0.522, P =  0.003) and overall grades 
(r =  0.874, P <  0.001) had statistical significance. Those results reveal that in specimens with either low or moder-
ate Ki67 grades, C-Ki67 counting results will have greater consistency than V-Ki67 counting.

Discussion
In this study, we have developed a three-color simultaneous imaging of cancer cell proliferation marker Ki67, 
cancer cell cytoplasm CK and all cell nuclei (Fig. 2A). CRi Nuance multispectral imaging system was applied 
to simultaneously obtain an integrated image of 3 markers of interest in one imaging procedure, rather than 
the merged images of 3 individual colors (Fig. 2B,C). After eliminating non-target tissue autofluorescence, 
the integrated image was unmixed into three separate images of CK with yellow signal, Ki67 with red signal 
and DAPI with blue signal (Fig. 2C,D). Compared with fluorescent multiple imaging developed by Klimowicz  
et al.13,27, this method has two improvements. First is the improvement in imaging technique. QDs are semi-
conductor nanocrystals with excellent optical properties of narrow emission and wide excitation spectrum, a 
property favoring multiplexed imaging under one excitation spectrum without mutual interference of targeted 
signals of CK and Ki6728-30. This technical improvement could help accurately locate the markers of interest33. 
Second is the improvement in image information acquisition and analysis. The CRi Nuance multispectral imag-
ing system guarantees that the information simultaneously obtained is the spectral signals of Ki67, CK and DAPI, 
further eliminating the interference of tissue autofluorescence and noisy signals with similar color but different 
spectrum10. These two improvements made our work a step forward to improving the precision and automatic 
process of Ki67 measurement.

Based on our previously developed computerized pathological image analysis approaches33-35, we developed 
a computerized method to automatically recognize and count Ki67 index in this study. The computer-recognized 
processes were briefly demonstrated in Fig. 3. These images showed cancer cell nuclei were recognized by the 
computer with green pseudo-color, but stromal cell nuclei were not (Fig. 3A1,A2), and Ki67-postive cancer cell 
nuclei were recognized by the computer with cyan pseudo-color, but Ki67-positive stromal cell nuclei were not 
(Fig. 3B1,B2). The merged images of recognized cancer cells and Ki67-positive cancer cells showed cell nuclei 
with red Ki67 staining and blue DAPI staining outside the yellow CK staining background were not recognized by 
the computerized method (Fig. 3C1,C2). Compared with computerized methods developed based on IHC stain-
ing12,18,23,25,36, the multiple imaging method could specifically label cell nuclei, cancer cell and Ki67 positive cell 
nuclei, which can assist computer to define and recognize cancer cell nuclei and Ki67 positive cancer cell nuclei, 
and eliminate the interference of stroma cells. Any blue signal outside the yellow background of CK is not cancer 
cell, as indicated by the green arrow in Fig. 3C1. Similarly, any red signal outside the yellow background of CK is 
not cancer cell Ki67, as indicated by the cyan arrow in Fig. 3C1. Therefore, this technical improvement could help 
accurately locate the markers of interest.

Ki67 grades (%) M-Ki67 vs. C-Ki67 M-Ki67 vs. V-Ki67 C-Ki67 vs. V-Ki67

Low (≤ 10) ICC =  0.662, 
P =  0.002

ICC =  0.585, 
P =  0.010

ICC =  0.320, 
P =  0.153

Moderate (>10 
and < 50)

ICC =  0.755, 
P <  0.001

ICC =  0.570, 
P =  0.013

ICC =  0.656, 
P =  0.003

High (≥ 50) ICC =  0.575, 
P =  0.012

ICC =  0.494, 
P =  0.036

ICC =  0.488, 
P =  0.038

Overall grades ICC =  0.964, 
P <  0.001

ICC =  0.923, 
P <  0.001

ICC =  0.919, 
P <  0.001

Table 3. Consistency of Ki67 grade between C-Ki67index and M-Ki67 index by ICC test. ICC: intraclass 
correlation coefficient; M-Ki67: marked Ki67; C-Ki67: computerized Ki67; V-Ki67: visual Ki67.

Ki67 grades (%) M-Ki67 vs. C-Ki67 M-Ki67 vs. V-Ki67 C-Ki67 vs. V-Ki67

Low (≤ 10) r =  0.671, 
P <  0.001

r =  0.413, 
P =  0.023

r =  0.182, 
P =  0.337

Moderate (>10 
and < 50)

r =  0.628, 
P <  0.001

r =  0.415, 
P =  0.023

r =  0.522, 
P =  0.003

High (≥ 50) r =  0.370, P = 0.044 r =  0.378, 
P =  0.039 r =  0.324, P = 0.080

Overall grades r =  0.932, 
P <  0.001

r =  0.895, 
P <  0.001

r =  0.874, 
P <  0.001

Table 4. Correlation analysis of M-Ki67,C-Ki67 and V-Ki67 counting by Spearman analysis. M-Ki67: 
marked Ki67; C-Ki67: computerized Ki67; V-Ki67: visual Ki67.
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To validate the performance of the C-Ki67 counting, we performed the comparisons of C-Ki67, M-Ki67 and 
V-Ki67 counting methods. In this study, M-Ki67 counting was a very carefully counting method to count Ki67 
index as accurately as possible (Fig. 4), and was taken as the golden standard of Ki67 index. Results of M-Ki67, 
C-Ki67 and V-Ki67 counting for BC images were showed in Table 1. ANOVA results did not reveal statistical 
difference in M-Ki67 vs. C-Ki67 (P =  0.288) for overall grades, but there was statistical significant differences in 
M-Ki67 vs. V-Ki67 (P =  0.005) for overall grades (Table 2). The ICC test indicated consistencies in M-Ki67 vs. 
C-Ki67 were higher than those in M-Ki67 vs. V-Ki67 for all grades (Table 3). Spearman analysis indicated that 
the correlation coefficient was also higher in M-Ki67 vs. C-Ki67 than M-Ki67 vs. V-Ki67 for all grades besides 
high grade (Table 4). Similar to computerized methods established based on IHC staining18,36, the above results 
from this study demonstrated that C-Ki67 counting is better than V-Ki67 counting. At least, the counting perfor-
mances of computerized methods are comparable to visual or manual counting methods12,23,25. Therefore, C-Ki67 
could be considered as a sound substitution to M-Ki67. This could help increase the evaluation efficiency while 
maintaining the evaluation accuracy. The results also indicate that the current V-Ki67 counting method is not 
accurate, and it has increased efficiency but at the cost of reduced accuracy.

Although the integrated strategy of imaging and computerized method developed in this study showed advan-
tages in automation, efficiency, consistency and better counting performance, a limitation should also be men-
tioned. Since this work at the current stage is focused on technical development, the prognostic significance of 
Ki67 index counted by the integrated strategy is not fully evaluated. In the future, more BC samples with com-
pletely clinic-pathological and prognostic information should be studied to verify the significance of C-Ki67 in 
prognosis and treatment of cancer.

Conclusion
Based on the techniques of QDs double imaging and organic dye imaging, this study successfully developed a 
computerized image recognition and analysis system to automatically count Ki67 index of BC. Compared with 

Figure 2. Major procedures of multiplexed imaging and image acquisition for this study. QDs-based double 
imaging and DAPI imaging for BC tissues (A), information acquisition of multiplexed imaging (B,C) and 
information unmixing of multiplexed imaging (C,D).
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visual counting method, this integrated strategy could improve the accuracy and efficiency of Ki67 index evalu-
ation in cancer.

Patients and Methods. Specimens. The fresh breast invasive ductal carcinoma formalin-fixed 
paraffin-embedded specimens tissue sections (thickness: 4 μ m) from 30 patients with different Ki67 index (10 
patients with low grade of Ki67 index ≤  10%, 10 patients with moderate grade of Ki67 index >  10% and <  50%, 
and 10 patients with high grade of Ki67 index ≥  50%) independently interpreted by two BC pathologists with 
rich experience based on IHC Ki67 staining were selected for this study. The technical procedures of all BC tissue 
specimens were performed by routine standardized pathological methodology in validated clinical laboratory to 
guarantee the consistency of pre-analytical issues. The study was approved by the Institutional Ethics Committee 
of Zhongnan Hospital of Wuhan University and undertaken according to the ethical standards of the World 
Medical Association Declaration of Helsinki. The written informed consent was obtained from the patients prior 
to operation to use tissue samples for scientific researches.

Figure 3. The technical procedures of Ki67 counting by computerized method. Recognition and counting 
of cancer cells with DAPI staining in CK stained area, as green pseudocolor (A1,A2) and cancer cells with Ki67 
staining in CK stained area as cyan pseudocolor (B1,B2) both by the developed computerized method; the 
original image of CK, Ki67 and DAPI imaging for BC (C1) and merged image of recognition and counting of 
cancer cells with DAPI staining and Ki67 staining (C2). Stromal cells marked with green arrows (A1,A2, C1 and 
C2) and stromal Ki67-positive cells marked with cyan arrows (B1, B2, C1 and C2) were not recognized by the 
computerized method. (Magnifications: 400×).
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Multiplexed imaging of CK, Ki67 and DAPI. Multiplexed imaging of CK, Ki67 and DAPI was divided into two 
parts (Fig. 2A): QDs-based double imaging on CK and Ki67, and fluorescent imaging of DAPI. The major staining 
procedures were as following: BC sections heating →  de-paraffinizing →  hydration →  antigen retrieval →  block-
ing →  primary antibodies for Ki67 and CK →  staining with QDs-585 and QDs-655 simultaneously →  wash-
ing →  DAPI counterstaining. QDs-based double imaging has been well established at our center with detailed 
procedures in our previously published studies10,31,37. At first, the mixture of primary antibodies of anti-Ki67 
rabbit monoclonal antibody (Clone: SP6; dilution: 1:100, Wuhan Jiayuan Quantum Dots Co., Ltd, China) and 
anti-CK mouse monoclonal antibody (Clone: AE1/AE3; dilution: 1:100, Wuhan Jiayuan Quantum Dots Co., Ltd, 
China) were applied to simultaneously recognize Ki67 and CK antigens in BC tissue sections at 4 °C overnight. 
Then, QDs-585 conjugated goat anti-mouse IgG (dilution: 1:200, Life Technologies, USA) and QDs-655 conju-
gated mouse anti-rabbit IgG (dilution: 1:600, Life Technologies, USA) was used to stain the yellow fluorescence 
of CK at the cytoplasm and the red fluorescence of Ki67 at the nucleus at 37 °C for 2 h. After QDs-based imaging, 
DAPI working solution was employed to counterstain cell nucleus for 10 min in the dark condition.

Image acquisition and unmixing. Fluorescence information on Ki67, CK and DAPI was simultaneously and 
randomly obtained based on 3 fields for each BC tissue sections under Olympus BX51 fluorescent microscope 
(Olympus Optical Co., Ltd. Tokyo, Japan) equipped with CRi Nuance multispectral imaging system (Cambridge 
Research and Instrumentation, Inc., Woburn, MA, USA) at 400 ×  magnifications. After imaging acquisition, the 
unmixing of information on Ki67, CK and DAPI was performed by the software package within CRi Nuance 
multispectral imaging system, which was divided into 2 major technical steps: (1) Selection of targets with dif-
ferent spectra: Ki67, CK, DAPI and tissue auto-fluorescence were selected as red, yellow, blue and black signals 
(automatically set by the software), respectively (Fig. 2B,C); (2) Image unmixing and elimination of background 
noise: the targets information with different spectra was automatically unmixed by the software based on specific 
spectrum into 3 separate images, i.e. CK image with yellow signal (Fig. 2D, upper panel), Ki67 image with red 
signal (Fig. 2D, middle panel), and DAPI image with blue signal (Fig. 2D, lower panel).

Ki67 counting by marked method. To count Ki67 index of BC tissues as accurately as possible, the merged images 
of Ki67 and CK, DAPI and CK were used to establish a M-Ki67 counting. After image acquisition and unmixing, 
merged images of Ki67 and CK (Fig. 4A), DAPI and CK (Fig. 4B) were divided into 9 equal parts by 4 dotted 
lines. Then, the numbers of Ki67 and DAPI only in CK-positive area with yellow QDs signals for each part were 
counted carefully by an expert pathologist with marked method, and verified by another pathologist. For each 
merged image part, only Ki67 and DAPI at the upper and left lines were counted, and those at the right and bot-
tom lines of each part were ignored. This method produced a very accurate M-Ki67 counting (total number of 
Ki67 in CK-positive ÷  total number of DAPI in CK-positive) as the golden standard of Ki67 index in this study.

Ki67 counting by computerized method. A computerized method was developed to automatically count 
Ki67-positive cancer cell nuclei with red QDs signal and cancer cell nuclei with blue DAPI signal within cancer 
cell cytoplasm with yellow QDs signal (Fig. 3). First, pre-processing operations such as Median-Filter and con-
trast stretching were performed to denoise and adjust the contrast for improving image quality and signal unmix-
ing. Second, the unmixed images were converted to gray-scales. The Ostu adaptive threshold method was used to 
obtain the binarization results. After morphological operations and flood-fill operation, the masks of blue DAPI 
of cell nuclei, red QDs of Ki67 and yellow QDs of CK were obtained, respectively. Since the obtained masks of the 
blue nuclei and red Ki67 positive nuclei contain connected clusters of nuclei, the marker-controlled watershed 
method was used to segment these two masks for identifying individual nucleus and post-processing procedures 
were used to correct the possible segmentation errors such as over or under-segmentation. Finally, blue cell nuclei 

Figure 4. BC Ki67 counting by marked method. The merged images of Ki67 and CK (A), DAPI and CK (B) 
were divided into 9 equal parts; the numbers of Ki67 and DAPI only in CK-positive area for each part were 
counted by marked method, but Ki67 (blue arrows, A) and DAPI (red arrows, B) not in CK-positive area were 
ignored; a very accurate M-Ki67 index (total number of Ki67 in CK-positive ÷  total number of DAPI in CK-
positive) was produced. (Magnifications: 400×).
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and red Ki67-positive cell nuclei surrounded with yellow cell cytoplasm of CK staining were counted. The C-Ki67 
index was the ratio of Ki67-positive cell nuclei and blue cell nuclei within yellow CK signal, which expressed as 
percentage. The recognition and counting of cancer cells with DAPI staining (Fig. 3A1,A2), cancer cells with 
Ki67 staining in CK stained area (Fig. 3B,B2), and original image of CK, Ki67 and DAPI imaging (Fig. 3C1) and 
merged image of recognition and counting of cancer cells with DAPI staining and Ki67 staining (Fig. 3C2) were 
depicted in Fig. 3.

Ki67 counting by visual method. A subjective interpretation for the Ki67 index on the merged images of Ki67/
CK and DAPI/CK was performed by two pathologists independently to provide a quantitative Ki67 index value 
of each image. The subjective visual method results of two pathologists for Ki67 index were defined as V-Ki67 
with mean values.

Statistical analysis. Statistical analysis was performed by SPSS 17.0 software (SPSS Inc. Chicago, IL, USA). 
M-Ki67, V-Ki67 and C-Ki67 indexes were expressed as percentages for each, and the differences of among the 
three results were tested by ANOVA analysis. The ICC consistency test and spearman correlation were used to 
analyze the consistency and correlation of M-Ki67, V-Ki67 and C-Ki67 counting. Two sided P <  0.05 was consid-
ered as statistically significant.
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