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Universal anyons at the irradiated 
surface of topological insulator
Rui Wang1, Wei Chen2, Baigeng Wang1 & D. Y. Xing1

Anyons have recently received great attention due to their promising application in topological 
quantum computation. The best validated system that enjoys the anyonic excitations are the Laughlin 
states. The quasi-particles in Laughlin states are neither fermions nor bosons but possess the discrete 
statistical angle θ = π/m, with m being an integer. Here we report a possible realization of the universal 
Abelian anyons, whose statistical angle can be tuned continuously by external parameters and can 
take any arbitrary values interpolating θ = 0 and θ = π. The proposed setup is the surface state of a 
three dimensional topological insulator driven by an amplitude-modulated circularly-polarized light. It 
is found that the external field leads to a particular Floquet phase, which is a two-spatial-dimensional 
analogy of the Weyl semimetal phase in the Floquet first Brillouin zone. The chiral anomaly of this 
phase results in a U(1) Chern-Simons gauge theory with a tunable Floquet Chern number. Owing to this 
underlying gauge field theory, the irradiated surface of topological insulator constitutes a promising 
platform for the observation of the universal anyons.

The Abelian or non-Abelian Chern-Simons (C-S) gauge field action usually serves as the low energy effective 
response theory of various topological nontrivial state of matters, such as the chiral spin liquid1, the topological 
insulators (TIs)2 and the Weyl semimetal (WSM) phase3–6. An interesting application of the C-S gauge field theory 
is its prediction of the anyonic excitations. As is known, the 1/m fractional quantum Hall state (FQH) possesses 
the anyons with the statistical angle θ =  π/m. Since m is an integer, the value of θ is not universal but discrete. 
Therefore, it is interesting, both theoretically and experimentally, to answer the question: whether anyons with 
continuously tunable statistics can be realized. In order to realize the universal tunable anyons, one should search 
for states that enjoy the Abelian Chern-Simons term with a tunable coefficient7. Since the C-S gauge field theory 
associated with the WSM phase has a tunable coefficient that is proportional to the distance of the Weyl points5, 
WSM serves as a promising starting point. However, WSM is defined to be three dimensional material, where the 
anyons are forbidden8. These arguments suggest that a two-spatial-dimensional version of the WSM phase, whose 
electro-magnetic response is described by the U(1) Abelian C-S theory with a continuously tunable coefficient, 
constitutes the promising platform to realize the universal anyons.

In order to search for this special phase, we resort to the non-equilibrium states driven by external fields. 
Recently, the study on the band topology has been extended to the periodic driving case9, termed as the Floquet 
phases. It turns out that the Floquet phases may exhibit nontrivial band topology, and the utilization of the exter-
nal field also provides more tunable parameters to achieve novel topological phases10–15. For example, the Floquet 
fractional Chern insulator14, the Floquet topological insulator15, the Floquet Weyl semimetal16, and the Floquet 
Majorana fermions17,18 are proposed. Moreover, the Floquet-Bloch states of a topological insulator have been 
observed in experiment19, which shed light on more future applications. The special feature of the Floquet phases 
is that the periodically driven system can absorb and emit photons, forming Floquet bands denoted by different 
photon numbers n. This effectively enlarges the “spacetime” by introducing a fictitious dimension to the undriven 
phase, and therefore provides a possibility for the two dimensional (2D) driven system to exhibit the chiral anom-
aly. This fact motivates us to simulate a 3D WSM by driving a certain 2D phase, where the universal anyons may 
emerge as the quasi-particle excitations.

In this work, we find that the universal anyons can be realized at the irradiated surface of TI. Our main result is 
that an amplitude-modulated circularly-polarized light have two effects on the TI surface: (a). Due to the coupling 
between different Floquet bands, it introduces a fictitious momentum q and enlarges the base manifold of the 
Hamiltonian, replacing the first Brillouin zone (FBZ) by the Floquet first Brillouin zone (FFBZ)20. (b). It generates 
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an effective inhomogeneous Zeeman field, which is a function of q. These two effects lead to an undiscovered 
topological state of matter that exhibits the following non-trivial topological properties. First, it enjoys two gap-
less Weyl points3 in the FFBZ, which are topologically robust to any perturbations. So we term this state the 
pseudo Weyl semimetal (PWSM) phase. Second, the PWSM possesses the chiral anomaly, which leads to a U(1) 
Chern-Simons gauge field theory with a tunable coefficient C. This differs from the conventional Chern-Simons 
action of the integer and fractional quantum Hall state in the sense that it predicts two novel topological behav-
iors: the universal anyon excitations and the tunable quantum anomalous Hall (QAH) effect.

Results
Quasi-energy band structure.  We motivate the description of the details of the model and its analysis by 
first showing the main results, which are obtained using a combined formalism of functional path integral and the 
Floquet-Bloch theory. We consider a TI surface driven by an off-resonant, circularly-polarized light with a slow-
ly-modulated amplitude, as is shown in Fig. 1(a). The effect of the off-resonant light, with the period T1, on the TI 
surface has been studied by ref. 10, where a constant Zeeman gap is opened, leading to the QAH effect. Here we 
further require the amplitude ( )t  to be periodic and slowly varying, with the period T2. The function ( )t  is 
generic, and its specific form does not affect the qualitative results below. For purpose of clarity, we assume 
( ) = + ( )q qcos2

0 1    , with q =  ω2t and ω2 =  2π/T2.
Using the two-time Floquet formalism (see below), we obtain the effective Floquet Hamiltonian describing 

the irradiated TI surface

τ σ τ σ= ⋅ + ⋅ . ( )k q 1eff
3 0

0

Here the τ, σ represent the chirality and the band degrees of freedom respectively. In Eq. (1), we use k to 
denote the three dimensional “momentum”, = ( , , )k k qk x y , where q enters into the Hamiltonian as the intro-
duced “momentum” due to the external periodic field20. The quasi-energy dispersion is shown in Fig. 1(b). As is 
shown, the amplitude-modulated circularly-polarized light drives the single Dirac cone in the TI surface into two 
Weyl nodes (with opposite chiralities) in the low-energy window in the FFBZ at ± q0, with = ( , , )qq 0 00 0  and 

 π= − ( / )q arccos0 0 1  for / ≤ 10 1  . It is well known that the gapless nodes in the nondegenerate two band 
model is robust, since all the three Pauli matrices are used up so that no more mass terms can be added to open 
up the gap. This robustness is due to topology but not symmetry, leading to a peculiar topological matter of state, 
termed the Weyl semimetal3. However, different from the conventional 3D WSM, the Weyl nodes here lie in the 
time axis (q) and they are generated by driving the TI surface, therefore we term this peculiar state the PWSM 
phase. The normal 3D WSM possesses the semi-quantized anomalous Hall effect, where the conductance is pro-
portional to the distance of the Weyl nodes. Here due to the Floquet theory, kz is replaced by q, therefore a similar 
anomalous Hall conductance proportional to q0 can be expected in the 2D TI surface. Besides, the replacement of 
kz by q is nontrivial in the sense that it allows the existence of anyonic excitations. This is because, in this case, no 
continuous contractible loop that has a vanishing local phase8 can be constructed any more due to the definition 
of the braiding of the Floquet states17. To validate these expectations, we perform the calculation of the Berry 
phase curvature and study the chiral anomaly of the PWSM phase.

Berry curvature of the PWSM phase.  For any fixed ky, the Berry phase curvature is defined by the Berry 
phase gauge field ai(k),
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Figure 1.  (a) The topological insulator surface driven by an amplitude-modulated circularly-polarized light. 
(b) The quasi-energy dispersion (with ky =  0) of the driven TI surface. The amplitude-modulated circularly-
polarized field drives a single Dirac node into two Weyl nodes that lie in the additional dimension q in the 
FFBZ, with the location ± q0.
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with α α( ) = − ∑ 〈 |∂ | 〉α∈a ik k ki occ ki
 and i =  x, z. kz is used to denote q for brevity and αk  is the Bloch function 

of the α band. We calculated and plotted the density distribution of fxz(k) on the FFBZ, as is shown in Fig. 2. The 
first, second and third panel shows fxz(k) for / = − , ,1 0 10 1  , respectively. For / = − 10 1  , we have q0 =  0, 
therefore both the two Weyl nodes lie at (0, 0, 0). When /0 1   is varied from − 1 to 1, the Weyl nodes gradually 
get separated in the FFBZ, and finally merge with each other at (0, 0, π). One can check that the q coordinates of 
the dividing lines between the dark and light areas in Fig. 2 coincide with the locations of the Weyl nodes. As 
such, the Berry phase curvature has nontrivial values inside and trivial values outside the two Weyl points. This is 
consistent with the well-known Chern number C of the conventional 3D WSM phase, where C =  1 and C =  0 for 
areas between and outside the two Weyl nodes respectively. The fact that the PWSM shares the same Chern num-
ber distribution with the conventional WSM phase is important, since it allows one to modulate the Berry phase 
accumulation by tuning the amplitude  /0 1. Let us consider the braiding of two quasi-particles. In a complete 
period from q =  − π to q =  π, the non-trivial Berry phase accumulation only occurs in the topological non-trivial 
(light) region, while the contribution is zero for the trivial (dark) region. Therefore, the total Berry phase in a 
complete period is proportional to the width of the light area, that is proportional to the distance of the Weyl 
points, θ ∝ ∝q q2 0 0. In this sense, the amplitude brings about the tunable Berry phase via modulating the sepa-
ration between Weyl points. This understanding shows that the the time-evolution of the Floquet states can result 
in the universal anyon statistics (see below), and the anyon here emerges due to completely different reasons from 
that of the FQH effect. In the following, we strictly prove the existence of the universal anyons by studying the 
underlying gauge field theory.

Pseudo chiral anomaly.  To extract the universal anyons, we study the electromagnetic response theory of the 
PWSM phase. The external electromagnetic field Aμ is minimally coupled to the pseudo Weyl fermions, i.e., 
Eq. (1). Utilizing the chiral symmetry, we can eliminate the distance of the Weyl fermions and arrive at a mass-
less Dirac fermion5. However, when performing the chiral transformation, great attention must be paid to the 
Jacobian of the integral measure, which can lead to the chiral anomalies and some observable effects21.

The problem of the chiral anomaly of the conventional WSM is well studied5,21. In the proposed PWSM phase, 
since all the Dirac matrices are well-defined, a similar chiral anomaly should also exist. With a few modifications, 
we arrive at the action δ S describing the chiral anomaly (see Method),

∫δ
π

= ∂ , ( )
µνρ

µ ν ρS C d rdt A A
4 3

2 

where µ ν ρ, , = , ,0 1 2 and e, ħ is set to 1. Eq. (3) is a U(1) C-S theory with a tunable coefficient C, with C =  q0/π. 
To make the physical meaning more explicit, it is convenient to make a Hubbard-Stratonovich decomposition, 
which leads to

Figure 2.  The density distribution of the Berry phase curvature fxz(k) in the FFBZ (with ky fixed to 0.1). The 
first, second, third panel depicts the case where / = − , ,1 0 10 1   respectively.
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π π
= − ∂ + ∂ , ( )µ ν ρ

µνρ
µ ν ρ

µνρm a a A a1
4

1
2 4L ε ε

where m =  1/C and aμ is the introduced auxiliary field. The above equation exactly coincides with the effective 
Lagrangian of the v =  1/m FQH7 and it is interesting to observe that the distance of Weyl nodes is the analogy of 
the filling factor in the FQH state. The key difference here is that  /0 1 is not discrete but can be tuned continu-
ously. A variation of the action δ S shows that this state enjoys a tunable QAH effect5, with the conductance 
σ =xy

Ce
h

2
. This is very similar to the semi-quantized Hall conductance in the WSM phase, but the Hall current 

here resides in the 2D TI surface and can be adjusted by /0 1  . The Hall conductance is shown by the brown 
curve in Fig. 3, which varies between 0 and e2/h.

Eq. (3) indicates a field theory of anyons. This well-known conclusion is discussed in refs 22–24. Despite the 
detailed discussion, the following arguments can show the anyons clearly. From the equation of motion, =δ

δ
L 0
A0

, 
we know that flux are attached to point particles, forming quasi-particle excitations7. The statistical angle for unit 
aμ charge is extracted to be the Berry phase θ accumulated during the braiding of the quasi-particles8. In this way, 
we obtain that θ =  Cπ =  q0, in agreement with the conclusion in the last section. As is discussed, C can be contin-
uously tuned by the amplitude  /0 1, so we arrive at the universal anyonic excitations with tunable θ at the 
irradiated TI surface, where the anyons are bound states of charge and flux. The interesting universal tunable 
statistics is shown by the blue curve in Fig. 3. As one varies /0 1   from − 1 to 0 and then to 1, the quasi-particles 
can evolve from bosons to semions and then to fermions.

The model Hamiltonian.  The Hamiltonian describing the driven TI surface reads

H A A Aσ σ ω σ ω π( ( ), ) = ⋅ + ( ( ) + ( ) ( + / )), ( )t t t t t tk cos sin 2 5x yk 1 1

where vF is set to 1 for brevity and ( )= ,k kk x y  is the two-dimensional lattice momentum. Since the Dirac cone 
is a low-energy effective description, an energy cutoff Λ  is implicit. As required, we have  ( + ) = ( )t T t2 , 
( ( ), + ) = ( ( ), )t t T t tk k1H A H A . In the following, we focus on the case where ω1 =  2π/T1 lies in the high fre-

quency regime with ω Λ1 , (see ref. 10), and ω2 lies in the low frequency regime, with ω Λ2 , as required by 
ref. 20. Due to the presence of the two time scale T1, T2 ( )T T1 2 , it is appropriate to resort to the two-time for-
malism of the Floquet theory25, which leads to

 ( ( ), )Φ ( , ) = ∂ Φ ( , ) ( )˜ ˜ ˜ ˜A t t t t i t t 6tk k k

where H A H A( ( ), ) = ( ( ), ) − ∂˜ ˜ ˜ ˜t t t t i tk k . t̃  indicates the fast time and t denotes the slow time. In the two-time 
formalism, t̃  can be viewed as a parameter17. Moreover, since ω2 lies in the low frequency regime, we can use the 
Floquet-Bloch theorem and then drop out the term “i∂t”20, so that for fixed t̃ , the Hamiltonian is defined in the 
FFBZ. The Floquet state ( ), ˜u ttk  and the quasi-energy are determined by ( ) ( ) = ( ), , ,

˜ ˜ ˜ ˜t u t Eu tt t tk k k . In the fre-
quency ω1 space, the Floquet operator ( ),

˜ t̃tk  is mapped into, ω δ= − ,, , , ,
˜ nt m n t mn m nk k; ; 1   with

∫ ω δ= ( ) − .
( )

ω
, ,

( − )
,˜ ˜ ˜

T
dt t e n1

7t mn
T

t
i m n t

m nk k;
1 0

1
1

1 

Figure 3.  The calculated statistical angle θ and the Hall conductance versus the amplitude /A A0 1.
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Since ω1 lies in the off-resonant high frequency regime, we cannot drop out the term “nω1δn,m”. Instead, a per-
turbation treatment can be performed10,13,14, which leads to,    + ,

ω, , , , , , ,− [ ]t t t tk k k k;0 0
1

;0 1 ;0 1
1

. Inserting the 
Hamiltonian of the TI, Eq. (5), we obtain the effective Floquet Hamiltonian describing the irradiated TI surface 
in the second quantized form,

∫ σ
ω

σ=




⋅ + ( )





,

( )
, ,

†H
T

dtd c t ck k1 1
8

T
t z tk k

2 0 1

22


The Hamiltonian shows that the amplitude-modulated circularly-polarized light has two effects. (a). It 
enlarges the base manifold of the Hamiltonian, replacing the FBZ by the FFBZ. (b) It generates an effective tuna-
ble Zeeman field, which opens and closes the gap of the TI surface. Further assuming a specific function ( )t , the 
Hamiltonian can be reduced to the pseudo Weyl fermions in the low energy window, i.e., Eq. (1).

Now we are going to discuss the experimental applicability of our results. First, ω Λ1  and ω Λ2  should 
be satisfied. The topological surface states of the realistic material such as Bi2Se3, Bi2Te3 and Sb2Te3 have been well 
investigated26. Take Sb2Te3 as example, the cutoff energy of the surface Dirac cone is estimated to be Λ ≈ . eV0 1 26. 
So, the frequencies ν ω π= /( )21 1  and ν ω π= /( )22 2  should satisfy ν  25THz1  and ν  25THz2 . Second, we 
stress the requirement on the amplitude ( )q . Taking into account e, ħ and vF, the perturbation treatment in 
Eq. (8) is correct only when A �ω/ Λe vm F

2 2 2
1 , where m  is the maximum value of ( )q . We introduce a dimen-

sionless number = /e a hm m  , with a being the lattice constant of Sb2Te3. Then one can estimate that m 
should satisfy . 0 06m  (for v1 =  250THz). So, we do not have particular requirement on the amplitude 
strength as long as it is not too large. Last, we would like to remark that the splitting of the pseudo Weyl nodes q0 
depend neither on the absolute value of the amplitude nor on the frequencies. It only depends on the ratio of 0  
and 1, which are parameters that can be tuned experimentally. From / = − 10 1   to / = 10 1  , the splitting 
of Weyl nodes can be easily tuned from 0 to π. So, we conclude that the Weyl node separation can be achieved and 
modulated as long as the condition on the frequencies v1 and v2 are satisfied.

Discussion
Formally, the coupling constant of the topological action (such as C in Eq. (3)) can be identified as a topological 
invariant in terms of the Berry fiber bundle27. Now we consider the topological invariant and try to reveal the 
physical essence of the PWSM phase. In order to do so, we recall the effective gauge field theory describing the 
electromagnetic response of the Chern insulator2, which is very similar to Eq. (3). The only difference is that C 
is replaced by the first Chern number C1. Since C1 is calculated by the Berry phase defined in terms of the Bloch 
state2 and the Bloch state is the counterpart of the Bloch-Floquet state in the PWSM phase, we generalize the first 
Chern number to its Floquet version using the two-time Floquet theory17,25,

π
= ( , ) ∂ ( , ) , ( )∮C d u t i u tR R R1

2 9F R

where R is a varying parameter, ( , )u tR  is the Bloch-Floquet state and ∫⋅ ⋅ = ( / ) ⋅ ⋅T dt1 T
2 0

2  is the 
generalized inner product9. If one views the PWSM phase at any fixed parameter t, the PWSM phase would be 
either a 2D normal insulator or a Chern insulator with the first Chern number C1 =  0 and C1 =  1 respectively, 
depending on whether t lies in the trivial or non-trivial regime (see Fig. 2). The evolution of the Floquet state in a 
complete periodic T2 undergoes two topological phase transitions with the energy gap closes and then reopens. 
Taking this into account, Eq. (9) can be calculated to be CF =  q0/π, which exactly equals to the coefficient C in 
Eq. (3). The identification of C with the Floquet Chern number CF shows that the obtained action Eq. (3) is actu-
ally the effective topological field theory describing a Floquet version of the quantum Hall (QH) state.

Now we can conclude that the TI surface driven by an amplitude-modulated circularly-polarized light is a 
realization of the Floquet QH state, which shows a Weyl semimetal-like dispersion in the low energy window in 
the FFBZ. This PWSM phase is a close analogy of the normal 3D WSM, with the kz lattice momentum replaced 
by the time dimension q. A result of this substitution is that no continuous contractible loop that has a vanishing 
local phase can be constructed any more using the time dimension, therefore the anyons are in principle per-
mitted. This is validated by the associated gauge field theory, since we find that the chiral anomaly of the PWSM 
phase brings about a 2 +  1D U(1) Chern-Simons theory with a tunable coefficient, which further generates the 
universal anyonic statistics and the tunable QAH effect. This finding, to our best knowledge, serves as the first 
theoretical proposal to support the universal anyons in realistic solid state materials.

Method
Combined formalism of functional integral and the Bloch-Floquet theory.  In order to study the 
chiral anomaly of the PWSM phase, we develop a field theory of the periodically driven state. Since we are inter-
ested in the electromagnetic response of the PWSM phase, only the U(1) gauge field case needs to be considered. 
We start from the well-proved observation in ref. 20: A Hamiltonian defined in n −  1D first Brillouin zone (FBZ) 
is equivalent to a static one defined in nD FFBZ, if it is driven by a field in the low frequency regime (with the 
period T). The effective static Hamiltonian generally reads, ∫ ∫= ( , ), ,

†H dt d c t ck kF T
T

t tk k
1

0
. This equation 

shows that t can no longer be treated simply as time, it is a “momentum” that enlarges the FBZ to FFBZ. To obtain 
the electromagnetic response of HF, we take three following steps. (a). By straightforward generalizations of the 
conventional coherent-state path integral representation, we develop an effective action describing this non-equi-
librium state, which reads
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∫ ∫ ∫= ′ ∂ − ( , ′) , ( )−∞

+∞

, , ′ , , ′
†S

T
dt dt d c i t ck k1 [ ] 10

T
t t t t tk k

0


In deriving Eq. (10), a new time coordinate t′  is introduced due to the driven field. This treatment is essentially 
a field theory representation of the Floquet Green’s function method in refs 10,28, and it also agrees with the 
two-time formalism introduced in ref. 25. (b). We introduce a U(1) gauge field Aμ µ( = , ,…, )n0 1  that couples 
to the Floquet phase, leading to the action

∫ τ= ∂ + + (− ∇ + ) , ( )τ τ τ, ,
†S d d c ieA i e cr A[ ] 11r r0 

where we have made a wick rotation to the Euclidean spacetime and set the volume of “real” space to be 1. The 
driven field leads to a mixed space of lattice coordinate and photon number = ( , … , , )−r r rr n n1 1

20 by introduc-
ing an extra dimension (denoted by rn). = ( , , …, )A A AA n1 2 , with An being an auxiliary component. Aμ is 
independent on rn since the perturbation field Aμ does not rely on the photon number index of the Floquet state. 
− ∇i  is the momentum operator of = ( , …, , ′)−k k k tn1 1 . (c). Eq. (11) can be simplified utilizing the symmetry of 
S, followed by integrating out the matter fields. Transformation of S may bring about nontrivial Jacobian associ-
ated to the integral measure of the partition function ∫= −†Z Dc Dce S, denoted by δ S. Therefore, the one fermion 
loop effective action for the gauge field can be obtained

 δ, = (∂ + + (− ∇ + )) + , ( )τ
˜S A ieA i e SA A[ ] Tr[log ] 12eff 0 0

where (− ∇ + )˜ i eA  denotes the transformed Hamiltonian. A perturbative treatment of Aμ can further expand 
Seff, making possible the calculation of the Feynman diagrams order by order. Formally, using both the functional 
path integral and the Bloch-Floquet theory, we arrive at Eq. (12), which is the effective gauge field theory describ-
ing the electromagnetic response of the Floquet phases under our consideration.

Derivation of the pseudo Weyl chiral anomaly.  Using the formalism introduced in first section in the 
Method, the action of the PWSM phase can written as

∫ τ τ σ τ σ= ∂ + + ⋅ (− ∇ + ) + , ( )τ τ τ, ,
†S d d c ieA i e q cr A[ ] 13r r0

3 0 3
0

where we have coupled a U(1) gauge field Aμ to the Floquet phase. Here, as discussed in the last section, A3 is an 
auxiliary component and Aμ is independent on r3. This action has the chiral symmetry, i.e., S remains unchanged 
under the transformation →τ

τ θ
τ,

− /
,c e ci

r r
23

. One can show that the action can be simplified to

∫ τ τ σ= ∂ + + ⋅ (− ∇ + ) , ( )τ τ τ, ,
†S d d c ieA i e cr A[ ] 14r r0

3

if θ satisfies θ( ) = q rr 2 0 3. Therefore, the chiral transformation shows that two separate Weyl points can be equiv-
alently shifted into one Dirac node. This observation is physically incorrect. In fact, Eq. (14) only contributes to 
the first term in Eq. (12), and we have missed the anomalous term coming from the integral measure δ S. The 
particular transport behavior of the pseudo Weyl semimetal state comes from δ S, therefore in the following we 
give a detailed derivation of δ S, using the Fujikawa’s method5,21.

By introducing the Dirac matrices with γ0 =  τ1, γi =  iτ2σi (i =  1, 2, 3), and γ−5 =  − iγ0γ1γ2γ3, one can further 
write the action into,

∫ τ γ γ γ= (∂ + ) + ( ) . ( )τ
µ

µ µ τ, ,S d d c i ieA i i q cr [ ] 15r r
3 5

0

To calculate the Jacobian of the chiral transformation associated with the functional integral measure. We 
introduce the infinitesimal chiral transformation →τ

τ θ
τ,

− /
,c e ci ds

r r
23

, which can be denoted as the operator 
= τ θ− /

U e i ds 23
. From the action Eq. (15), we can introduce a Dirac kernel

γ γΞ = ∂ + + ( − ) , ( )
µ

µ µ µieA ib s[ 1 ] 165

where bμ =  (0, 0, 0, q0). Then, under the infinitesimal transformation, the Jacobian of the functional integral meas-
ure  = ( ) ≡ δ− ( )

U eDet S s2
 can be calculated, which leads to

∫ ∑δ
π

τ θ φ γ φ( ) = ( ) ,
( )

S s i ds d dr r
2

*
17n

n n
5

where φn is the eigenfunction of the Dirac kernel with the eigenvalue ϵn. Since γ5 satisfy γ , Ξ ={ } 05 , γ5φ is also a 
eigenfunction which corresponds to the eigenvalue − ϵn. Due to the orthogonal condition, we have φ γ φ∑ =* 0n n

5  
except for ϵn =  0. This suggests one to pick out the zero energy eigenstates. This can be achieved by introducing a 
regularization factor21,

∫ ∑δ τ θ φ γ φ( ) = ( ) ,
( )

−Ξ /S s ids d d er r *
18n

n
M

n
5 2 2
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with the regularization factor M taking the limit M →  ∞. To calculate the sum of n in Eq. (18), we make transfor-
mation to the momentum space (FFBZ). Then the total anomalous action can be calculated by further integrating 
s from s =  0 to s =  1, which leads to

∫ ∫ ∫δ τ θ ω
π π π

γ= ( ) ( ). ( )
−Ξ /S i ds d d d d dq tr er r

k

2 2 2 19
M

0

1

2
5 2 2

Finally, after expanding the exponential, we arrive at

∫δ
π

θ= ( ) , ( )
µνρσ

µν ρσS dtd dr F Fr r1
32 202 3 

where = ∂ − ∂µν µ ν ν µF A A . A Wick rotation has been performed to return back to the real time space. Since Aμ 
is independent on r3, we can integrate r3 in the action. Further integrating by parts and then taking into account 
θ( ) = q rr 2 0 3, we obtain the action describing the chiral anomaly of the pseudo Weyl semimetal phase.

∫δ
π

= ∂ , ( )
µνρ

µ ν ρS
q

d rdt A A
4 21

0
2

2

where μ, v, ρ =  0, 1, 2.

References
1.	 Kalmeyer, V. & Laughlin, R. B. Equivalence of the resonating-valence-bond and fractional quantum Hall states, Phys. Rev. Lett. 59, 

2095 (1987).
2.	 Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78, 195424 (2008).
3.	 Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic 

structure of pyrochlore iridates, Phys. Rev. B 83, 205101 (2011).
4.	 Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett. 107, 127205 (2011).
5.	 Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly, Phys. Rev. B 86, 115133 (2012).
6.	 Chen, Y., Wu, S. & Burkov, A. A. Axion response in Weyl semimetals, Phys. Rev. B 88, 125105 (2013).
7.	 Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation, Rev. 

Mod. Phys. 80, 1083 (2008).
8.	 Wen, X. G. Quantum Field Theory of Many-body Systems (Oxford University Press, Oxford, 2004).
9.	 Sambe, H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field, Phys. Rev. A 7, 2203 (1973).

10.	 Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: 
Photoinduced quantum Hall insulators without Landau levels, Phys. Rev. B 84, 235108 (2011).

11.	 Gu, Z. H., Fertig, H. A., Arovas, D. P. & Auerbach, A. Floquet spectrum and transport through an irradiated graphene ribbon, Phys. 
Rev. Lett. 107, 216601 (2011).

12.	 Morell, E. S. & Torres, L. E. F. F. Radiation effects on the electronic properties of bilayer graphene, Phys. Rev. B 86, 125449 (2012).
13.	 Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems, Phys. Rev. B 

82, 235114 (2010).
14.	 Grushin, A. G., Gómez-León, A. & Neupert, T. Floquet fractional Chern insulators, Phys. Rev. Lett. 112, 156801 (2014).
15.	 Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells, Nature Phys. 7, 490C495 

(2011).
16.	 Wang, R. et al. Floquet Weyl semimetal induced by off-resonant light, Europhysics Letters 105, 17004 (2014).
17.	 Liu, D. E., Levchenko, A. & Baranger, H. U. Floquet Majorana fermions for topological qubits in superconducting devices and cold-

atom systems, Phys. Rev. Lett. 111, 047002 (2013).
18.	 Kundu, A. & Seradjeh, B. Transport signatures of Floquet Majorana fermions in driven topological superconductors, Phys. Rev. Lett. 

111, 136402 (2013).
19.	 Wang, Y. H. et al. Observation of Floquet-Bloch states on the surface of a topological insulator, Science 342, 453–457 (2013).
20.	 Gómez-León, A. & Platero, G. Floquet-Bloch theory and topology in periodically driven lattices, Phys. Rev. Lett. 110, 200403 (2013).
21.	 Fujikawa, K. & Suzuki, H. Path Integrals and Quantum anomalies (Clarendon Press, Oxford, 2004).
22.	 Semenoff, G. W. Canonical quantum field theory with exotic statistics, Phys. Rev. Lett. 61, 517 (1988).
23.	 Fröhlich, J. & Marchetti, P. A. Quantum field theories of vortices and anyons, Commun. Math. Phys. 121, 177–223 (1989).
24.	 Polyakov, A. M. Fermi-Bose transmutations induced by gauge fields, Mod. Phys. Lett. A 3, 325 (1988).
25.	 Breuer, H. & Holthaus, M. Quantum phases and Landau-Zener transitions in oscillating fields, Phys. Lett. A 140, 507 (1989).
26.	 Zhang, H. et al. Topological insulator in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nature Phys. 5, 438–442 

(2009).
27.	 Volovik, G. E. The Universe in a Helium Droplet (Clarendon, Oxford, 2003).
28.	 Martinez, D. F. Floquet-Green function formalism for harmonically driven Hamiltonians, J. Phys. A: Math. Gen. 36, 9827 (2003).

Acknowledgements
We wish to acknowledge X. G. Wan, S. Y. Savrasov, L. B. Shao, Hongyan Lu, L. Sheng, Y. M. Pan and H. Q. Wang 
for valuable discussions. This work was supported by 973 Program under Grant No. 2011CB922103, and by 
NSFC (Grants No. 60825402, No. 11023002 and No. 91021003). Wei Chen acknowledges the supports from the 
National Natural Science Foundation of China under  Grant No. 11504171, the Natural Science Foundation of 
Jiangsu  Province, China under Grants No. BK20150734, and the Project funded by China Postdoctoral Science 
Foundation under Grants No. 2014M560419 and No. 2015T80544.

Author Contributions
All authors designed and performed the research and wrote the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.



www.nature.com/scientificreports/

8Scientific Reports | 6:20075 | DOI: 10.1038/srep20075

How to cite this article: Wang, R. et al. Universal anyons at the irradiated surface of topological insulator. Sci. 
Rep. 6, 20075; doi: 10.1038/srep20075 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Universal anyons at the irradiated surface of topological insulator
	Introduction
	Results
	Quasi-energy band structure
	Berry curvature of the PWSM phase
	Pseudo chiral anomaly

	The model Hamiltonian

	Discussion
	Method
	Combined formalism of functional integral and the Bloch-Floquet theory
	Derivation of the pseudo Weyl chiral anomaly

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Universal anyons at the irradiated surface of topological insulator
            
         
          
             
                srep ,  (2016). doi:10.1038/srep20075
            
         
          
             
                Rui Wang
                Wei Chen
                Baigeng Wang
                D. Y. Xing
            
         
          doi:10.1038/srep20075
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep20075
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep20075
            
         
      
       
          
          
          
             
                doi:10.1038/srep20075
            
         
          
             
                srep ,  (2016). doi:10.1038/srep20075
            
         
          
          
      
       
       
          True
      
   




