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InGaN/Dilute-As GaNAs Interface 
Quantum Well for Red Emitters
Chee-Keong Tan, Damir Borovac, Wei Sun & Nelson Tansu

The design of InGaN/dilute-As GaNAs interface quantum well (QW) leads to significant redshift in the 
transition wavelength with improvement in electron-hole wave function overlap and spontaneous 
emission rate as compared to that of the conventional In0.2Ga0.8N QW. By using self-consistent six-
band k·p band formalism, the nitride active region consisting of 30 Å In0.2Ga0.8N and 10 Å GaN0.95As0.05 
interface QW leads to 623.52 nm emission wavelength in the red spectral regime. The utilization of 
30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 interface QW also leads to 8.5 times enhancement of spontaneous 
emission rate attributed by the improvement in electron-hole wavefunction overlap, as compared 
to that of conventional 30 Å In0.35Ga0.65N QW for red spectral regime. In addition, the transition 
wavelength of the interface QW is relatively unaffected by the thickness of the dilute-As GaNAs 
interface layer (beyond 10 Å). The analysis indicates the potential of using interface QW concept in 
nitride-based light-emitting diodes for long wavelength emission.

In recent years, III-Nitride semiconductor alloys are regarded as an important semiconductor class in solid state 
lighting technology. The key advances in the development of III-Nitride-based light emitting diodes (LEDs) has 
since led to practical implementation in various solid-state lighting applications1–6. Owing to the capability of 
InGaN to emit light in the entire visible spectral regime from blue to red, the realization of monolithic integrated 
red-green-blue (RGB) GaN-based LEDs will be important towards achieving smart and ultra-efficient solid-state 
lighting technology4.

Despite the success in developing high quality blue and green InGaN LEDs, extending the nitride-based 
QW emission wavelength towards red spectral regime is fundamentally challenging for two primary reasons. 
Higher In-content in the InGaN QW is always required in order to achieve the emission wavelength in red spec-
tral regime, but phase separation of the InGaN material occurs simultaneously when the In-content becomes 
higher7,8. This leads to crystal degradation in the QW which is detrimental to the optical properties of the InGaN 
QW LED. Moreover, due to the polarization fields in the InGaN QW, the electron and hole wavefunctions are 
always spatially separated in the QW [illustrated in Fig. 1(a)] which leads to reduction in the electron-hole wave-
function overlap. The detrimental effect from the charge separation issue in the InGaN QW is increasingly wors-
ening as In-content increases in the QW.

Several approaches have been made to address the charge separation issue in blue and green QW LEDs9–19,  
including nonpolar/semipolar InGaN QW9, staggered InGaN QW10–12 and InGaN QW with AlGaN 
delta-layer13,14. However, the approaches are not entirely applicable to addressing the issues in red QW LEDs 
since high In-content incorporation needs to be taken into consideration. In the case of nonpolar/semipolar 
InGaN QW, the compensation of quantum confined stark effect in the quantum well leads to blue-shift of emis-
sion wavelength if considering a comparison to the c-plane InGaN QW with same In-content20. This implies the 
requirement of higher In-content in nonpolar/semipolar InGaN QW to extend the emission into longer wave-
length regime, which results in additional difficulty for the growth of high quality crystal. On the other hand, in 
the case of staggered InGaN QWs, the electron-hole wavefunction overlap decreases as the emission wavelength 
extends into longer wavelength such as red spectral regime11.

The efforts devoted on extending the nitride-based QW LED emission wavelength towards red spectral regime 
are still significantly lacking, albeit the research progress is picking up momentum lately. To date a number of 
approaches have been proposed to address the issues in red emitting GaN-based QW LEDs which include the 
InGaN metamorphic buffer layer or InGaN substrate for InGaN QW18,19, the InGaN-delta-InN QW21, InGaN 
with AlGaN interlayer QW22, Eu-doped GaN QW instead of InGaN QW23–25, lattice-relaxed InGaN multiple 
QW structure26 and semipolar InGaN QW27. Note that most approaches in addressing red nitride QW LED are 
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fairly similar to the approaches in addressing the blue and green nitride QW LEDs. Nonetheless the In-content is 
more than 30% in the InGaN QW for red emission, and the reported highest external quantum efficiency of the 
red GaN-based QW LED is 2.9%22 which is still much lower than that of blue and green GaN-based QW LEDs.

If a high efficiency red emitting nitride-based QW LED can be realized, the making of a RGB QW nitride LED 
is prospectively achievable. This will provide an alternative solution for the related community to generate white 
light emission via nitride-based QW LED. Additionally, from the standpoint of science innovations and engineer-
ing, it is of great importance to overcome the barriers in achieving high efficiency red emitting nitride QW LED 
for further revolution in nitride-based solid state lighting technology.

In this work, we present a relatively low In-content nitride-based active region with large electron-hole 
wavefunction overlap by employing InGaN-GaNAs interface QW concept. The insertion of an interface layer of 
dilute-As GaNAs alloy adjacent to the InGaN QW layer leads to significantly enhanced electron-hole wavefunc-
tion overlap. In contrast to the existing approaches in incorporating high In-content (~35–50%) in the active 
region for red emission, the In-content in the InGaN QW layer for the InGaN-GaNAs interface QW is relatively 
small (20%). The characteristics of InGaN-GaNAs QW are presented and are compared to those of the conven-
tional InGaN QW. Note that dilute-As GaNAs alloy has recently been suggested as a potential candidate to be 
used for LED applications and to suppress interband Auger recombination process which could be important to 
reduce the efficiency droop issue in the InGaN-based LED devices28–30.

Concept
Our analysis and calculations are carried out based on self-consistent 6-band k·p formalism for wurtzite semi-
conductors, in which the valence band mixing, carrier screening effects, polarization fields and strain effect are 
taken into consideration17,31,32. III-Nitride band parameters are obtained from ref. 33 and conduction to valence 
band offset ratio (∆Ec:∆Ev =  70:30) is set constant for all layers except for dilute-As GaNAs layer. The material 
parameters of dilute-As GaNAs layer used in our calculations were obtained through our previous First-Principle 
Density Functional Theory calculations, including the band properties28 and the conduction to valence band 
offset ratio of GaN/dilute-As GaNAs (∆Ec:∆Ev =  5:95)29. In our present study, the focus of the structure employed 
the GaNAs layer with 5% As-content for aiming at the red emitting active region. The use of 5% As-content in the 
dilute-As GaNAs layer significantly shifts the valence band edge energy upwards, leading to a reduction of the 
energy band gap.

The utilization of interface quantum well concept originated from the development in GaAs-based and 
GaSb-based QW systems34–38. In conventional GaAs-based QW systems which lacks the spontaneous polariza-
tion field, a type-I confinement of the electrons and holes in the QW results in close-to-unity overlap of the elec-
tron and hole wavefunctions. In order to elongate the transition wavelength towards mid-infrared spectral regime 
using GaAs-based and GaSb-based material system, interface quantum well was proposed which then lead to 
the state-of-the-art laser devices in the infrared regime34–38. The penalty of interface QW in the GaAs-based or 
GaSb-based material systems is the reduction of electron-hole wavefunction overlap in the active region, due to 
the separate confinement of electron and hole wave function in the adjacent layers respectively.

On the other hand, as illustrated in Fig. 1(b), the electron and hole wavefunctions are trapped near the 
hetero-interface in the interface QW structure driven by the large heterojunction discontinuity and the large 
polarization field mismatch between the InGaN and dilute-As GaNAs layers. As such, the electron wave function 
and hole wave function will be confined in the first and second layers, respectively, so that the confinement of the 
wave functions occurs close to the interface of the two material layers. Such carrier localization at the interface 
would thus dramatically enhance the electron-hole wavefunction overlap in the active region as compared to that 
of the conventional InGaN QW. Note that a similar concept using type-II “W” QW structure has previously been 
suggested to suppress the charge separation issue in InGaN QWs15,16. However, to our knowledge, the interface 
QW concept is yet to be applied and studied in nitride-based material systems. The type-II “W” QW15,16 used 

Figure 1. Illustration of (a) Conventional nitride-based QW band lineup where the hole and the electron 
wavefunction are spatially separated in the opposite direction, and (b) Novel nitride-based interface QW where 
the holes and electrons are confined at the interface of two quantum well layers.
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three layer structures (InGaN/dilute-As GaNAs/InGaN) for achieving improved overlap design, which provided 
an additional challenge attributed to the need for having three layers grown to form the active region. In this pres-
ent work, by taking advantage of the large heterojunction discontinuity and the existence of the large polarization 
field mismatch between the InGaN and dilute-As GaNAs layer, the electron and hole wavefunctions are trapped 
near the hetero-interface in the interface QW structure.

Results and Discussion
Figure 2(a,b) show the energy band lineup of conventional 30 Å In0.35Ga0.65N QW and 30 Å In0.2Ga0.8N QW cou-
pled with 10 Å GaN0.95As0.05 interface-layer respectively, along with the plotted wavefunctions of first conduction 
subband and first valence subband in both QW structures. Both structures are designed for transition wavelength 
of 620-630 nm for red spectral regime. As can be seen in Fig. 2(a), the existence of an internal electric field leads 
to the tilted band lineup across the structure, causing the charge separation such that the hole wavefunction is 
pulled towards the left side while the electron wavefunction is pulled towards the right side. The spatially sep-
arated electron and hole wavefunctions accordingly lead to significantly reduced overlap of 10.9% between the 
wavefunctions for conventional 30 Å In0.35Ga0.65N QWs.

On the other hand, as shown in Fig. 2(b), by using a lower In-content (20%-In) for the InGaN QW layer and by 
coupling the InGaN QW layer with 10 Å GaN0.95As0.05 interface layer in the active region, the large electron-hole 
wavefunction overlap could be achieved for the QW structure. The large valence band offset between InGaN 
and GaNAs layers leads to strong hole localizations towards the GaNAs layer, while the electron wavefunction is 
extended beyond the active region for structure employing GaN as the barrier layers. The wavefunction overlap 
in the interface QW structure therefore results in the enhanced electron-hole wavefunction overlap of 44.6%. 
The natural band alignment for dilute-As GaNAs/GaN results in ∆Ec:∆Ev =  5:9529. It is important to note that 
the inclusion of strain effect in the dilute-As GaNAs resulted in the “weak” type-II band alignment in dilute-As 
GaNAs/GaN interface attributed to its upward shift of the conduction band edge.

Figure 3(a) shows the interband transition wavelength as a function of the GaNAs layer thickness (d) for 
30 Å In0.2Ga0.8N/d-Å GaN0.95As0.05 QW structure at carrier density of 1 ×  1019 cm−3. As shown in Fig. 3(a), the 
transition wavelength of the QW structure increases rapidly from 455.2 nm to 623.52 nm as the thickness of the 
GaNAs layer increases. The interband transition wavelength remains relatively unchanged in the ~625 nm spec-
tral regime when the thickness of the GaNAs layer increases from 10 Å to 20 Å, which is attributed to the deep 
hole localization in the GaNAs layer. Figure 3(b) shows the electron-hole wavefunction overlap as a function of 
the GaNAs layer thickness for the 30 Å InGaN/d-Å GaNAs QW structure at carrier density of 1 ×  1019 cm−3. In 
general, the electron-hole wavefunction overlap increases as the GaNAs layer thickness increases due to the shift-
ing of the electron and hole wavefunction towards the interface of the two-layer QW. However, the electron-hole 
wavefunction overlap of the InGaN-GaNAs QW decreases slightly from 45% to 42.5% when the thickness of the 
GaNAs layer increases from 15 Å to 20 Å. Note that the 30 Å In0.2Ga0.8N QW without the GaNAs layer will yield 
a transition wavelength of 455 nm and wavefunction overlap of 22.9% which is considerably low as compared to 
that of the 30 Å In0.2Ga0.8N/d-Å GaN0.95As0.05 QW structure. As a comparison, even though 30 Å In0.35Ga0.65N QW 
yields a transition wavelength of 632 nm, the wavefunction overlap is small (10.9%), which is 4 times smaller than 
that of 30 Å In0.2Ga0.8N/d-Å GaN0.95As0.05 QW structure.

Note that the designed structure of the InGaN QW with the coupling of the dilute-As GaNAs layer allows one 
to have transition wavelength redshift from blue spectral regime to red spectral regime and significantly enhanced 
electron-hole wavefunction overlap in the QW as compared to the conventional InGaN QW with same Indium 
composition and same InGaN QW thickness. In addition, the interband transition wavelength of the interface 
QW structure is relatively insensitive to the thickness of GaNAs layers beyond 10 Å as can be seen in Fig. 3(a), 
which is different from the InGaN-delta-InN QW structure21 where the resulting interband transition wavelength 
is highly dependent on the InN QW thickness. Accordingly, the similar redshifted transition wavelength (in this 
case blue to red spectral regime) independent of the varying interface layer thickness indicates the high potential 
of using interface QW concept in realizing highly controllable transition wavelength with large electron-hole 
wavefunction overlap under state-of-the-art growth technology.

Figure 2. Energy band lineups of (a) conventional 30 Å In0.2Ga0.8N QW, and (b) 30 Å In0.2Ga0.8N/10 Å 
GaN0.95As0.05 QW with electron wave function (Ψ e1) and hole wave function (Ψ hh1).
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Figure 4(a) shows a comparison of spontaneous emission spectra for conventional 30 Å In0.35Ga0.65N QW 
(dash line) and 30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 QW (solid line) at carrier densities from 5 ×  1018 cm−3 to 
1 ×  1019 cm−3 at T =  300 K. As shown in Fig. 4(a), the spontaneous emission rates for the conventional 30 Å 
In0.35Ga0.65N QW is much smaller than that of the 30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 QW. The spontaneous emis-
sion rate of 30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 QW is enhanced by 8.5 times as compared to that of conventional 
30 Å In0.35Ga0.65N QW. Specifically, at n =  1 ×  1019 cm−3, the peak spontaneous emission rate of conventional 
30 Å In0.35Ga0.65N QW reaches 1.17 ×  1026 s−1 cm−3 eV-1 whereas the peak spontaneous emission rate of 30 Å 
In0.2Ga0.8N/10 Å GaN0.95As0.05 QW reaches 9.95 ×  1026 s−1 cm−3 eV-1.

The improvement in the spontaneous emission recombination rates for the 30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 
interface QW could be attributed to the improved hole wavefunction confinement in the GaNAs layer, resulting 
in the improvement in the electron-hole wavefunction overlap. As a side note, our findings indicate blueshift 
of transition wavelength for both structures when the carrier density increases. Nevertheless the wavelength 
blueshift of 30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 QW is considerably smaller than that of the conventional 30 Å 
In0.35Ga0.65N QW when the carrier density increases from 5 ×  1018 cm−3 to 1 ×  1019 cm−3. The improvement in 
the wavelength blueshift for 30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 QW could be attributed to the reduction of the 
quantum confined stark effect in the active region.

Figure 4(b) shows the spontaneous emission radiative recombination rate per unit volume (Rsp) for conven-
tional 30 Å In0.35Ga0.65N QW (dash-dot), 30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 QW (solid), 30 Å In0.2Ga0.8N/15 Å 
GaN0.95As0.05 QW (dot) and 30 Å In0.2Ga0.8N/20 Å GaN0.95As0.05 QW (dash) as a function of carrier density up 
to 10 ×  1018 cm−3. As shown in Fig. 4(b), the Rsp of 30 Å In0.2Ga0.8N/d- Å GaN0.95As0.05 QW is enhanced at each 
carrier density as compared to that of conventional 30 Å In0.35Ga0.65N. Specifically, the enhancement of Rsp for the 
30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 QW ranges from 8.8–11.3 times.

Note that dilute-As GaNAs alloy has been reported for material growth using metal organic chemical vapor 
deposition (MOCVD)39,40 and molecular beam epitaxy (MBE)41. In the perspective of MOCVD growth, the 
growth of dilute-As GaNAs thin film was operated at 700–750 °C40 which is comparable to the growth temper-
ature of InGaN QW. Recent experimental studies by MBE have also demonstrated the capability to grow full As 
composition GaNAs alloy41. However, the implementation of GaNAs material in the active region for emitters 
is yet to be realized up to present. The field of dilute-As GaNAs is still in the early stage due to the lack of clear 
motivation on the importance of this material system for development of visible emitters. The identification of 
the dilute-As GaNAs alloy as a promising active material for red emitters with large spontaneous emission rate, as 
well as our recent work on identifying the non-resonant Auger process in this alloy, will provide a clear and strong 
motivation on the importance of the experimental pursuit of this material system. Future experimental studies 
are required to evaluate the performance and advantages presented in the InGaN/dilute-As GaNAs interface QW 
LEDs.

It is important to also mention that the main idea of this work is to illustrate the advantage of using an inter-
face layer to extend the emission wavelength, while enhancing the matrix element and radiative recombination 
rates in the QW as compared to the conventional InGaN QW. By controlling the As-content in the dilute-As 
GaNAs interface layer, it could be expected that the proposed structure of InGaN/GaNAs QW in this study has 
a high potential for control of the emission wavelength in green and red spectral regime with enhanced matrix 
element and radiative recombination rates in the QW. Further study will be carried out to investigate the impact 
of the proposed interface QW on green and yellow spectral regime.

Conclusion
In summary, the design of interface QW consisting of InGaN layer and dilute-As GaNAs layer leads to the emis-
sion wavelength in red spectral regime, along with enhanced electron-hole wavefunction overlap and spontane-
ous emission rate. Specifically, the design of the 30 Å In0.2Ga0.8N with 10 Å GaN0.95As0.05 interface QW results in 
significant emission wavelength redshift from 455.2 nm to 623.52 nm. Moreover, the spontaneous emission rate 
of 30 Å In0.2Ga0.8N/10 Å GaN0.95As0.05 interface QW is greatly enhanced by 8.5 times as compared to that of the 

Figure 3. (a) Interband transition wavelength and (b) electron-hole wave function overlap as a function of 
GaNAs layer thickness for 30 Å In0.2Ga0.8N/d-Å GaN0.95As0.05 QW at carrier density of 1 ×  1019 cm−3.
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conventional 30 Å In0.35Ga0.65N QW for red emission. In addition, the emission wavelength of the InGaN/GaNAs 
interface QW is relatively insensitive to the variation of dilute-As GaNAs interface layer thickness beyond 10 Å, 
indicating the potential of easing the difficulty for precise control of layer thickness during the epitaxial growth. 
Therefore the design of interface QW such as InGaN/dilute-As GaNAs QW has the high potential to be used for 
achieving high-efficiency nitride-based LEDs in red spectral regime.
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