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Universal conformational 
properties of polymers in ionic 
nanogels
Hideki Kobayashi & Roland G. Winkler

Polyelectrolyte gels are known to undergo significant conformational changes in response to external 
stimuli such as pH, temperature, or the dielectric constant. Specifically, an increase of the degree 
of ionization associated with an increasing number of counterions leads to swelling of the network. 
For a macroscopically large gel, which is electrostatically neutral in its interior, swelling is no longer 
governed by electrostatic interactions, but rather by the osmotic pressure of counterions. However, 
this electrostatic neutrality is typically violated for nanogels, because counterions are free to leave a 
gel particle. Although nanogel-swelling exhibits similar features as swelling of micro- and macrogels, 
another mechanism has to be relevant. Here, we use molecular dynamics simulations and scaling 
theory to unravel the structural properties of nanogels upon changing the electrostatic interactions. We 
demonstrate that the swelling of nanogels is governed by screened electrostatic interactions without a 
relevant contribution by the counterion osmotic pressure.

Nano- and microgels are nanometer to micrometer size crosslinked polymer networks often comprised of poly-
electrolytes. Their ability to undergo reversible volume phase-transitions in response to environmental stimuli, 
such as pH, temperature, the ionic strength of the surrounding medium, or the quality of solvent1,2 renders them 
potential candidates for a broad-range of applications in drug delivery, sensing, template-based synthesis of inor-
ganic nanoparticles, and separation and purification technologies3–9 to name a few. Numerous theoretical and 
simulation studies of the swelling behavior of polyelectrolyte networks have been performed, in order to arrive 
at a microscopic understanding of the underlying mechanisms10–17. These studies typically focus on defect-free 
macrogels applying periodic boundary conditions, i.e., only the bulk properties of a gel are considered18.

Comparably little is known about finite-size crosslinked polyelectrolyte nano- and microgels19–23. Their finite 
size gives rise to phenomena, which are not present in bulk systems. Specifically, the permeability of a gel particle 
allows counterions to freely penetrate or leave the gel particle in response to the actual charge distribution and 
environmental conditions. For weak electrostatic interactions, no longer all counterions are contained inside 
the gel particles, as for a bulk system, but rather a large fraction is distributed in its vicinity19,21,24. In contrast, 
strong Coulomb attractions lead to counterion condensation and capturing of counterions inside a gel particle, 
comparable to macroscopic gels. The change of the counterion density associated with the repulsive Coulomb 
interaction between monomers leads to an interesting interplay, which significantly affects the nano- and micro-
gel structural properties.

The specificities by the finite size are reflected in the over-all charge of a gel particle. Macroscopic gels can 
be considered as neutral, at least their major part aside from a thin surface layer. This is in contrast to nano-and 
microgels. Below a certain size, the nanogels are no longer neutral, there is not even a neutral “core” part19,21. It is 
this type of gels, which we are interested in and will denote as nanogels in the following. The non-neutrality has 
far reaching consequences for gel swelling. In a bulk gel, which can be considered as electrostatically neutral, there 
is a broad range of electrostatic interactions, where gel swelling is attributed to the osmotic pressure of the coun-
terions25–27. Such a mechanism does not apply for nanogels, since counterions are able to leave the gel particle. 
Here, the question arises on the mechanisms which govern gel swelling in such systems, particularly on the range 
of interactions, where macrogels swell by counterion osmotic pressure.

Other finite-size branched polyions of different topology, e.g., stars, micelles, and brushes, share certain sim-
ilarities with nanogels24,28. Specifically the permeability is present. However, there are also distinct geometrical 
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differences, such as the charge distribution of star polymers, which increases toward the star center and gives rise 
to particular conformational properties28.

In order to elucidate the structural properties of nanogel particles, we perform large-scale computer simu-
lation, combining molecular dynamics simulations for the polymers with the Brownian multiparticle collision 
dynamics (B-MPC) approach29,30. Counterions are taken into account explicitly. Our emphasis is on the confor-
mational properties of the polyelectrolyte chains. We identify various swelling regimes. For weak electrostatic 
interactions, the so-called unscreened regime is obtained28, where the polymers swell with increasing Coulomb 
interaction strength. Here, we find that swelling is independent of the presence or absence of counterions. We 
derive a novel scaling relation, which captures the dependence of swelling on the Bjerrum length, number of 
crosslinks, and polymers. This regime is followed by a regime, which we denote as screened, in contrast to the 
typical notion of osmotic regime26,28. We show that screened electrostatic interactions are responsible for the 
observed conformational polymer properties. For even larger interaction strengths, counterions condense at the 
polymers and the nanogel collapses31.

Results
Computer simulations.  We consider a model nanogel comprised of a regular network of Np polyelectro-
lytes connected by Nc tetra-functional crosslinks. An individual polyelectrolyte is described as a self-avoiding 
linear chain composed of Nm coarse-grained monomers29. Every monomer carries a charge qm =  e. Counterions 
of charge qc =  − e are taken into account explicitly, such that the whole system is electrostatically neutral. The 
electrostatic interactions are described by the Coulomb potential. We characterize the strength of the Coulomb 
interactions by the interaction parameter Γ  =  e2/εlkBT =  lB/l, where ε is the dielectric constant of the implicit 
solvent, kB the Boltzmann constant, T the temperature, lB =  e2/εkBT the Bjerrum length, and e the magnitude of 
the elementary charge. Variations of Γ  correspond to changes of the charge density via their separation l or the 
Bjerrum length. We consider nanogels with Np =  220 and Np =  1236 polymers, each with Nm =  20 monomers, 
with the corresponding numbers of crosslinks Nc =  147 and Nc =  729.

Figure 1(a) shows snapshots of gel particles for various interactions strengths. For Γ −10 4, polymers behave 
as in a neutral system and the counterions are rather homogeneously distributed over the whole available volume 
(see also Fig. 2). With increasing Γ , the ion density inside the nanogel increases, and for Γ  >  1 the counterions 
start to condense along the polymers. Thereby, the nanogel radius of gyration Rg and that of the individual poly-
mers Rg

p increases first, passes trough a flat maximum and decreases again for Γ  >  1, as shown in Fig. 1(b). It is 
exactly the appearance of this plateau-like regime, which needs to be understood microscopically. Eventually, the 
nanogel collapses to a size smaller than that of a neutral nanogel due to counterion-mediated attractions of 
equally charged monomers20,31. A qualitatively similar behavior has been obtained for nanogels in ref. 20.

We consider dilute solutions of nanogels. In the plateau-like regime of interaction strengths, the gel radius of 
gyration is ≈ . ≈R R l2 5 45g g

n . This corresponds to the packing fractions 5 ×  10−2 and 6 ×  10−3 for the system 
sizes L/l =  200 and 400, respectively. In this range of system sizes, the gel size is rather independent of the nanogel 
concentration. The increase of the simulation box size by a factor of two, i.e, a change in concentration by a factor 
eight, hardly changes the shape of the radius of gyration curves. Since the counterion concentration is rather low 
outside of a nanogel in the plateau-like regime (cf. Fig. 2), we expect very little concentration effect on the gel 
conformation in this interaction range as long as the nanogel concentration is smaller than the overlap concen-
tration. Interestingly, up to Γ  ≈  0.1, the size of the gel particles is independent of the presence or absence of coun-
terions, since Rg increases essentially in an identical manner in systems without counterions. Hence, counterions 
neither contribute to gel swelling nor shrinkage in this regime. This is in strong contrast to bulk gels, which 
exhibit a significant influence of the counterions on gel swelling13,15 and is related to the nanometer size of the 
permeable particle. Here, a crossover from our particle-type behavior to bulk-gel behavior will appear above a 
certain particle size.

We find a pronounced dependence of /R Rg g
n on Nc and, hence, Np. Nanogels with Nc =  729 are more swollen 

at small Γ , but the nanogel-size saturates at about the same relative radius of gyration. We attribute the stronger 
polymer stretching at small Γ  to the larger amount of charges of the larger nanogel. We will address this aspect 
again further below.

Figure 2 shows radial counterion distribution functions P(r) for various interactions strengths Γ . The density 
of counterions within a gel particle (r/Rg <  1.5) increases with increasing Γ  and decreases at the same time in the 
outer volume. For large Γ , the electrostatic interactions between charged monomers and counterions effectively 
trap a major fraction of them inside of the nanogel. In contrast, for Γ  <  2 ×  10−2 the inside an outside counterion 
densities are rather similar. This implies that the osmotic pressure due to counterion-density differences is rather 
small or even negligible and cannot affect the swelling behavior of nanogels, at least in this regime.

Figure 3 displays the fraction Ni/N of counterions inside of a nanogel, i.e., within the radial distances r <  1.5Rg 
with respect to the center-of-mass of the particle32. Here, Ni is the number of counterions within a gel particle and 
N =  NmNp +  Nc is the total number of charged monomers. The homogeneous ion distributed for Γ  <  10−3 (cf. 
Fig. 2) implies a rather small ratio Ni/N. With increasing Γ , the interior concentration increases monotonically 
and approaches unity for Γ  >  10 due to Manning condensation33. The counterion concentration of the larger 
particle with Nc =  729 exceeds that of the smaller one for almost all Γ . Again, this is attributed to stronger 
Coulomb interactions by the higher total charge of the larger particle. In contrast to the gel radius of gyration Rg 
and the polymer radius of Rg

p displayed in Fig. 1(b,c), Ni/N naturally strongly depends on the simulation-box size, 
because a larger volume corresponds to an overall smaller counterion concentration. However, for Γ > .0 1, the 
concentration effect disappears and the Coulomb interactions begin to dominate over the counterion transla-
tional entropy. Electrostatic interactions between the monomers and the counterions effectively trap a fraction of 
them inside the nanogel. However, their density is lower than that of monomers for Γ 1. This has already been 
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Figure 1.  (a) Snapshots of gel particles in the presence of counterions (yellow) for various Coulomb 
interactions strengths Γ  as indicated. (b) Dependence of the nanogel radius of gyration Rg on the interaction 
strength Γ  for Nc =  147 and the system sizes L/l =  200 (■), 300 (•), 400 (), and Nc =  729 for the systems size 
L/l =  400 (☐). The symbols ∇  indicated simulation results without counterions for Nc =  147. Rg

n is the radius of 
gyration of a neutral gel, where / = .R l 17 6g

n  for Nc =  147 and 31.0 for Nc =  729. (c) Average radii of gyration of 
individual polymers Rg

p as function of the effective interaction strength Γ *. The dashed line is proportional to 
(Γ *)0.12. The solid lines are the numerical solutions of the equation ∂F/∂RE =  0, with F of Eq. (12). C =  0.032 for 
Nc =  147 (black) and 0.045 for Nc =  729 (red). Rg

pn (=  2.6 l) denotes the average radius of gyration of individual 
polymers.
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Figure 2.  Normalized radial counterion distribution functions P(r), with respect to the nanogel center of 
mass, for various interaction strengths as well as Nc = 147, Nm = 20, and L/l = 300. Rg is the nanogel radius of 
gyration for the respect value of Γ  (cf. Fig. 1(b)).
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reported in ref. 19, where the dependence of the number of counterions inside a nanogel has been studied as 
function of gel size. Figure 4 illustrates in more detail the radial effective charge. Here, ratios of the difference 
between the radially integrated monomer and counterion charges and the respective integrated monomer charge 
density are shown. The radial charge is calculated according to

∫π( ) = ( ′) ′ ′. ( )/ /I r P r r dr4 1m ion
r

m ion
0

2

Evidently, the ratio is always positive for Γ  =  0.1. Hence, the nanogel interior is oppositely charged compared 
to the counterions over the whole volume. To be precise, this applies for all interaction strengths Γ .0 1. For 

 . Γ0 2 1, there is a certain volume inside of the gel in the vicinity of r/Rg ≈  0.5, where the counterion charge 
dominates over the monomer charge. Note that the actual shape of the effective charge depends on the network 
structure. Since the gel extends up to r/Rg ≈ 1.5 (cf. Fig. (2)), the volume of the positively charged gel fraction 
exceeds the screened volume by far. Thus, the net-charged nanogel volume comprises a large volume fraction of 
the gel particle. Again, this is in stark contrast to models, which explain swelling of randomly branched polyelec-
trolytes by the counterion osmotic pressure and assume electrostatic neutrality26.

Scaling theory.  To arrive at a quantitative understanding of the swelling behavior of nanogels, we perform a 
scaling analysis of the average deformation of individual polymers. Average radii of gyration of individual poly-
mers are displayed in Fig. 1(c). We will address two regimes, the unscreened regime and the screened regime. We 
adopt the tension blob model34 to characterize the polymer stretching, where the conformational properties of an 
individual polymer can be described by a sequence of Nm/g blobs containing g monomers (cf. Fig. 5). Then, the 
average polymer extension is

≈ ,
( )

νR lg N
g 2E

m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-3 10-2 10-1 100 101

N
i/N

Γ

Figure 3.  Fraction of counterions inside (r < 1.5Rg) a nanogel as a function of the interaction strength. 
The parameters and symbols are the same as in Fig. 1. Ni is the number of counterions within a gel particle, and 
N =  NmNp +  Nc. The total number of counterions is N =  4547 for Nc =  147 and 25549 for Nc =  729. Note that the 
number of outside ions is 1 −  Ni/N.
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with ν ≈  0.6 for a good solvent. If the polymer stretching is dominated by the electrostatic interactions between 
tension blobs, the stretching force of an individual polyelectrolyte chain is

=
( )

.
( )νF l k T g

lg 3E B B

2

2

The size lgν of a tension blob is determined by the competition between its thermal energy and stretching by an 
external force Fe. More precisely,

= ,
( )

νlg k T
F 4
B

e

which is the length scale, where the free energy due to stretching is approximately equal to kBT34. By setting 
Fe =  FE and with Eq. (2), we find the scaling relation RE ∝  Γ (1−ν)/(2−ν). With the exponent ν =  1/2 of a theta solvent, 
the exponent becomes 1/3 as is well known by previous works34,35. This is just the scaling considerations of a single 
isolated polyelectrolyte. The specific properties of gel particles have to be taken into account to derive appropriate 
scaling relations of the conformational properties of their polyelectrolytes.

Due to the network structure, there is a higher polymer and charge concentration at the crosslinks, as illus-
trated in Fig. 5. We assume that the stretching of a polymer is dominated by the electrostatic forces between the 
respective four blobs around the crosslinks at their ends. These interactions will dominate over the forces by the 
other blobs along a polymer. Our model evokes reminiscences of the pearl-necklace structure of polyampholy-
tes36 or polyelectrolytes in a poor solvent37,38. However, for our system, the physical origin is very different and 
arises from the geometry of the network structure. It is not self-organized as for pearl-necklace structures, but 
rather enforced by the geometry.

The electrostatic interactions between the blobs yield the stretching force

ε
≈
( )

=
Γ
.

( )
F

ge
R

k T lg
R

4 16
5s

E E

2

2
B

2

2

Equating this force with the force of the tension blob Fe of Eq. (4) and eliminating g via Eq. (2), we find the scaling 
relation for the average stretching of polymers

∼ ∼ Γ . ( )
ν ν ν ν( + )/( − ) ( − )/( − )R R lN 6E g

p
m

2 4 1 4

As shown in Fig. 1(c), the relation describes the simulation data extremely well. Our exponent (1 −  ν)/(4 −  ν) is 
significantly smaller than that derived above for an isolated polyelectrolyte chain. This underlines that a polymer 
of a nanogel behaves differently from a free polyelectrolyte, i.e., crosslinks play an important role in nanogel 
swelling.

We can generalize the result by approximating the electrostatic energy for polymer stretching by consider a 
gel particle as a conglomerate of spherically packed crosslinks of four blobs. This yields the total stretching energy

=
Γ
=

Γ
,

( )
/

⁎
U Ck T N g l
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where we introduced the effective interaction strength

RE

Figure 5.  Schematic illustration of the tension blob model of crosslinked polymers. The Coulomb repulsive 
interactions between the four blobs at crosslinks leads to polymer stretching. The solid line indicates the mean 
distance RE between crosslinks.
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The factor C is determined by the structure of the nanogel. With the conformational free energy34
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of an individual polymer and the electrostatic energy of Eq. (7), the polyelectrolyte free energy is

ν= ( − )

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Calculation of the extremum, i.e., setting ∂F/∂RE =  0, yields with Eq. (2)

∼ Γ ( )ν ν ν ν( + )/( − ) ( − )/( − )⁎R lN 11E m
2 4 1 4

as generalization of Eq. (6). With the effective interaction strength, we arrive at a scaling representation of the pol-
ymer stretching for systems with different polymer and crosslink numbers. As shown in Fig. 1(c), our simulation 
results can well be scaled by the relation (11) in the unscreened regime.

As pointed out before, in the screened regime, the nanogel is not neutral and we suggest that gel swelling is 
caused by the repulsive Coulomb interactions between monomers. However, the present counterions screen the 
electrostatic interactions to some extent. To describe the polymer conformations in that regime, we replace the 
Coulomb energy in Eq. (10) by the Debye-Hückel energy, i.e, the free energy becomes

ν= ( − )










+
Γ

,
( )ν

ν
κ

/( − )
−

⁎F
k T

R
lN

g l
R

e3 1 16
12

E

m E

R

B

1 1 2
E

with the inverse Debye length κ π= Γ⁎nl8  comprising the average counterion density n inside the nanogel. We 
assume that n is essentially independent of RE, which is confirmed by simulations.

Again, RE is determined by the condition ∂F/∂RE =  0. In the limit κ →  0, we recover the relation (11). The 
full numerical solution for the two considered networks of different size are presented in Fig. 1(c). Evidently, the 
simulation data are very well described by the screened Coulomb interaction in both, the unscreened and screened 
regime. We like to point out that there is only one fit parameter, namely C in our theoretical description. All 
other input quantities, such as the counterion density are taken from simulations. The latter produces the small 
differences between the theoretical curves in the vicinity of their maxima. Interestingly, Eq. (12) predicts the same 
maximum extension of a polymer independent of the gel size, i.e., Nc and Np, in agreement with our simulations.

We conclude that the conformations of polyelectrolytes in a nanogel in the screened regime are clearly deter-
mined by Coulomb interactions and charge screening. From our point of view, the quantitative agreement 
between theory and simulations rules out the hypothesis that nanogel swelling in the screened regime is caused by 
the osmotic pressure of counterions.

Discussion
In this paper, we adopted a coarse-grained description of a polymer, where, as often in polymer physics39, a seg-
ment of length l comprises many “real” monomers, and characterized the electrostatic interactions in a rather 
generic way by the variable Γ . A main assumption is that the local conformational properties of a polymer change 
only weakly with changes in the charge distribution, but the global polymer conformations undergo major 
changes. Then, our results, especially the scaling laws, can easily be connected with other models and experi-
mentally accessible quantities. If our coarse-grained monomers are comprised of f “real” monomers, the segment 
length is l =  bfν in good solvent and the number of monomers of unite charge per polymer is Nm =  Nr/f, where b 
is the segment length of the real polymer and Nr its monomer number. Insertion of these relations into Eq. (11) 
yields the relationship

∼











.

( )

ν ν ν ν

ν ν

( + )/( − ) − ( − )/( − )
/

( − )/( − )

R bN f l N
bN 13

E r
B c

p

2 4 2 1 4
2

4 3

1 4

All variables of Eq. (13) can be measured experimentally. The fraction of charged monomer f−1 is determined by 
the total number of monomers, the total charge of a nanogel, and the degree of ionization that can be controlled 
by, e.g., the pH of the solvent.

Our scaling relation is valid only when Nm is larger than about 5. For small Nm, inter-blob interactions domi-
nate the swelling behavior. As a consequence, the application of our approach in the limit of weak interaction 
strengths requires long polymers. Since the polymers in nano- and microgels are often rather short, our approach 
will typically apply for interactions strengths Γ .0 1, i.e., in the screened regime. Nevertheless, the 
small-interaction-strength regime is of fundamental theoretical interest and will be useful for novel nano- and 
microgles comprised long polymers.



www.nature.com/scientificreports/

7Scientific Reports | 6:19836 | DOI: 10.1038/srep19836

In the comparison between scaling theory and simulations, we assumed a scaling exponent ν which is inde-
pendent of the strength of the electrostatic interactions and is approximately equal to the good solvent value 
ν ≈  0.6. This certainly applies for not to strongly stretched polymers in a gel particle. Indeed, as shown in Fig. 1(c), 
our polymers are definitely far from being fully stretched. The polymers in the simulations of counterion-free 
nanogels are far more stretched. Hence, we assume that the applied scaling assumption applies approximately.

Although we focused on salt-free system, our results can safely be extended to systems at moderate salt con-
centrations. For micrometer size gels, theoretical studies predict that the gel size is nearly constant until the salt 
concentration cs becomes comparable to the network charge density ρ40. Only when cs surpasses a certain limit, 
a gel particle strongly shrinks. This is confirmed by experiments41–43 and numerical works44. Even for nanometer 
size gels, numerical studies23 report that the gel radius exhibits only minor changes and decreases with increasing 
monovalent salt concentration by only 10% compared to the salt-free radius at cs ≈  0.5ρ. Additionally, sufficiently 
large counterion leakage is observed at cs ≈  0.1ρ21. Hence, our scaling considerations should apply up to salt con-
centrations of approximately 10% of the network charge in nanogels.

We have considered a model nanogel based on an ideal diamond-lattice structure of the crosslinks. Such a 
regular structure is typically not obtained in the synthesis of gel particles. Although we do not expect this dif-
ferences to severely influence our qualitative findings, a more realistic description is desirable for a quantitative 
comparison with experimental results.

It is expected that the interior of a macrogel is neutral even at small Coulomb interaction strengths, in contrast 
to the considered finite-size nanogel. It remains to be clarified, beyond what gel size the interior of a finite-size 
particle exhibits macrogel properties. Theoretical considerations indicate that such a crossover occurs at gel radii 
on the order of 200 nm19.

In conclusion, our large-scale molecular dynamics simulations and scaling considerations provide novel 
insight into the swelling behavior of ionic nanogels. Most importantly, in the unscreened regime 
4 ×  10−4 <  Γ * <  5 ×  10−2, Coulomb interactions lead to swelling of the network and its polymers. Here, counteri-
ons play a minor role. In the screened regime × < Γ < /− /⁎ CN N5 10 c p

2 2 4 3, counterions screen the Coulomb 
interactions and the polymer conformations depend only very weakly on charge interactions. This is quantita-
tively explained by screening of polyelectrolyte interactions by counterions. The dependence of /R Rg

p
g
pn on Γ * 

suggests that we can control the sensitivity of nanogel swelling to external stimuli through the number of 
crosslinks Nc and polymers Np. In the unscreened regime, nanogels can exhibit major volume changes in response 
to external stimuli. In contrast, they hardly swell in the screened regime even if Γ  changes significantly as long as 
Γ  <  1. Thereby, the width of this plateau-like regime broadens with increasing gel particle size, i.e., Nc and Np

Methods: Model
An individual polyelectrolyte is modeled as a linear chain of Nm monomers of mass M, which are connected by 
the harmonic potential

∑
κ

= ( − − ) ,
( )+U lr r

2 14b
b

k
k k1

2

where l is the finite bond length29. Here, rk denotes the position of monomer k and κb is the strength of the bond 
potential. Excluded-volume interactions are captured by a purely repulsive, truncated, and shifted Lennard-Jones 
potential29. The electrostatic interactions are described by the Coulomb potential

∑ ε=
| − |

,
( ),

′
U

q q

r r
1
2 15

c
i j

i j

i j

where qi (i ∈  {m, c}) denotes the electrostatic charge, and the prime indicates i ≠ j.
A cubic simulation box with periodic boundary conditions is considered. The long-range Coulomb inter-

actions are included by the P2NFFT-algorithm45. In the absence of counterions, open boundary conditions are 
applied. The dynamics of the monomers and counterions are governed by Newton’s equations of motion, which 
are solved by the velocity-Verlet algorithm46. In order to perform isothermal simulations, we couple mono-
mers and counterions with the Brownian multiparticle collision dynamics method (B-MPC)29,30. B-MPC is a 
non-hydrodynamic, stochastic, and efficient local thermalization procedure, which provides Maxwell-Boltzmann 
distributed velocities, and is based on the multiparticle collision dynamics simulation approach for fluids29,47.

We employ l as unit of length, kBT as unit of energy, and τ = /Ml k T2
B  as unit of time. The Lennard-Jones 

parameters are σ =  0.8 l and ε =  kBT. For the spring constant of the bond force, we apply the value κb =  103kBT/l2, 
which ensures nearly rigid bonds with relative bond-length fluctuations below 1%.
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