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A Matrix Pencil Algorithm Based 
Multiband Iterative Fusion  
Imaging Method
Yong Qiang Zou1, Xun Zhang Gao1, Xiang Li1 & Yong Xiang Liu2

Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of 
ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC 
method, and some good results were get in several experiments. However, this method is fragile in 
noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate 
the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the 
multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent 
parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an 
iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce 
signal fusion error. Applications to simulate dada verify that the proposed method get better fusion 
results at low SNR.

Multiband radar signal fusion (MRSF) technique is an efficient way to get high resolution ISAR image at the state 
of the art1–3. Unlike construct a ultrawide band radar, it expands the echo signal frequency band by filling the 
gap data at the signal level, which is more flexible and economical. Meanwhile, the MRSF brings some challenges 
for ISAR imaging algorithms4–8. Two important questions are multiband signal coherent compensation9,10 and 
damped exponential (DE) model parameter estimation11.

For the first question, the subband signals are derived from different wideband radars, and the coherent 
between them cannot be well guaranteed even though high precision synchronization techniques are adopted12,13. 
However, high accuracy coherent is crucial for radar imaging, and if lack of compensation, the the target radar 
images would be defocused and blurring, and it would not be imaged in serious cases. This issue arouse great 
concern among researchers, and several compensation methods were proposed. Cuomo11 in Lincoln laboratory 
analysed a wide variety of factors which relate to mutual incoherent, and proved that there were a fixed phase and 
a linear phase (these two factors are the so-called ICP) between two incoherent subband signals. In ref. 11, a mod-
ified root-MUSIC and least square algorithm are used to construct DE model of each subband signal. Depending 
on these models, each subband is extrapolated to get full band signals, then high dimension optimization is 
applied to find the fixed phase and the linear phase. However, big error would be introduced by the extrapolation 
when the gap band is wide. In ref. 14, the similarity between high range resolution profile (HRRP) of the subband 
is utilized to estimate the linear phase, and then a cost function is defined to derive the fixed phase. This method 
has high calculate efficiency, but the estimation precision is related to the sample number. In refs 9,10, the fixed 
phase and linear phase were deduced through the corresponding poles expressions which relate to the same scat-
tering centers. Extrapolation error does not exist here, and the calculation burden is also reduced.

For the second question, the DE model is usually transformed to all-pole model and the parameters are esti-
mated by the modified root-MUSIC and least square algorithm9,11. In ref. 9,11, the poles closest to the unit circle 
are used to characterize the subband signals, but this principle is not suitable at low SNR cases, for some inter-
ference poles may be selected. Once some false poles are chosen, it is hard to avoid big error in poles estima-
tion. Apart from that, Piou15 proposed a state-space based method. In his algorithm, a set of matrices that best 
describe the measured data are determined, and the fitted data are used to interpolate between and extrapolate 
outside of the measurement bands. And at the meanwhile, he also presented an iterative approach that refines the 
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state-space matrices of the dual band and improves the fitted data in the vacant bands. But this method faced the 
same problem at low SNR environment.

In order to solve the aforementioned problems, matrix pencil algorithm which has better performance at low 
SNR is adopted to estimate the poles and its amplitudes. Then the difference between correspond poles of inco-
herent signals is analyzed, and a high accuracy coherent compensation approach which does not depend on signal 
extrapolation and sample numbers is proposed. In order to improve the signal fusion precision, an iterative signal 
fusion process which aimed to minimize the 2-norm of signal difference is introduced. At last, some simulate 
experiments are carried out to verify the effective of the method.

Methods
Multiband Signals Coherent Compensation.  In ref. 9, Tian proposed a novel method to estimate the 
ICP, however, the phase variety caused by the vacant band is not taken into considered, meanwhile the poles esti-
mated by the root-MUSIC method is easily affected by the noise, both of them would result in loss of precision. In 
this section, a modified method is proposed.

Without loss of generality, considering the fusion of two subbands, ICP are added to the higher subband. For 
a static target with M scattering centers, the baseband echo signal of the lower and higher subbands s1, s2 can be 
written as
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where f 1, f 2 are the start frequencies of the two subbands, N1, N 2 are the step numbers, and the step frequency is 
∆f , = + ∆f f B2 1 , ∆ > ∆ ⋅B f N1. Obviously, Eq. (1) and (2) are the geometrical theory of diffraction model 
(GTD) expression of s1, s2, respectively. The model parameters α, , =A r{ }m m m m

M
1 characterize the scattering 

centers, and Am denotes the scattering center amplitude, rm is the relative range of scattering center with respect 
to the reference point, αm is the frequency depend factor (FDF), which denotes the kind of scattering center. 

= + ⋅ ∆ , = + ′ ⋅ ∆′f f k f f f k fk k1 2 , c is the velocity of light. η, θ are the ICP, i.e. the aforementioned fixed 
phase and linear phase.

Although Eq. (1) and (2) describe the subband signals precisely, it is hard to estimate the parameters accu-
rately due to the FDF. In this paper, the power function αf m is replaced by the exponential function βm

f , then the 
GTD model is transformed into DE model, and it can be expressed as all-pole model further (see Eqs (3) and (4)).
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where pm and qm denote the poles of s1, s2, bm, dm are the corresponding amplitudes.
As a matter of fact, the all-pole model is essentially the summation of harmonic, many harmonic decomposi-

tion algorithms can be employed to estimate the parameters, and matrix pencil (MP) is one of the better methods. 
It was first presented by Y.B.Hua and T.K.Sarkar16, and often regarded as one variation of estimating signal param-
eter via rotational invariance techniques (ESPRIT). It utilizes the properties of exponent signal to estimate the 
amplitudes and poles simultaneously by solving the generalized eigenvalues of matrix pencil. Through the com-
parative study of MUSIC, root-MUSIC, ESPRIT, and MP17–19, we can draw the conclusion that the MP algorithm 
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has a better performance than the others at low SNR. Then, in this paper, the poles and its amplitudes are solved 
by MP method.

Taking s1 as an example, the Hankel matrix should be constructed first, i.e.
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1 1 1 0 , M0 is the pencil parameter, and ≤ ≤ −ˆ ˆM M N M0 1 . 
The model order M̂  can be obtained by minimum description length (MDL) or Akaike information criterion 
(AIC) methods, and then the singular value decomposition (SVD) of X0 and X1 are given by
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where ∆M̂, ΣM̂ are the diagonal matrix composed by the first M̂ main singular values of ,X X0 1, respectively. They 
and the corresponding matrix U0, V 0, U1, V1 contain the signal information and a little noise information. While 
∆ − ˆM M0

, Σ − ˆM M0
 are the diagonal matrix composed by the rest − ˆM M0  singular values of ,X X0 1, they and the 

corresponding matrix ′U0, ′V0, ′U1, ′V1 contain noise information only.
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 is a Vandermonde matrix composed by the M̂ poles.

The poles of s1, s2 are given below:
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From Eq. (9), it is clearly that the only difference between the same order poles of s1 and s2 is a linear phase θ, 
and it is given by:
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Similarly, the amplitudes b̂m, d̂m are given by:
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Obviously, the amplitudes are more complex than the poles. Their phases are determined by the fixed phase, 
the start frequency (f 1, )f 2 , FDF αm and relative ranges rm, i.e.
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When substituting η̂, θ̂ into Eq. (15), the higher subband signal is compensated.
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The parameter precision are guaranteed by two aspects:

1.	 Due to the MP algorithm has good anti-noise performance, the estimate results is interfered slightly and 
more robust.

2.	 There is no data extrapolation in this approach, which reduce estimation error.

Multiband Radar Signal Fusion Imaging.  In ref. 9, the band gap is filled by GAPES20, and a full band 
all-pole model is constructed by the modified root-MUSIC, then the fusion images of simulate data are obtained. 
However, there is no feedback in this algorithm, which is more important for improving the parameter estimation 
precision . In this section, the full band all-pole model is obtained by MP, and then the gap data is filled by the 
all-pole model. After that, the initial fusion results are feedback to the previous step until the fusion precision 
fulfills the requirement.

If s1, s2 are two subband signals whose length are N1, N 2 , respectively. ∆B is the band gap between them, and 
N is the samples number of the full band signal. Our fusion approach contains the following steps:

(1)	 Compensate s2 with the aforementioned coherent compensation approach, then we get ŝ2 which is coherent 
with s1.For the sake of simplicity, let = ˆs s2 2, i.e., s2 denotes ŝ2 in the following steps.

(2)	 Construct the full band all-pole model by s1, s2.The full band all-pole model is
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The following parameters estimation process can refer to the previous section.
(3)	 After the poles and the amplitudes are obtained, the full band signal can be estimated by Eq. (19):
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In order to reduce the estimate error, substitute ŝ1, ŝ2 with s1, s2, and the initial full band fusion signal is written 
below:
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(4)	 Iterate the fusion result. During each iteration, the approach evaluates the error energy between the estimated 
signal and primary simulate signal, and the error energy is defined by
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where ŝi
1 and ŝi

2 denote the estimated values of the primary simulate signal s1 and s2, respectively. If ≤ −E Ei i 1, 
then the algorithm generates a new full band fusion signal based on the −i th iteration fusion signal. If > −E Ei i 1, 
the algorithm stops, and the ( − ) −i th1  iteration full band fusion signal is just the final result.

The flow chart of the proposed algorithm is illustrated Fig. 1, and before coherent compensation several pre-
process are added. While this section discuss the processing for only two subbands, it is straightforward to apply 
this concept to an arbitrary number of subbands.

The full band fusion HRRP can be obtained by apply the pulse compression to the final fusion signal. After 
that, if we apply pulse compression in cross-range, then the fusion ISAR image is obtained.

Results
Model and Simulate Parameter.  In order to test the algorithm, the proposed method (A1 for short), the 
approach in ref. 11 (A2 for short), the approach in ref. 9 (A3 for short), and the approach in ref. 15 (A4 for short) 
are applied to the GTD model based simulate data and the missile warhead electromagnetic computation model 
data to fuse multiband signals and obtain the radar ISAR images.

Coherent compensation and HRRP fusion test are carried out on the GTD model based simulated data. And 
the start frequency =f GHz80 , step frequency ∆ =f MHz10 , step number =N 300, the bandwidth =B GHz3  
(the theory range resolution is 0.05 m). The target is composed of three scattering centers, the scattering intensity 
are 2, 1.5, 2.5, respectively. And the FDF and the relative ranges relate to the reference range are − 1,1,− 0.5 and 
0.97,1.05,1.24, respectively. Then the baseband noisy signal is
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where = + ∆f f k fk 0 , ( )e k  is zero mean white Gauss noise.
After that, a missile warhead model is constructed in CST2012 environment, and the sweep frequency data of 

different aspect angle is obtained. This model is a simple missile warhead (Fig. 2). Here the aspect angle is  ~0 180  
when the warhead rotate counter-clockwise. The parameters are set as follows: aspect angles are  ~0 10  with angle 
interval 0.1°, frequency range from GHz10  to GHz14  with frequency interval MHz20 . Matrix X denotes the elec-
tromagnetic computation data, then the number of its column and row are 201 and 101, respectively.
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In order to simulate the effect of mutual incoherence, the higher subband signal ( )s k2  is modulated by 
η θ( + )j jkexp , i.e.,
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Figure 1.  Multiband iterative fusion flow chart. 
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η θ′ ( ) = ( ) ( + ) ( )s k s k j jkexp 252 2

where η π= /8, θ π= /9. The aforementioned algorithms are applied to estimate η and θ at = ~SNR dB1 20 (As 
approach A4 does not give its coherent compensation method, so this part of test are only carried out on the other 
three algorithms). Figure 3 illustrates the results of 100 runs Monte Carlo simulation. From Fig. 3, it is obviously 
that the RMSE of η̂ and θ̂ are increased as the SNR decrease, and in general, A1 has the lowest RMSE. It is obvi-
ously that the proposed method improves the parameter precision at low SNR, which verifies the analysis in pre-
vious section.

After coherent compensation, s1, s2 are mutual coherent, the four algorithms are applied to get the gap data at 
=SNR dB15 . Figure 4 illustrates the estimated gap data sm and the primary simulate data. From this figure, all the 

algorithms can fit the primary data to a certain extent. In general, the result of A1 is better than the other three, 
and the suboptimal estimated signal is the result of A4. A1 and A4 share one thing in common: they all contain 
iteration process, and the results show that this process can significantly decrease the fitting error. At the mean-
while, the results also proof the MP method is more efficient than the state-space method in noisy environment.

Denote sm as the estimated data, and the final full band signal s̃ can be derived by s1, sm, s2 according to  
Eq. (24). Figure 5 illustrates the real wave and HRRP of s and s̃. It is hard to recognize the first and the second 
scattering point in subband HRRPs due to the bandwidth of each subband is 1 GHz, and after the gap data is filled, 
the full band fusion HRRP can do it easily, which verifies the proposed method improve the range resolution.

Multiband ISAR Imaging Experiment.  Letting

=





















, =



















 ( )

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

�
�

� � �
�

�
�

� � �
�

X

x x x
x x x

x x x

X

x x x
x x x

x x x 26

1

1 1 1 2 1 101

2 1 2 2 2 101

51 1 51 2 51 101

2

151 1 151 2 151 101

152 1 152 2 152 101

201 1 201 2 201 101

The frequency band range of X1 and X2 are ~GHz GHz10 11  and ~GHz GHz13 14 , respectively. Figure 6 illus-
trates the subband ISAR images and the full band ISAR images at two different SNR. It is hard to get the precision 
position of each scattering center due to the poor range resolution of Fig. 6(a,b).

Similarly, X2 is modulated with the ICP, and η π= /8, θ π= /9. Apply the four algorithms to X1 and X2 at 
=SNR dB15  and =SNR dB10 , and the fusion results are illustrated in Figs 7 and 8.

Obviously, compared with Fig. 6, the range resolution of the fusion ISAR images in Fig. 7 is improved signifi-
cantly, and most scattering centers can be positioned precisely. However, in this figure, the fusion images are defo-
cused at different level which result that some scattering points become blurred, such as the second point in the 
middle of Fig. 7(c). And for Fig. 7(b), there are strong shadows around some points. Owe to the iteration process, 
Fig. 7(a,d) have the better focused effect, but the shadow of Fig. 7(d) is a little more than Fig. 7(a). Comparatively 
speaking, Fig. 7(a) is more similar to the original ISAR image (Fig. 6(c)) than the other three.
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Figure 3.  Incoherent parameter estimation result. (a) fixed phase estimation result. (b) linear phase 
estimation result.
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As the SNR decrease to dB10 , the original noisy ISAR image (Fig. 6(d)) is still clear, but the quality of the fusion 
image is degraded seriously. Although the range resolution of the fusion images in Fig. 8 is improved, a lot of 
strong false scattering centers emerge. For Fig. 8(b,c), it is hard to distinguish some false scattering centers from 
the true points. And Fig. 8(a,d) has the similar result, but the latter has more false points. Then it is obviously that 
Fig. 8(a) is more better than Fig. 8(b–d).

Table 1 list the image entropy21 of each ISAR images in Figs 7 and 8. The ISAR image entropy indicates the 
quality of the image, and the image which has the smaller entropy is better than the larger one. Then from Table 1, 
we can conclude that the results are consist with the former analysis.

Above mentioned results show that the MP method and the iteration process have better fusion precision than 
the other three algorithms at the same SNR.

Band Gap and The Fusion ISAR Images.  In this section, the bound of multiband fusion with different 
subband width and gap width is discussed through the simulated experiments. The missile warhead model elec-
tromagnetic computation data is adopted, and all the four algorithms are applied to the subband data which has 
different gap to total band ratio (i.e., GTBR, and it defined as = × %)GTBR 100gap

totalband
 at =SNR dB20 . Here, 

Figure 4.  The gap band estimate result. (a) the result of A1. (b) the result of A2. (c) the result of A3. (d) the 
result of A4.
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Figure 5.  The final full band fusion result of the proposed method. (a) real wave. (b) HRRP

Figure 6.  Missile warhead ISAR images. (a) lower band ( )X1 ; (b) higher band ( )X2 ; (a) full band 
(SNR =  15 dB); (b) full band (SNR =  10 dB).
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image entropy and image contrast21 are used to indicate the quality of the fusion ISAR images, and commonly 
speaking, the image entropy should as small as possible, while for the image contrast, the larger the better. The 
results after 100 Monte Carlo simulations are illustrated in Fig. 9. In Fig. 9(a,b), the image entropy increases as the 
GTBR grows, and the image contrast decreases as the GTBR grows, which tell that wide gap bring great difficulties 
to fusion imaging algorithms. From these two figures, an obvious transformation takes place at = %~GTBR 60 70
(the results of A3 fluctuate fiercely, but in this range it also has a great change). The fusion ISAR images of A1 at 
these two GTBR are illustrated in Fig. 9(c,d). Figure 9(d) has serious defocused, and the intensities of some false 
scattering points even stronger than the true points, so it is hard to recognize the target from it. Relatively 

Figure 7.  ISAR image of the missile model (SNR = 15 dB). (a) the fusion full band ISAR image (A1);  
(b) the fusion full band ISAR image (A2); (c) the fusion full band ISAR image (A3); (d) the fusion full band 
ISAR image (A4).

Figure 8.  ISAR image of the missile model (SNR = 10 dB). (a) the original ISAR image. (b) the fusion full 
band ISAR image (A1); (c) the fusion full band ISAR image (A2);(d) the fusion full band ISAR image (A3).

SNR (dB) noisy primary signal A1 results A2 results A3 results A4 results

15 10.3679 11.1461 11.9137 11.8158 11.2824

10 11.2536 12.3927 12.9788 12.7942 12.5729

Table 1.   ISAR Image Entropy.

Figure 9.  The infection of band gap to ISAR fusion images (SNR = 20 dB). (a) the image entropy with 
different GTBR. (b) the image contrast with different GTBR; (c) the fusion ISAR image of A1 at = %GTBR 60 ; 
(d) the fusion ISAR image of A1 at = %GTBR 70 .
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speaking, although Fig. 9(c) is defocused, most of the true scattering points can be recognized. If we choose 
= %GTBR 60  as the critical value for A1, then the other algorithms’ critical values which have the similar image 

entropy and image contrast are = %GTBR 50 (A2), = %GTBR 30 (A3) and = %GTBR 60 (A4), respectively.

Discussion
In this paper, MP method is used to estimate the all-pole model parameters which ensure the parameter accuracy 
at low SNR conditions. After that, two equations are deduced to calculate the incoherent parameters, which can 
elevate the precision of coherent compensation. What is more, a 2-norm based iterative process is introduced to 
improve the signal fusion precision. The simulate tests indicate that compared with the other fusion methods, the 
proposed method can give better fusion signal in low SNR environment. Apart from that, the bound of multiband 
fusion with different subband width and gap width is also analysed, and the critical values of different algorithms 
are given in the aforementioned environment. However, although our method has better antinoise capability, it 
can not work well in colored noise environment, so a modified version of our method should be studied to tackle 
this problem. At the meanwhile, the present method need a large mount of calculation which impose heavy bur-
den on computers, and it is not suitable for real time process, so in the next step, how to decrease the calculation 
should be discussed.
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