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Minimizing resource overheads 
for fault-tolerant preparation of 
encoded states of the Steane code
Hayato Goto

The seven-qubit quantum error-correcting code originally proposed by Steane is one of the best known 
quantum codes. The Steane code has a desirable property that most basic operations can be performed 
easily in a fault-tolerant manner. A major obstacle to fault-tolerant quantum computation with the 
Steane code is fault-tolerant preparation of encoded states, which requires large computational 
resources. Here we propose efficient state preparation methods for zero and magic states encoded 
with the Steane code, where the zero state is one of the computational basis states and the magic 
state allows us to achieve universality in fault-tolerant quantum computation. The methods minimize 
resource overheads for the fault-tolerant state preparation, and therefore reduce necessary resources 
for quantum computation with the Steane code. Thus, the present results will open a new possibility for 
efficient fault-tolerant quantum computation.

Quantum computers are expected to outperform conventional classical computers for various problems1, such 
as factoring of large integers2 or machine learning problems3,4. However, the realization of quantum comput-
ers is extremely difficult because of decoherence (destruction of quantum coherence), which makes quantum 
bits (qubits) much more fragile than classical bits. A standard approach to this problem is to use quantum 
error-correcting codes for fault tolerance1,5–9. By using such codes, long quantum computation can be performed 
reliably as long as physical error probabilities are sufficiently low.

Steane’s seven-qubit code10 is one of the best known quantum codes. (The definition and basic properties of 
the Steane code are given in Methods.) This code has a good property that the so-called Clifford gates and the 
computational basis measurement can be implemented transversally1 (in a bitwise manner), where the transversal 
implementation guarantees fault tolerance automatically. In addition to these basic operations, we need 
fault-tolerant preparation of the following two types of state for universal quantum computation: a computational 
basis state, 0  or 1 , and a nonstabilizer state, such as = +π πH cos 0 sin 1
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nonstabilizer states allow one to perform non-Clifford gates together with the Clifford operations. In this paper, 
we refer to the nonstabilizer states as the magic states, which were named after magic state distillation11. 
Unfortunately, the fault-tolerant preparation of these states encoded with the Steane code requires complicated 
processes and large resource overheads1,6,12–14.

To minimize the resource overheads for the fault-tolerant state preparation, here we propose new state prepa-
ration methods for the Steane code. To prepare the zero state 0  and the magic state H  encoded with the Steane 
code in a fault-tolerant manner, we use one and eighteen physical ancilla qubits, respectively. These are signifi-
cantly fewer than those for conventional methods. Thus, the present methods will open a new possibility for 
efficient fault-tolerant quantum computation.

Results
Preparation of encoded zero state.  There are two conventional methods for fault-tolerant preparation of 
the logical zero state, 0 L

, encoded with the Steane code, which are shown in Fig. 1a,b. Both consist of two parts: 
non-fault-tolerant encoding and verification.

For the non-fault-tolerant encoding of 0 L
, we use the method proposed by Paetznick and Reichardt15. This 

method allows us to prepare 0 L
 only with eight controlled-NOT (CNOT) gates, unlike the conventional one12–14, 

which requires nine CNOT gates.
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The verification in Fig. 1a is based on the measurements of four stabilizer operators of 0 L
 (IIIZZZZ, ZIIIIZZ, 

IZIIZIZ, IIZIZZI) with four physical ancilla qubits. (In this paper, the identity and Pauli operators are denoted by 
I, X, Y, and Z.) On the other hand, the verification in Fig. 1b do the same measurements of the stabilizer operators 
at once by using a logical ancilla qubit in 0 L

. In both cases, the whole process is repeated until no error is detected 
in the verification. This postselection guarantees the fault tolerance of the output state. (In this paper, the “fault 
tolerance” is defined such that logical error probabilities are of the second order of physical error probabilities, 
because the Steane code can correct single-qubit errors. See Methods.)

Here it should be noted that in the above two verification methods, only Z stabilizer operators are measured to 
detect X errors, and X stabilizer operators are not. This is because no Z errors are harmful for 0 L encoded with 
the Steane code. This fact comes from error degeneracy, which is a special property of quantum codes that classical 
codes do not possess. The error degeneracy is also a key to understanding the present method described below. 
Because of the Z stabilizer operators of 0 L

 given above, arbitrary Z errors are equivalent to no error or 
single-qubit Z errors. This equivalence is the error degeneracy. The single-qubit Z errors can be corrected by the 
Steane code. Thus, the fault-tolerance is achieved without measuring X stabilizer operators.

Figure 1.  Quantum circuits for fault-tolerant preparation of 0 L
 encoded with the Steane code.  

(a) Conventional method with four physical ancilla qubits for verification. (b) Conventional method with a logical 
ancilla qubit in 0 L

 for verification. (c) Proposed method with one physical ancilla qubit for verification. Here   ±   
is defined as   ± =

±0 1
2

  and M0/1 denotes the computational basis measurement of a physical qubit.
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The method proposed in this paper is shown in Fig. 1c. This method also consists of non-fault-tolerant encod-
ing and verification. In this method, we use only one physical ancilla qubit for the verification. Thus, the present 
method minimizes the resource overhead for the fault-tolerant preparation of 0 L

.
The principle of the present verification method is explained as follows. Here we assume that at most one 

physical error occurs, because fault tolerance is achieved by eliminating such errors by the definition mentioned 
above.

After the first six CNOT gates in the encoding in Fig. 1c, the seven-qubit state without the ancilla qubit is 
described by the following stabilizer operators: ZZZIIII, XXIIXII, XIXIIIX, IIIXIXX, IZIIZII, IIIZIZI, and IIZZIIZ. 
Because of these, arbitrary two-qubit errors due to the six CNOT gates are equivalent to single-qubit errors. Thus, 
two-qubit errors in the encoding are induced only by the last two CNOT gates. The two-qubit X errors can be 
detected and eliminated by the measurement of ZIIIIZZ with the ancilla qubit. (Note that ZIIIIZZ is one of the 
stabilizer operators of 0 L

.) On the other hand, error propagation via the ancilla qubit induces only correlated Z 
errors, not X errors, which are not harmful for 0 L

 as mentioned above. Thus, the simple method shown in Fig. 1c 
can achieve fault tolerance.

To evaluate the performance of the present method qualitatively, we performed numerical simulation of a 
logical CNOT gate, which consists of transversal physical CNOT gates followed by error-correcting teleportations 
with logical Bell states7,16. The reason why we examine not a logical zero state preparation but a logical CNOT 
gate is as follows. First, if we measure a prepared logical zero state in the computational basis to evaluate this, then 
we obtain only the information on X errors and miss that on Z errors on the zero state. Note that the Z errors are 
not negligible because they affect the error probabilities of, e.g., a logical CNOT gate. (Four logical zero states are 
consumed for two logical Bell states used for two error-correcting teleportations in the logical CNOT gate.) The 
effect of the Z errors can be examined by evaluating the logical CNOT gate. Second, if a prepared logical zero state 
has a logical error, then the logical CNOT gate with error-correcting teleportations using the zero state has also 
a logical error. That is, it is sufficient to examine a logical CNOT gate to ensure the fault tolerance of a prepared 
logical zero state.

In the present simulation, we used an error model such that physical two-qubit gates are imperfect with error 
probability pe and the other physical operations (state preparations, one-qubit gates, and qubit measurements) 
are perfect16,17. This simple model is valid as follows. First, two-qubit gates have higher error probabilities than 
the other physical operations for most physical systems. Second, they are used most frequently in fault-tolerant 
quantum computation6. Finally, the other physical operations are always followed or preceded by two-qubit gates, 
and therefore we can assume that their error probabilities are included in those of two-qubit gates. Note that this 
assumption does not affect the fault tolerance. That is, if the fault tolerance holds in the present model, then this 
is the case in the model including other errors. (Including other errors will result in the increase of logical error 
probabilities by some factor.) The model for an imperfect two-qubit gate is the standard one7,16,17: one of the 15 
two-qubit Pauli errors occurs on the control and target qubits with probability pe/15 after a perfect gate operation. 
The simulator used here is the stabilizer simulator based on ref. 18.

From the simulation results, we estimated the error probability and total number of physical qubits for a 
logical CNOT gate, which are shown in Fig. 2a,b, respectively. In Fig. 2, the crosses, the circles, and the trian-
gles correspond to the cases where logical zero states, which are used for logical Bell states for error-correcting 
teleportation, are prepared by the methods shown in Fig. 1a–c, respectively. (See Methods for the details of the 
simulation.)

Preparation of encoded magic state.  A recent standard approach to fault-tolerant preparation of 
encoded magic states is based on magic state distillation11,19–23. However, the distillation approach requires at 
least five logical magic states encoded in a non-fault-tolerant manner and eight logical two-qubit gates23, and 
therefore the resource requirements are high. Although a detailed study on the distillation approach is beyond 

Figure 2.  Simulation results of a logical CNOT gate. (a) Log-log plot of error probabilities of a logical CNOT 
gate. The straight lines are the fits of αpe

2 to the plots, where α is a fitting parameter. (b) Linear plot of resources 
of a logical CNOT gate, where the resource is defined as the total number of physical qubits. In both (a) and (b), 
the crosses, the circles, and the triangles correspond to the cases where logical zero states are prepared by the 
methods shown in Fig. 1a–c, respectively. pe denotes the error probability per physical two-qubit gate.
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Figure 3.  Quantum circuits for fault-tolerant preparation of  H L
 encoded with the Steane code. (a) 

Conventional method. The whole procedure without the preparation of the logical zero state is repeated twice. 
(b) Proposed method. In both (a) and (b), the error detection with the Steane code is implemented by, e.g., 
error-detecting teleportation7,16.
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the scope of the present work, the present method will achieve fewer resource requirements than the distillation 
approach, because the present method requires only 25 physical qubits for fault-tolerant magic-state preparation, 
as explained below. (On the other hand, the distillation approach may achieve a lower logical error probability by 
some factor.)

On the other hand, for the Steane code, there is a more conventional method based on fault-tolerant measure-
ment1,14, which is shown in Fig. 3a. In this case, a magic state is H , which is the eigenstate of the Hadamard 
operator, H, with the eigenvalue of + 1. We can perform a non-Clifford gate π( / )R 4Y  with H  and Clifford oper-

ations, as shown in Fig. 4, where θ( )RY  is defined as θ
θ θ
θ θ

( ) =





( / ) − ( / )
( / ) ( / )






R
cos 2 sin 2
sin 2 cos 2Y  in the computational basis. 

In Fig. 3a, 0 L
 is first prepared in a non-fault-tolerant manner. Next, the encoded Hadamard operator is measured 

fault-tolerantly. The fault-tolerant measurement consists of fault-tolerant preparation of a seven-qubit cat state 
followed by transversal controlled-Hadamard gates and the measurements of the ancilla qubits. If the parity of the 
measurement results is even, then the measured encoded state is projected into H L

, and otherwise projected into 
the state orthogonal to H L

, which is denoted by H L
. The fault-tolerant measurement is followed by error detec-

tion, which ensures that the system is in the code space. The whole procedure without the preparation of the 
logical zero state is repeated twice. If no error is detected and the two results of the fault-tolerant measurements 
are equal, then H L

 or H L
 is prepared fault-tolerantly. Otherwise, the output state is rejected and the state prepa-

ration is restarted. In the case of H L
, we can obtain H L

 by applying transversal Y gates.
Figure 3b shows the proposed method for fault-tolerant preparation of H L

. This method is also based on the 
fault-tolerant measurement of the encoded Hadamard operator. The differences from the conventional method 
described above are the following two points. First, the initial state is H L

, not 0 L
, as in the case of magic state 

distillation11,17,19–22. This change allows one to remove the two-time repetition of the whole procedure in the con-
ventional method. Second, the ancilla for the fault-tolerant measurement of the encoded Hadamard operator is a 
Bell state, not the seven-qubit cat state. This change becomes possible by X-error detection at the final measure-
ment M0/1 for the ancilla. This technique was proposed in ref. 17 for step-by-step magic state encoding for concat-
enated quantum codes.

To confirm that the present method works successfully, we performed numerical simulation of a logical 
π( / )R 4Y  with H L

. Here note that the stabilizer simulator mentioned above cannot be used for the present pur-
pose, because the magic state is a nonstabilizer state. The present simulation is performed with a fully 
quantum-mechanical simulator devised by us for this work. The error model assumed here is the same as the 
above one.

From the simulation results, we estimated the error probability and total number of physical qubits for a logi-
cal π( / )R 4Y , which are shown in Fig. 5a,b, respectively. In Fig. 5, the crosses and the triangles correspond to the 
cases where H L

 is prepared by the methods shown in Fig. 3a,b, respectively. (See Methods for the details of the 
simulation.)

Discussion
First, we discuss the simulation results for a logical CNOT gate shown in Fig. 2. Since a logical CNOT gate 
requires two Bell states for error-correcting teleportation and each Bell state requires two 0 L

, the resource for a 
logical CNOT gate is four times as many as the preparation of 0 L

. This is confirmed from Fig. 1 and Fig. 2b. The 
resources in Fig. 2b increase a little as pe increases. This comes from the repetition due to postselection based on 
error detection. As is obvious from Figs 1 and 2b, the present method can achieve the fewest resources.

Figure 2a shows that all the methods can achieve the fault tolerance, because all the plots are well fitted with 
αpe

2, where α is a fitting parameter. Figure 2a also shows that the present method can achieve a logical error prob-
ability as low as the conventional ones. Thus, it turns out that the present method realizes the fault-tolerant prepa-
ration of 0 L

 with fewer resources without increasing the logical error probability.
Next, we discuss the simulation results for a logical π( / )R 4Y  with H L

 shown in Fig. 5. Since the error detec-
tion in Fig. 3 requires a Bell state for error-detecting teleportation and the Bell state requires two 0 L

, the resource 

Figure 4.  Quantum circuit for a non-Clifford gate RY (π/4) with a magic state H . M+/− denotes the { + , 
− } basis measurement and m denotes the measurement result, where m equals 0 and 1 for the results   +  

and   − , respectively.
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for H L
 is the number of physical qubits shown in Fig. 3 plus 16 for two 0 L

. This is confirmed from Fig. 3 and 
Fig. 5b. (For the conventional method shown in Fig. 3a, the two-time repetition must be considered.) The 
resources in Fig. 5b increase a little as pe increases. This comes, again, from the repetition due to postselection 
based on error detection. The present method can achieve fewer resources than the conventional one, as expected.

Figure 5a shows that both the methods can achieve the fault tolerance, because the plots are well fitted with 
αpe

2, where α is a fitting parameter. Figure 5a also shows that the logical error probability for the present method 
is very close to that for the conventional one. Thus, it turns out that the present method realizes the fault-tolerant 
preparation of H L

 with fewer resources without increasing the logical error probability.
In conclusion, we have proposed efficient fault-tolerant preparation methods for zero and magic states 

encoded with the Steane code. By numerical simulations, it has been shown that both the methods can achieve 
fault tolerance with significantly fewer resource overheads without increasing logical error probabilities, com-
pared to conventional methods. The overhead for the encoded zero state is only one physical ancilla qubit. This 
has become possible by careful consideration of error degeneracy, which is a nonclassical property of quantum 
codes. This result suggests that the nonclassical feature of the error degeneracy will be useful for improvement 
of fault-tolerant quantum computation. On the other hand, the overhead for the encoded magic state is only two 
physical ancilla qubits together with additional 16 physical qubits for error detection. It seems difficult to realize 
further reduction of the overhead. Thus, the present methods minimize the resource overheads for fault-tolerant 
state preparation with the Steane code.

Methods
The Steane code.  The Steane code is a [[7,1,3]] stabilizer code, where [[n,k,d]] means that k qubits are 
encoded into n qubits and the code distance is d. The “check operators” (stabilizer generators) are defined by 
IIIZZZZ, ZZIIZZI, ZIZIZIZ, IIIXXXX, XXIIXXI, and XIXIXIX, which are based on the [[7,4,3]] classical 
Hamming code. The decoding algorithm for the measurement results of the check operators is the same as that 
for the Hamming code. The Steane code enables to correct arbitrary single-qubit errors and to detect arbitrary 
two-qubit errors in the code block, because the code distance is three. The encoded Pauli operators are defined 
by XXXXXXX and ZZZZZZZ. The encoded operators have different representations equivalent to one another 
because of the stabilizer operators. For instance, XXXXXXX is equivalent to XXXIIII. For the Steane code, all the 
Clifford gates can be implemented transversally.

Simulation methods.  The simulation method for a logical CNOT gate is the same as that in ref. 17. In this 
simulation, the logical CNOT gate is performed repeatedly ten times on the first logical qubits of two error-free 
logical Bell states. After that, the Bell states are disentangled by error-free operations. Finally, the logical qubits 
are measured to check whether logical errors have occurred or not. The error probabilities and resources are esti-
mated by dividing those of the simulation results by ten. The simulator used here is the stabilizer simulator used 
in refs 16 and 17, which is based on ref. 18.

In the simulation of a logical π( / )R 4Y  with H L
, π( / )R 4Y  is performed repeatedly 16 times on the first logical 

qubit of an error-free logical Bell state. Note that the logical Bell state returns to the initial state after the opera-
tions. Here in the preparation of H L

 shown in Fig. 3, the error detection is implemented by error-detecting 
teleportation7,16, where the Bell state for this is prepared with 0 L

 prepared by the method shown in Fig. 1c. 
Finally, the Bell state is disentangled by error-free operations and measured to check whether logical errors have 
occurred or not. The error probabilities and resources are estimated by dividing those of the simulation results by 
16. The simulator used here is a fully quantum-mechanical simulator devised by us for this work.

Figure 5.  Simulation results of a logical RY(π/4) with  H . (a) Log-log plot of error probabilities of a logical 
π( / )R 4Y . The straight lines are the fits of αpe

2 to the plots, where α is a fitting parameter. (b) Linear plot of 
resources of a logical π( / )R 4Y , where the resource is defined as the total number of physical qubits. In both (a) 
and (b), the crosses and the triangles correspond to the cases where H L

 is prepared by the methods shown in 
Fig. 3a,b, respectively. pe denotes the error probability per physical two-qubit gate.
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