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Enhanced energy transport owing 
to nonlinear interface interaction
Ruixia Su1,2, Zongqiang Yuan3, Jun Wang4 & Zhigang Zheng1,2

It is generally expected that the interface coupling leads to the suppression of thermal transport 
through coupled nanostructures due to the additional interface phonon-phonon scattering. However, 
recent experiments demonstrated that the interface van der Waals interactions can significantly 
enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding 
nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface 
coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the 
interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-
Kontorova lattices. It is found that the thermal conductivity increases with increasing interface 
nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of 
coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak 
inter-chain couplings regime which is qualitatively in good agreement with the result obtained from 
molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear 
intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the 
enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport 
through coupled nanostructures for future emerging applications.

The thermal transport properties of nanostructured materials have attracted significant attention in recent years, 
because harnessing heat transfer at nanoscale is vitally important for the development of energy conversion appli-
cations, the thermal management of microelectronic and optoelectronic devices1–15. Considering that most nano-
structures are supported or surrounded by environmental materials, it is necessary to elucidate interface effects 
on thermal transfer through the nanosctructures.

In non-metallic and semiconductor nanostructures, energy is carried predominantly by lattice vibrations or 
phonons. Usually, the energy transfer in these nanomaterials is dramatically affected by the scattering of phonons 
at interfaces that leads to a shorter phonon mean free path (less than that of the single free-standing nanostruc-
ture). As a result, the thermal conductivity of a nanostructured material assembly will be lower than that of the 
free-standing individual nanostructure16–23. On the other hand, recent experiments demonstrated that the ther-
mal conductivity of a bundle of nanoribbons can be enhanced by adjusting the interlayer van der Waals interac-
tions24. It is also reported that the coupling of thermal materials to substrates counterintuitively enhances the 
thermal conductivity through double-wall nanotubes25, supported graphene on SiO2 substrate26, double-layer 
graphene sheets27, supported silicene structures28 and β-sheet crystals of spider silk protein29. To get a more 
in-depth understanding on the important role of the interface coupling in the heat transfer through these nanos-
tructures, the coupled nonlinear lattices, i.e., coupled Frenkel-Kontorova (FK) lattices30 and Fermi-Pasta-Ulam 
(FPU) lattices25,31, have been employed as a simplified working models of real systems. Sun et al. reported that the 
thermal transport of a FK chain-bundle can be enhanced by strong interchain Lennard-Jones (LJ) couplings30. 
However, our recent numerical results show that the energy transport in coupled chains is suppressed by strong 
linear inter-chain interactions31. Nevertheless, for strong LJ couplings, the phonon scattering arising from the 
nonlinear inter-chain interaction is expected to play a dominant role and suppresses the heat conduction. Thus, 
this common picture fails to explain the enhancement of the energy transport through couple FK chains with LJ 
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interactions in ref. 30. These observations point to a lack of fundamental understanding on the effect of the inter-
face nonlinearity on the heat conduction of coupled systems.

In the present paper, we focus on the energy transport in two coupled FK chains with both harmonic and 
anharmonic inter-chain couplings in terms of effective phonon theory (EPT) and the molecular dynamics 
(MD) simulations. It is found that the heat flux through the interacting FK chains increases with the nonlinear 
inter-chain coupling intensity for weak interface couplings. While in the case of strong nonlinear inter-chain cou-
plings, the energy transport is found to be suppressed by the inter-chain interaction. This behavior is theoretically 
discussed by generalizing the effective phonon theory (EPT)32–34 to two-layer lattices and using phonon spectral 
energy density(SED) method35–39, and the physical mechanism of the nonlinear dependence of energy transport 
on the nonlinear inter-chain couplings is revealed and agrees well with numerical simulations.

Results
Coupled Nanostructures and FK Chains.  Most nanostructures possess the assembly topology, such as 
double-walled carbon nanotubes, carbon nanotube bundles (see Fig. 1a), multi-layer graphene and interacting 
nanoribbons. These tubes, layers, or ribbons usually interact with each other through van der Waals (vdW) inter-
actions. In order to understand the role of interface nonlinearity in heat transfer of a nanostructured material, we 
start with a coupled 1D FK chain model as a simplified working bench of the coupled nanostructures since the FK 
chains are widely used to depict the real material in condensed-matter physics and nonlinear physics25,30,31,40–42. 
The heat transfer along two identical FK chains bundled by vdW interaction is simulated to reveal the energy 
transport of coupled nanostructures. The total Hamiltonian can be written as
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where H1 and H2 denote the Hamiltonian of chain 1 and chain 2, respectively, and Hc represents the interfacial 
coupling contribution to the total Hamiltonian. xn

j is the relative displacement of j-th atom in n-th chain, pn
j is the 

velocity of this particle. mn, kn and ,V sub n represent the mass, the harmonic coupling constant and the strength of 
the on-site potential of chain n, respectively. For simplicity, we set = = .m m 1 01 2 , = = .k k 1 01 2  and 

= = ., ,V V 1 0sub sub1 2 . ε, σ and r j denote the intensity of the vdW interaction, the distance parameter and the 
distance between the j-th particle pair on the two sides of the vdW interface, respectively.

Figure 1.  Schematics of nanotube bundles (a) and a coupled FK chains model (b).
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Following ref. 30, the dimensionless parameters used in the present paper are related to their physical quanti-
ties as follows. The vertical distance between the two chains of the vdW interface, namely , the equilibrium dis-
tance of two chains interacting with LJ potential = .d 2 359, which corresponds to a real interlayer distance of 
graphite = .d 0 335r  nm. The real temperature T r  is related to the dimensionless temperature T by the relation 

ω= /−T m a T kr c c B0
2

0
2 . Where m0 is the typical atoms mass with −~m 100

26 to 10−27 kg and ω0 is the oscillator 
frequency with ω ~ 100

13 s−1. kB is Boltzmann constant and −ac c is set to be the carbon-carbon bond length 
= .−a 0 142c c  nm. The adhesion energy between two graphene sheets or collapsed CNTs is ~40 meV atom−1 30,43, 

which corresponds to ε = .1 33 in our simulation.
To study the effect of the nonlinear inter-chain interaction, the LJ potential is expanded in a Taylor series at 

low temperature regime. The harmonic approximation is made by truncating the Taylor series at the second order 
term. Hence, by neglecting the weak nonlinear interaction, the effective harmonic potential of vdW interaction 
reads
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where ε σ σ ε= ( − )/( ) = ./ /k d72 2 2 2 6818ef
1 3 2 2 2 3 4  is the effective elasticity coefficient of vdW interaction.

First we perform molecular dynamics (MD) simulations to explore the difference of thermal transport 
between the vdW interface and effective harmonic interface. In our simulations, fixed boundary conditions are 
applied while the number of atoms or the size of lattice is set to be =N 50. The two ends ( =j 1 and = )j N  of 
each chain are connected to Nose-Hoover thermostats44,45 with temperatures = ( + ∆)T T 1H  and 
= ( − ∆)T T 1L , where T denotes the average temperature of the coupled system and Δ  is the temperature dif-

ference and here ∆ = .0 2. The local heat flux is defined by
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where V n denotes the inter-particle potentail of chain n. Simulations are performed long enough (the total inte-
gration is 109 time steps) to allow the system to reach the non-equilibrium steady state.

Figure 2 shows the thermal flux of the two coupled chains with respect to the average temperature T for both 
vdW and effective harmonic interfaces. J LJ, Jef  denote the heat flux of coupled system for these two cases, respec-
tively. It is clear that in the low temperature regime, ≈J JLJ ef , because the harmonic term in the Taylor expansion 
of the vdW interaction plays the dominant role when temperature is extremely low. As temperature further 
increases, J LJ  becomes gradually larger than the harmonic contribution Jef . It is well known that the nonlinear 
contribution of the vdW interaction increases as temperature increases. Therefore, the nonlinear interaction of 
interface may significantly affect the thermal transport of coupled systems.

Dependence of the Energy Transport on the Nonlinear Intensity of Inter-chain Couplings.  
According to Eq. (4), both the linear and nonlinear parts of the LJ potential depend on parameters ε and σ, hence 
it is out of the question to investigate the effect of the nonlinear contribution to the heat conduction with fixed 
linear couplings by varying the LJ parameters (ε or σ). We simplify the coupled model to investigate the energy 
transport of coupled FK chains. The simplified model has the Hamiltonian

Figure 2.  Thermal flux of the two coupled FK chains with respect to the average temperature T for vdW 
interface and effective harmonic interface for (a) ε =  0.5 and (b) ε = .1 33. ,J LJ 1 and ,J LJ 2 denote the heat flux of 
chain 1 and chain 2 with vdW interface ,respectively. ,Jef 1 and ,Jef 2 correspond to the case with effective 
harmonic interface.
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The inter-chain couplings include the harmonic interaction with strength kc and the anharmonic interaction 
with strength β, which is the simplest model to study the effect of interface anharmonicity on heat transport. 
Thus, we are able to study the nonlinear effect of the inter-chain coupling by varying β. Particularly, if =k 0c , the 
interface is pure nonlinear. It is noted that the motion of the particles is restricted in the x direction, so only the 
inter-chain interaction in the x direction is considered in this model25,31. Here the thermostats temperatures of the 
two ends of each chain are set to be = .T 0 024H  and = .T 0 016L .

Figure 3(a,b) show the heat flux with variation of the interfacial nonlinearity (β) for = .k 0 0c  and 0.3. J1 and 
J2 denote the heat fluxes of chains 1 and 2, respectively. For weak nonlinear intensity of inter-chain couplings (low 
β regime), the heat current increases with β. Thus, phonon transport through the coupled FK chains can be 
enhanced by the weak interfacial nonlinearity. Heat current reaches its maximum at an intermediate intensity of 
the interfacial nonlinearity. When β increases further, an inverse relationship between the heat flux and β is 
clearly exhibited, i.e., heat conduction is suppressed by the strong nonlinear interfacial coupling, which is similar 
to the results obtained in ref. 31. To accurately estimate the thermal conductivity of the system, we need to know 
the accurate temperature gradient. But there always exists a temperature jump at the boundary, so we have to 
obtain the temperature gradient by linearly fitting the temperature distribution after neglecting the boundary 
effect40. By combining Fig. 3(a,b) with the temperature gradient obtained from the temperature distribution of 
molecular dynamics simulation, the dependence of thermal conductivity on interfacial nonlinearity (β) is shown 
in Fig. 3(c,d). It is observed that the thermal conductivity through the interacting FK chains also depends nonlin-
early on the inter-chain coupling nonlinearity which is similar to the interaction dependence of heat flux. The size 
effect on this phenomenon is shown in Fig. 3(e,f). It is found that the tendency of the nonlinear dependence of 
heat conductivity on interface nonlinearity is insensitive to the system size. Since chains 1 and chains 2 are iden-
tical, their numerical results are supposed to be exactly consistent with each other, so we only present the heat 
conductivity for chain 1 here. Moreover, the error bars are illustrated by setting varying initial conditions. It is 
clearly seen that the error bar is small and the phenomenon observed in our work is independent of initial 
conditions.

Usually, it is believed that the nonlinear effect should give rise to phonon-phonon scattering and hinder the 
energy transport. However, in the present paper, we find that the nonlinear inter-chain coupling counterintui-
tively plays a positive role in the heat conduction of coupled FK chains which validates our above speculation.

Effective phonon theory of coupled system.  To understand the underlying mechanism of the coun-
terintuitive result obtained above, the mode-dependent thermal conductivity of the coupled FK chains should be 
investigated. Before quantifying the contributions of the lattice vibrations to heat transport, an exact knowledge 
of phonon spectra is necessary. Next we resort to the effective phonon theory (EPT)32–34,46,47. For isolated 1D 
anharmonic lattices, it has been verified that the effective phonon theory is a general theory to predict the phonon 
spectra and the heat conduction behavior. An analytic formula for heat conductivity can be derived from EPT, by 
which the size and temperature dependence of the heat conductivity of 1D lattice models can be analyzed. In the 
present paper, we propose the effective phonon theory for the coupled chains.

Consider two identical coupled 1D anharmonic (nonlinear) lattices with the general form of Hamiltonian,
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The canonical transformation which diagonalizes the harmonic Hamiltonian of chain n is
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Figure 3.  Dependence of the heat flux and thermal conductivity of coupled FK chains on the nonlinear intensity 
of inter-chain couplings β for (a,c) = .k 0 0c ; (b,d) = .k 0 3c ; Thermal conductivity of larger scale system for (e) 
= .k 0 0c  and (f) = .k 0 3c . J1 and J2 denote the heat flux of chain 1 and chain 2 , respectively. κ1 and κ2 are the 

thermal conductivity of chain 1 and chain 2 , respectively.
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with the relationship, π/ →k N k2 , ω = /k2 sin 2k . Under ergodic hypothesis, the coupled system obeys the 
generalized equipartition theorem,
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where in the third term of the above expression one takes “+ ” for =n 1 (lattice 1), and “− ” for =n 2 (lattice 2). 
The two system coefficients αn and γn are renormalized coefficients that are defined as follows,
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In analogy with a harmonic lattice where ω=k T qB k k
2 2, we are able to derive the expression of renormalized 

phonon spectrum for general 1D coupled system with and without on-site potential. It can be identified from the 
contribution of differences of displacements of two chains that the above renormalized dispersion relation gives 
the optical phonon branch

ω α ω γ= ( + ), ( ), ,+ ,+ 21n k n k n
2 2

where γ γ=,+n n. The acoustic dispersion relation for a coupled system should be equivalent to the dispersion 
relation of an isolated chain, which can be expressed as

ω α ω γ= ( + ), ( ), ,− ,− 22n k n k n
2 2

where
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In Fig. 4, the dispersion relation of coupled FK chains derived from effective phonons theory is plotted by the 
dotted lines. It is clear that there are two phonon branches if the two chains are coupled with each other, namely, 
the acoustic phonon branch ω− and optical phonon branch ω+. For the optical branch, the two bundled particles 
(with the same subscript j) on the two sides of the interface move in the opposite directions. For the acoustic 
branch, the bundled j-th particle pair behaves in the manner of the center of mass motion, and the acoustic dis-
persion relation is equivalent to the case of a single free-standing chain31.

Another method, i.e., the phonon spectral energy density(SED) method35–39, which is recently developed and 
has been used to predict the fully anharmonic phonon properties of nanostructures, is employed to verify the 
EPT calculations. The expression of SED is as follows
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where ω and ( )π= / = − , − + , …, − ,k q N q2 1 1N N N N
2 2 2 2

 denote the phonon frequency and wavevector, 
respectively. i is the imaginary unit and τ0 is the simulation time. Figure 4 presents the SED patterns (the contour 
plots) with different interfacial parameters.

It can be clearly observed that the phonon spectra by EPT are in good agreement with the predictions by SED. 
This verifies the emergence of the optical branch in two coupled 1D nonlinear lattices and highlights that EPT 
is able to predict the dispersion relation of the coupled systems quite well. Thus, we can investigate the phonon 
transport behavior in 1D coupled nonlinear system by EPT.

Analysis on the mechanism of heat conductivity enhancement.  For two coupled nonlinear lattices, 
the effective phonons can be treated as the energy carriers and the corresponding velocities are

Figure 4.  The phonon dispersion relation of chain 1 with different interfacial parameters: (a) =k 0c , 
β = .2 0; (b) = .k 0 3c , β = .0 0; (c) = .k 0 3c , β = .2 0; and (c) = .k 0 3c , β = .5 0. The contour plots are the results 
by SED method and the red and black dotted lines are results of EPT.
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Figure 5.  Heat conductivity of chain 1 as a function of the interface nonlinearity (β) by EPT for (a) = .k 0 0c  ; 
(b) = .k 0 3c .

Figure 6.  The interfacial nonlinearity dependence of dimensionless nonlinearity strength ε for (a) = .k 0 0c  and 
(b) = .k 0 3c . The total nonlinear energy En vs the interfacial nonlinearity β for (c) = .k 0 0c  and (d) = .k 0 3c .
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In the weak inter-chain coupling regime, we assume that the phonon scattering due to interface coupling is too 
weak to have a great effect on the phonon free time, and the expression of phonon lifetime is analogous to that in 
the isolated case and it is defined by τ π ω= λ/, ,2n k n k, where λ  depends on the lattice parameters and tempera-
ture32. By EPT, ελ = /1 , where ε is the dimensionless nonlinearity strength defined as the ratio between the 
average nonlinear potential energy and the average total potential energy which consists of both linear and non-
linear potential energy of the total system,

ε =
+

.
( )

E
E E 26

n

l n

For isolated 1D anharmonic lattices, the expression of relaxation time has been verified and is an essential part 
of EPT32–34, by which we can qualitatively predict the heat conduction behavior. The Debye formula of thermal 
conductivity for an isolated chain reads

Figure 7.  Dependence of the energy density on the frequency while kc = 0.3 and q = 1: energy density 
distributions of acoustic branch for (a) β =  0.0, (c) β =  1.0, (e) β =  5.0 and energy density distributions of 
optical branch for (b) β =  0.0, (d) β =  1.0, (f) β =  5.0. Here ω −1 , ω +1  are the acoustic phonon frequencies and 
optical phonon frequencies of chain 1, respectively. Φ −1 , Φ +1  are the acoustic branch and optical branch spectral 
energy density of chain 1, respectively.
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where c is the specific heat48,49. For coupled systems, there are two phonon branches for each chain. Thus the heat 
conductivity of each chain consists of two parts: the contributions of acoustic phonon branch and optical phonon 
branch. Therefore, the heat conductivity of the coupled system can be expressed as
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The thermal conductivity of chain 1 as a function of the interfacial nonlinearity β by EPT is plotted in Fig. 5. 
In Fig. 5, κ ,−1  and κ ,+1  denote the contributions from the acoustic phonon branch and the optical phonon branch, 
respectively. κ1 is the total thermal conductivity of chain 1. It is clearly seen that thermal conductivity increases 
with β, which gives qualitative agreements with the simulation results in Fig. 3. However, due to the rough esti-
mation of the phonon lifetime, the calculation here is only semi-quantitive.

In order to understand the enhancement of thermal conductivity, we calculate the interfacial nonlinearity 
dependence of the dimensionless nonlinearity strength ε for the whole coupled systems in Fig. 6(a,b). It is found 
that ε decreases with the increasing of β. Consequently, the phonon lifetime increases according to the equation 
τ π ω= λ/, ,2n k n k and the thermal transport is improved with increasing the nonlinear intensity of inter-chain 
couplings. The physical picture of the enhancement of the energy transport can be understood as follows. 
Although the strengthened nonlinear intensity of the inter-chain coupling gives an increasing weight to the non-
linear energy of interface, the particles are more locally confined at the bottom of the on-site potential by increas-
ing the interface coupling. As a result, the nonlinear contribution of the intra-chain coupling decreases. Thus, the 
nonlinear energy of the system would not be increased by increasing β. On the contrary, the total nonlinear 
energy gradually drops as shown in Fig. 6(c,d) and ε decreases as shown in Fig. 6(a,b).

Reduction of heat conduction through strongly coupled FK chains.  In the strong interfacial non-
linearity regime, the emergence of the more side peaks (messy bright lines) in the SED patterns in Fig. 4(c,d) 
indicates an enhanced energy exchange and a stronger phonon scattering due to the interfacial nonlinearity. To 
illustrate the main peaks information more distinctly, we select a narrow frequency range and show the SED 
distribution of the acoustic branch and optical branch versus the frequency separately with interfacial parameters 
(kc =  0.3) when =q 1 in Fig. 7. It can be clearly found that the peak gets narrower for β = .1 0 as compared with 
β = 0, and thus this implies an increased phonon lifetime, which agrees well with the above result given by EPT. 
However, for large β β( = . )5 0  the peaks are broadened evidently, and thus the phonon lifetime is significantly 
reduced. As a result, the heat conduction through strongly coupled FK chains is suppressed by the strong interface 
phonon scattering.

Figure 8.  The phonon lifetimes of both the acoustic branch and optical branch versus β while kc = 0.3 and 
q = 1 by SED. Here τ −1 , τ +1  denote the acoustic phonon lifetimes and optical phonon lifetimes of chain 1, 
respectively.
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The verification of phonon lifetimes variation trend by SED.  For weak interface interactions, the 
enhancement of the thermal conductivity is explained by the effective phonon theory in a qualitative manner. To 
further verify our results, we employ the SED method to obtain the phonon lifetimes by fitting SED peaks with 
the Lorentzian function. In Fig. 8, the phonon lifetimes of both the acoustic and optical branches with respect to 
the interface parameters β are plotted in the case of =q 1. Here, only =q 1 is considered because the low-q pho-
non modes contribute much to the energy transport. It is clearly observed that the phonon lifetimes rise up with 
increasing β for weak nonlinear interface interactions. Thus the prediction of phonon lifetimes from EPT is in 
qualitative agreement with the result obtained from SED method. If β is further increased, it is noticeable that the 
phonon lifetimes decrease after it reaches a maximum value and an inverse relationship between the phonon 
lifetimes and β is observed, which is also consistent with the result in Fig. 7.

Discussion
In summary, we have investigated the dependence of the thermal conductivity of the coupled FK chains on the 
interfacial nonlinear strength β. It is found that thermal transport can be counterintuitively enhanced by increas-
ing the interfacial nonlinearity. We developed the effective phonon theory of coupled system, by which the EPT 
calculation results are qualitatively consistent with the results by the SED calculations. Furthermore, it is found 
that the dimensionless nonlinearity strength ε of the whole couple system decreases with interface nonlinear 
parameter β, which indicates that the localization of particles leads to the enhancement of heat conductivity.

It has been reported that the thermal transport can be enhanced by increasing the strength of harmonic inter-
face interactions in our previous work31. While the present paper reveals the effect of nonlinearity in the inter-
face interaction on the phonon transport of coupled FK lattices and found that heat conduction can also be 
enhanced by just increasing nonlinear strength of interface. These findings indicate that it is universally applicable 
to enhancing thermal transport by increasing interface interactions intensity. Experimentally, we can modify the 
interface interaction strength by applying pressure or prestress27,50–51. We expect that the findings and theoret-
ical discussions proposed in the present paper may contribute to experimental observations and shed light on 
manipulating the energy transport through coupled nanostructures and provides a useful guide for the thermal 
management of microelectronic devices and other nanostructure-based materials.
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