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HIV-1 Protease Dimerization 
Dynamics Reveals a Transient 
Druggable Binding Pocket at the 
Interface
Fabio Pietrucci1, Attilio Vittorio Vargiu2 & Agata Kranjc3

The binding mechanism of HIV-1 protease monomers leading to the catalytically competent dimeric 
enzyme has been investigated by means of state-of-the-art atomistic simulations. The emerging 
picture allows a deeper understanding of experimental observations and reveals that water molecules 
trapped at the interface have an important role in slowing down the kinetics of the association process. 
Unexpectedly, a cryptic binding pocket is identified at the interface of the complex, corresponding to a 
partially bound dimer that lacks enzymatic function. The pocket has a transient nature with a lifetime 
longer than 1 μs, and it displays very favorable druggability features. Docking as well as MM-GBSA free-
energy calculations further support the possibility to target the new binding site by means of inhibitors 
able to prevent the complete dimerization by capturing the inactive conformation. This discovery could 
open the way to the rational design of a new class of anti-HIV drugs.

Among current anti-AIDS treatments a major role is played by a set of competitive inhibitors binding to the active 
catalytic site of Human Immunodeficiency Virus type 1 (HIV-1) protease. This enzyme plays a crucial role in 
the maturation of the virus, by cleaving the Gag and Gag-Pol polyproteins at specific sites to produce functional 
proteins. The development of the protease inhibitors in the last 20 years is a success story of structure-based drug 
design1,2, rendering AIDS a chronic disease for patients with access to treatments. However, there is an active 
quest for better compounds, due to the toxicity of current drugs and to the insurgence of drug resistance through 
a pattern of mutations that reduce inhibitor affinity while rescuing viral fitness.

In the struggle to enlarge the repertoire of pharmaceutical targets and boost the development of novel drugs, 
a recent promising direction is to seek molecules interfering with protein-protein interactions, e.g., targeting 
interfaces of complexes3. Unfortunately, the search is often hampered by the lack of deep binding pockets at the 
interface, as deduced from crystallographic structures. On the other hand, molecular dynamics simulations, being 
able to capture conformational fluctuations of the biomolecules at finite temperature, can substantially enrich the 
picture provided by crystallography4,5. Examples are the discovery of a cryptic binding site in HIV integrase6, that 
led to the first FDA approved drug for this target7, and the identification of a transiently open pocket in tumor 
suppressor p538. In this work, by investigating with molecular dynamics part of the dimerization mechanism of 
HIV-1 protease, we discover a cryptic transient binding site at the interface of the complex that displays favorable 
druggability features, what we hope will contribute to design a new class of inhibitors. Our results are compatible 
with nuclear spin relaxation experiments showing chemical exchange to occur on the μ s-ms time scale at the 
residues that form the transiently opening pocket9,10.

HIV-1 protease is a homo-dimeric enzyme, and its protein-protein interface is formed by the three regions 
in Fig. 1: ordered by increasing contribution to the binding free energy11,12, they involve the flap tips, the core of 
the complex including active site catalytic triads (Asp25-Thr26-Gly27) and several hydrophobic contacts, and the 
four-stranded beta sheet formed by N- and C-termini of both monomers. The last years have seen several attempts 
to develop dimerization inhibitors. Typically, the proposed molecules target either the terminal beta sheet, by 
analogy with drugs interfering with amyloid aggregates, or they bind to the isolated monomer2,13–15. Intriguingly, 
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the clinically employed drugs darunavir and tipranavir besides binding to the catalytic pocket displayed additional 
activity as dimerization inhibitors16, but the corresponding mechanism is the object of debate12,17–20. As we show in 
the following, a combination of docking, molecular dynamics, and MM-GBSA calculations suggests that the latter 
inhibitors could also bind to the newly discovered interface cavity of the protease dimer with an affinity comparable 
to the one for the catalytic pocket. Clearly, the relatively low estimated population of the secondary binding mode, 
together with the imperfect accuracy of state-of-the-art force fields and free energy calculation approaches, points 
to the necessity of further experimental investigations to compellingly assign the structural origin of the dimeri-
zation inhibition effect of the latter drugs. Nevertheless, our results encourage to search a new class of improved 
dimerization inhibitors against HIV-1 protease, and they suggest that similar mis-bound conformations could be 
present in other protein complexes, enlarging the repertoire of pharmaceutical targets.

Results
The free energy landscape reveals a step-wise opening of the dimer. We studied the detailed 
dimerization mechanism of HIV-1 (subtype B) protease with molecular dynamics simulations explicitly includ-
ing all protein atoms and water molecules. To reconstruct free energy landscapes as a function of different order 
parameters we employed an enhanced sampling method, bias exchange metadynamics21, complemented by the 
weighted histogram analysis method (WHAM)22. We also employed standard (unbiased) MD simulations to 
confirm the results and estimate the lifetime of the new metastable cavity. Simulations sum up to a total time of 
about four microseconds (all details are provided in the Methods section).

We started the bias exchange simulations from a crystallographic HIV-1 protease structure23. The trajectories 
sample multiple “opening” events, characterized by the breaking of interatomic contacts at the protein-protein 
interface and penetration of water at the level of flap tips, catalytic triads, and hydrophobic region. The opening of 
the complex is also evident from increase in the distance between centers of mass of the monomers, passing from 
2.7 nm to values larger than 3.2 nm. The interdigitated N- and C-terminal beta sheet is more reluctant to break 
and has a strong tendency to keep its native conformation, thus hampering a full dissociation of the complex. 
Eventually, after the loss of all backbone hydrogen bonds in the beta sheet, the complete dissociation of the two 
monomers is observed.

Free energy landscapes projected on collective variables monitoring the intermonomer distance, flap tips 
deformation, and RMSD from crystallographic interface are reported in Fig 2. The complex corresponds to the 
lowest minimum (state S1). With increasing intermonomer separation the system traverses a high free energy 
region, finding afterwards a second minimum (state S2) laying about 2.4 kcal/mol higher than S1. Remarkably, 
state S2 features a new cavity resembling a binding pocket (Fig. 3), that will be the focus of the analyses in the 
following sections.

Further increasing the intermonomer separation leads to a steep rise of the free energy, corresponding to the 
progressive loss of favorable interface contacts with the consequent penetration of more and more water molecules. 
The complete dissociation of the dimer, albeit occasionally observed in the simulations, is beyond the scope of 
this work due to the large computational cost required to obtain an acceptable sampling statistics and due to its 
possibly complex interplay with the (un)folding of each monomer14.

The new open conformation is kinetically separated from the closed one. To further investigate 
the stability of the new cavity beyond the results of enhanced sampling simulations, we performed 32 additional 
unbiased MD simulations starting from configurations of basin S2. 8 representative structures were extracted 

Figure 1. Crystallographic structure of the HIV-1 protease dimeric complex (pdb entry 1AID23). The 
enzymatic cavity and the three main regions forming the interface are indicated.
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from state S2, with intermonomer distance between 3.2 and 3.8 nm and a backbone RMSD between 7 and 15 Å 
from the crystallographic complex. From each structure, 4 independent equilibrium simulations at =T 300 K were 
run for 100 ns. In 26 out of 32 cases, after 100 ns the dimer remained in conformation S2, with an open secondary 
cavity. In only 3 cases the dimer closed again to form a compact complex (with backbone RMSD < 2.5 Å from the 
crystallographic structure), and in 3 more cases the dimer partially closed to a RMSD between 2.5 and 3 Å (Fig. 4). 
These results confirm the sizable local stability of configuration S2 and demonstrate the kinetic separation 
between free energy basins S1 and S2, consistently with the barrier revealed by enhanced sampling simulations 
(Fig. 2).

Structures observed in the transition region between basins S1 and S2, laying at about 6 kcal/mol in the free 
energy landscape (Fig. 2, intermonomer distance 3.0–3.1 nm), feature the opening of a few channels at the inter-
face close to the catylitic triads, large enough to accomodate about 3–6 water molecules (Fig. 5). In state S2, the 
new cavity contains instead a large number of water molecules (> 20). Therefore, the closure of the dimer S2→ S1 
implies steps charaterized by the progressive expulsion of water, until reaching the structure of the crystallographic 
complex where the interface is dry. Note that even in simulations displaying closure of the dimer, the system 
remains trapped in a (metastable) configuration similar to the transition state described above, apart for a larger 
number of interfacial water molecules (5–10), their expulsion requiring a time scale longer than the simulated 
one of 100 ns. This confirms the preceeding analysis of the transition state: the expulsion of a few interfacial water 
molecules is a kinetic bottleneck for the transition S2→ S1, the latter having a rate < 106 s−1. We remark that water 
molecules were also shown to play a key role in shaping the pathway and kinetics for peptide substrate binding 
to the catalytic cavity of HIV-1 protease24. In fact, water is increasingly acknowledged as central to biomolecular 
recognition and more general association processes25,26. Note that in ref. 27 the binding of the monomers was 
investigated by means of discrete MD simulations in implicit solvent, finding that several metastable conforma-
tions exist where the homodimer is imperfectly dimerized, however such conformations were characterized by 
disorder at the N- and C-terminal beta sheet whereas state S2 was not found, possibly due to the lack of an explicit 
treatement of the solvent.

The transient pocket exists in an ensemble of conformations. Here we proceed to analyze in detail 
the structural features of metastable state S2, that displays the newly discovered transient cavity. Due to fluctua-
tions during the molecular dynamics simulation, state S2 consists in an ensemble of conformations. For the sake 
of clarity we restrict the discussion to three representative geometries, labelled S2-A,B,C and represented in Fig. 3, 
that are the central structures of clusters spanning the conformational ensemble (see section Methods for details). 
The set of amino acids composing the pocket can vary depending on the geometry of the representative structure.

All three binding pockets have a hydrophobic bottom lined with polar and charged amino acids (Fig. 3a–c, 
respectively). The non-polar amino acids composing the bottom of binding pocket S2A are Leu5, Trp6, Gly27, 
Leu 97, Phe99, Leu5′, Pro9′, Val11′, Leu23′, Leu24′, Leu90′  and Ile93′. The walls of the pocket are mostly built 
by charged and polar amino acids as follows: Arg8, Arg 87, Arg8′, Arg87′, Asp25, Asp29, Asp25′, Thr26, Thr4′, 

Figure 2. Free energy landscape as a function of different collective variables. The 150 structural clusters 
composing the ensemble of conformations are shown as colored dots.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:18555 | DOI: 10.1038/srep18555

Gln7′  and Thr26′. From the two catalytic aspartates only Asp25 is oriented towards the cavity and can interact 
with ligands.

The S2B binding pocket is narrower than S2A. From monomer A all hydrophobic residues appearing in S2A 
are still present, except Phe99. From monomer B there are Leu5′, Gly27′, Cys95′  and Leu97′. S2B has a smaller 
amount of charged residues - Asp29, Arg87 and Arg87′  – than S2A, but more polar ones: Thr4, Thr26, Thr91, 
Thr26′, Asn88′, Thr91′, Gln92′  and Thr96′. Thr96′  contributes rather hydrophobic contacts with its side chain 
methyl group pointing into the pocket, while its hydroxyl group is directed out of the cavity. As in the S2A only 
Asp25 is oriented towards the cavity and can interact with ligands (Fig. 3b).

The S2C binding pocket is the narrowest among all three binding sites and thereof potentially the most interest-
ing for developing new HIV1 PR inhibitors (see also the next section). The bottom of S2C is composed of hydro-
phobic residues Ile3, Leu5, Gly27, Leu90, Leu97, Ile3′, Leu5′, Gly27′, Leu90′, Cys95′  and Leu97′. The hydrophobic 
bottom is surrounded by positively charged - Arg87, Arg8′  and Arg87′  - and polar residues - Thr4, Thr26, Thr91, 
Thr4′, Gln7′, Thr26′, Thr91′  and Thr96′. The side chains of both catalytic aspartates are pointing out of the cavity.

Compared to S1, structures belonging to metastable state S2 are characterized not only by the opening of the 
new cavity, but also by the partial rotation of each monomer around an axis passing through its center of mass and 
perpendicular to the plane of the N- and C-terminal beta sheet (see Fig. 3). On the other hand, the structure of each 
monomer in structures S2A/B/C remains very similar to state S1: the backbone RMSD is at most 3.3 Å, with the 
deviation stemming mainly from the flap (residues 41 to 59 have RMSD up to 1.9 Å) and from terminal residues 
involved in the formation of the interdigitated beta sheet (residues 1 to 9 and 91 to 99 have RMSD of 2.2–3.5 Å), 
since the latter bends as a hinge in S2, whereas the remaining bulk of the monomer deviates by 1.1–1.5 Å only. 
Therefore state S2 can be seen as a deformation of S1 where each monomer behaves as a rather rigid unit and does 
not unfold. Our results also confirm that the N- and C-terminal beta sheet is the interface region most difficult to 

Figure 3. Three structures (panels a,b,c) representative of the ensemble of conformations in state S2, 
featuring the new cavity at the interface. The monomers A and B composing HIV1 protease are indicated as 
well as the two Asp from the catalytic triad. Hydrophobic residues are shown in white color, positively charged 
in blue, negatively charged in red and polar residues in green color. See text for details.
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break down. We remark that the scenario is consistent with previous experimental28 and computational29,30 works 
that suggested the existence of a relatively stable intermediate folded monomer (with flexible terminal residues) 
on the pathway leading from the unfolded monomers to the folded dimer.

Druggability, docking of inhibitors and their binding free energy. We now approach the question 
of how likely is the design of small-molecules able to bind tightly to the new pocket. As discussed in the pre-
ceeding section, the size and amino acid composition of the cavity appear favorable in this respect, and more 
quantitative analysis in terms of druggability scores brings further support to this claim. We applied to structures 
S2A/B/C two different and widespread algorithms, fpocket31 and dogsitescorer32: both employ the size, shape, 
and chemical features of putative binding pockets (automatically identified from the structure of the protein) to 
score their druggability, and they have been validated on extensive data sets including hundreds of pharmaceu-
tical targets32,33. fpocket gives druggability scores of 0.51, 0.59 and 0.89 for structures S2A/B/C, respectively, to 
be compared with an average score of 0.65 (standard deviation 0.14) over 24 HIV-1 protease holo structures of 
the catalytic cavity and with a score of 0.44 for the corresponding apo structure33. dogsitescorer provides scores 
of 0.83, 0.78, and 0.75 for structures S2A/B/C, respectively, to be compared with scores between 0.6 and 0.7 for 
the catalytic cavity32. Therefore the two algorithms agree in predicting a very likely druggability for the newly 
discovered binding pocket.

Figure 4. Evolution of the backbone RMSD with respect to the crystallographic complex during a total of 
32 unbiased MD simulations started from 8 different structures (corresponding to the different panels) in 
basin S2. 
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To gain further insight into the possibility of designing dimerization inhibitors, we performed some prelimi-
nary docking calculations: here, without any attempt to be exhaustive, we ask the question of how drug molecules 
can accomodate themselves in the new pocket, and what favorable interatomic contacts can they establish. Out 
of a number of FDA approved drugs, we decided to dock tipranavir (Fig. 6) and darunavir (Fig. 7) as they were 
reported to inhibit also protease dimerization in addition to enzymatic activity16. We employed the program 
Autodock Vina34 (see Methods section). We docked both inhibitors to each of the three binding pockets - S2 A, 
B and C. The binding affinities obtained by docking were − 5.8 kcal/mol, − 7.3 kcal/mol and − 7.8 kcal/mol for 
darunavir, respectively. Tipranavir shows higher binding affinities than darunavir: − 7.8 kcal/mol, − 7.9 kcal/mol 
and − 9.2 kcal/mol, respectively.

For both inhibitors structure S2C displays the highest docking affinity: starting from the best docking pose 
we proceeded to estimate more accurately the binding free energy to the latter conformation of the partially open 
dimer, comparing it with that for the catalytic cavity of the closed dimer. To this aim we employed the Molecular 
Mechanics - Generalized Born Surface Area (MM-GBSA) method35,36, that proved able to rank correctly the bind-
ing affinity of the series of FDA-approved HIV-1 protease inhibitors37. The details of the procedure are reported 
as Supporting Information. As shown in Table 1, the drugs bind less strongly in the new cavity compared to the 
catalytic pocket, however the difference is relatively small: 3 kcal/mol for tipranavir and only 1 kcal/mol for darun-
avir, in all cases within the statistical uncertainty of the calculations. Thus it is fair to state that affinity for the new 
cavity is comparable to that for the crystallographic pocket, a remarkable result considering that the drugs were 
designed to aim at the latter. From Table 1 it is clear that binding to the new cavity entails a smaller penalty in 
configurational entropy, as estimated through normal mode analysis (see Supporting Information for details and 
a decomposition into the contribution of different protease residues). To summarize, our calculations suggest that 
tipranavir and darunavir might bind to the new cavity in addition to the catalytic one, albeit with a possibly much 
lower population. Due to the imperfect accuracy of state-of-the-art force fields and to the error bar of free energy 
calculations, it is arduous to estimate the precise relative populations of the two binding modes. As a consequence, 
it is not our intention to claim a compelling identification of the structural basis of the dimerization inhibition effect 
experimentally observed for these drugs: to this aim, future experimental proofs will be mandatory. On the other 
hand, our results clearly show that the new cavity could be able to bind drug-like molecules, therefore it is worth 
investing research efforts in the design of new dimerization inhibitors specifically targeting with high affinity the 
mis-bound dimer, thus capturing the inactive protease conformation.

Figure 5. Example of dimer conformation in the transition region connecting the fully bound complex 
(state S1) with the partially open complex featuring the new binding pocket (state S2). Six water molecules 
are trapped at the dimer interface (dry in state S1), without contact with the bulk solvent. In (panel a) both 
monomers are represented in the same way, whereas in (panel b) the second one is shown only as a cartoon to 
allow a more direct view of water molecules.
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We report here detailed binding interactions between each inhibitor and the S2C binding pocket, as observed 
during the MD simulations employed in the MM-GBSA calculation (only few contacts differ from the starting 
configuration obtained with Autodock Vina). Tipranavir is a sulfonamide-containing dyhydropyrone and a non-
peptidic protease inhibitor38. In our simulation the phenylethyl moiety of tipranavir forms hydrophobic interac-
tions with Leu97, Ile3′  and Pro9′  (see Fig. 6b). The propyl group is pointing out to the solvent and thus makes no 
hydrophobic interactions. The 5-hydroxy-4H pyrone moiety makes hydrophobic interactions with Leu5′ , and its 
oxo group forms a hydrogen bond with the Thr26′  hydroxyl group. The ethyl moiety is pointing out of the cavity, 
however it forms hydrophobic contact with the Arg87 Cδ atom. The benzyl group sits in the hydrophobic pocket 
formed by Leu97 and by Thr26 and Thr26′  methyl groups. The amino part from the sulfonamide moiety makes 
H-bonds with Thr26 hydroxyl group, while one of the oxygens forms H-bonds with the Leu5 backbone amino 
group. The pyridine group forms hydrophobic interactions with a methyl group of Thr91′  and main chain CH2 
groups of Arg87′ . The 5-trifluoromethyl-2-sulfoxy-pyridine moiety has a negative partial charge and it is located 
next to a positively charged Arg87′ .

Darunavir is a bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor39. Our simulation 
shows that aniline in darunavir makes hydrophobic interactions with the Cα and Cβ atoms of Thr4 and with the 

Figure 6. (a) Binding of tipranavir to the new pocket in conformation S2C. For the sake of clarity some 
protease residues are shown as transparent. The color code is as follows: C atoms - cyan, N atoms - blue, O 
atoms - red, F atoms - green and S atoms - yellow. (b) Tipranavir interactions with the binding site represented 
employing the software Ligplot+ 60.
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methyl group of Thr96′  (see Fig. 7b). The aniline amino group is pointing out to the water solution and has no 
contacts with the residues of S2C binding pocket. One of the sulfonamide group oxygens forms a H-bond with 
Leu97′  backbone nitrogen, while the other makes a H-bond with Thr26 hydroxyl group. The methylisopropyl group 

Figure 7. (a) Binding of darunavir to the new pocket in conformation S2C. (b) Darunavir interactions with the 
binding site represented employing the software Ligplot+ 60.

opt MD

complex ΔGsolv TΔSconf ΔGb ΔGsolv TΔSconf ΔGb

HIVTPV
Xray − 63.0 − 31.1 − 31.9 − 56.5 (0.6) − 33.2 (2.5) − 23.3 (3.1)

HIVTPV
new − 51.7 − 21.9 − 29.8 − 46.2 (1.0) − 26.0 (2.1) − 20.2 (3.1)

HIVDRV
Xray − 51.8 − 34.4 − 17.4 − 45.2 (0.7) − 33.2 (1.2) − 12.0 (1.9)

HIVDRV
new − 43.9 − 21.2 − 22.7 − 33.2 (1.0) − 22.5 (1.4) − 10.7 (2.4)

Table 1.  Binding free energy (ΔGb, kcal/mol) from MM-GBSA for HIV-1 protease in complex with tipranavir 
(TPV) and darunavir (DRV), either bound to the catalytic pocket of the X-ray crystallographic structure or 
bound to the new binding pocket of the partially open dimer (structure S2C). The free energy is computed 
starting from the best docking pose (see text), and employing either the geometry after structural relaxation in 
presence of soft restraints or geometries extracted from MD simulations of 5 ns duration each. See Supporting 
Information for the decomposition into solvation free energy (ΔGsolv) and configurational entropy (TΔGconf) 
and for per-residue contributions.



www.nature.com/scientificreports/

9Scientific RepoRts | 5:18555 | DOI: 10.1038/srep18555

forms hydrophobic interactions with the Arg87′  Cβ, Cγ, Cδ atoms and with Thr9′  methyl group. The hydroxyl 
group of darunavir makes a H-bond with the hydroxyl group of Thr26′ . The benzyl group sits in the hydrophobic 
pocket formed by Leu5′ , Leu97′ , Cγ of Arg87 and the methyl groups of Thr26 and Thr91. The carbamate moiety 
and the bis tetrahydrofuran group are exposed to the solvent and have no close interactions with the studied protein.

It is important to remark that molecules binding to the newly discovered pocket, thus capturing the partially 
formed dimer into the functionally inactive state, could be overlooked as dimerization inhibitors by techniques 
like fluorescence. This is because the dimer is not completely destroyed, in particular the terminal beta sheet 
remains intact.

Discussion
The present study provides atomically detailed insight on the binding mechanism between protease monomers, 
and it may help explaining several remarkable experimental results that so far are not fully understood. Previous 1H 
and 15N nuclear spin transverse relaxation measurements revealed, somehow unexpectedly, that a series of protease 
residues display sizable chemical exchange on the μs-ms time scale, pointing to slow (activated) conformational 
changes9. Besides flap tips residues, whose flexibility is expected, the set includes residues 4–6, 25, 26, 28, 86, 87, 
89, 94–96: as displayed in Fig. 8, all of the latter amino acids belong to the surface of the newly identified secondary 
cavity, therefore they undergo a drastic change of chemical environment with respect to the crystallographic struc-
ture upon the partial opening of the dimer. Other residues displaying slow chemical exchange include 32-35, 76, 
77, 82, and 84: they are also affected by the opening transition, in this case due to the flaps moving to rest upon the 
bulk of their respective monomer. Further measurements on 13C relaxation point to slow conformational changes 
at residues 3, 5, and 97, again lining the new cavity10. In a more recent study addressing the autoprocessing of the 
enzyme (albeit featuring a four-residue N-terminal extension), paramagnetic relaxation enhancement measure-
ments could not be interpreted based solely on thermal fluctuations of the mature dimer: as suggested by a simple 
modelling of the complex as formed by two rigid monomers, the latter could partially rotate with respect to each 
other giving rise to sizably populated misbound dimers40. Here we argue that the opening of the new pocket in 
configuration S2 could be related to such transient conformations.

Overall, our findings are thus compatible with experimental measurements and may help rationalizing them. 
Our results also confirm that in the mature enzyme the strength of intermonomer interactions grow passing from 
the flap tips to the complex core to the terminal beta sheet. From a mechanical point of view, it appears clear that this 
hierarchy must lead to relatively easy transient opening events of the flap tips, a well-known phenomenon, followed 
by less frequent transient opening of the new cavity S2, followed by yet more harduous separation (and unfolding) 
of the terminal beta sheet. In other words, it could be expected beforehand that (overcoming a free energy barrier) 
the dimer would be able to open with the monomers pivoting around the hinge formed by the terminal beta sheet. 
This very observation leads us to suggest that other protein complexes featuring a similar hierarchy in interface 
interactions could display the transient exposure of new binding pockets, as in the case studied here, what could 
possibly result in new pharmaceutical targets.

Figure 8. Protease residues (spheres) undergoing sizable chemical exchange on the μs-ms time scale in 
1H and 15N nuclear spin transverse relaxation measurements in ref. 9, in (a) the crystallographic protease 
structure, and (b) the partially open structure S2C.
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By exploiting a combination of enhanced sampling molecular dynamics, druggability scores, molecular dock-
ing, and MM-GBSA free energy calculations, we suggest that state S2 could be an interesting new pharmaceutical 
target. The compelling identification of potent dimerization inhibitors targeting the new site, even just in silico, 
requires more extensive work that is beyond the scope of the present article. To this aim, we provide the scientific 
community with the ensemble of structures corresponding to the new binding pocket (downloadable as Supporting 
Information), in the hope of triggering the design of a new class of drug molecules. So far, structure-assisted drug 
design has been crucially important for developing inhibitors of HIV-1 protease1,2. We hope that the new structural 
insight we provide here will help to renew research efforts, leading to improved antiviral treatments.

Methods
Molecular dynamics. Molecular dynamics simulations explicitly included all protein atoms, described with 
a recent accurate forcefield41, as well as 5095 water molecules42 (for a total of 78,400 atoms in a periodically 
repeated cubic box of side 9.3 nm), employing the software gromacs43. One of the residues in the Asp25/25′  
catalytic dyad was protonated, according to existing evidences for the free enzyme44–46. Five chlorine ions were 
added to enforce charge neutrality. We started from the crystallographic structure 1AID23, employing a timestep 
of 2 fs and constraining all covalent bonds. After equilibrating for 1 ns at T =  300 K and p =  1 atm employing the 
stochastic velocity rescaling thermostat47 and Berendsen’s barostat48, the deviation of the final structure from the 
initial one is only 1.7 Å Cα RMSD. The following simulations were performed in the NVT ensemble.

Bias-exchange metadynamics. We enhanced the sampling of the slow dissociation/association events 
between protease monomers exploiting bias-exchange metadynamics21, as implemented in the plugin Plumed49. 
We employed the following five collective variables (where the reference structure for RMSD calculations is the 
geometry of the complex after 1 ns of equilibration):

 CV1 =  distance between centers of mass of monomers (excluding flaps and the terminal beta sheet: Cα atoms 
of residues 10–40 and 60–90 of both monomers);
 CV2 =  RMSD of hydrophobic side chain carbon atoms at the interface (Leu5,24,90,97 and Thr26 of both 
monomers);
CV3 =  RMSD of catalyitic triads (backbone and Cβ atoms of Asp25, Thr26, Gly27 of both monomers);
CV4 =  RMSD of flap tips (backbone and Cβ atoms of residues 49–52 of both monomers);
CV5 =  RMSD of the terminal beta sheet (backbone and Cβ atoms of residues 1–4 and 96–99 of both monomers).

We employed four replicas, three of them biasing one CV each among CV1, CV3, CV4, and the fourth replica 
left unbiased. A first simulation was performed without any restriction over the values of the CVs, and allowed 
to explore the overall conformational landscape for monomer-monomer interaction, including events where the 
dimer fully dissociated. Next, we performed a second simulation constraining the value of CV5 to be smaller than 
2 Å, in order to avoid the complete dissociation and to focus the sampling on the regions of the landscape includ-
ing states S1 and S2. Note that the latter threshold is never surpassed during long unconstrained equilibrium MD 
simulations started from state S2 (see below).

The 4-dimensional free energy landscape as a function of CVs 1–4 was reconstructed using the approach in 
ref. 22, based on the weighted histogram analysis method, as implemented in the software Metagui50. Parallel 
growth of each bias profile is observed after 28 ns of simulation per replica, therefore the trajectory data between 
28 and 68 ns is employed for reconstructing the landscape. 150 structural clusters were obtained by the k-medoids 
algorithm, where each cluster is visited at least 10 times during the simulation (with trajectories being recorded 
every 5 ps). The robustness of the results were checked by changing the number of clusters between 100 and 200, 
obtaining very similar results, as well as by comparing the free energy difference between states S1 and S2 computed 
by WHAM with that estimated by the relative populations in the unbiased replica, obtaining a deviation smaller 
than 0.7 kcal/mol. For further analyses and docking, the ensemble of structures forming state S2 was partitioned 
in clusters (based on a backbone RMSD cutoff of 4 Å) and the three resulting cluster centers, labeled S2A,B,C, 
were considered.

Docking. Molecular docking was performed using the software AutoDock Vina34. Ligands had fully flexible 
torsion degrees of freedom, while the receptor side chains were inflexible. Protein and ligand input files were 
prepared by AutoDockTools51. The initial 3D structure of darunavir was extracted from the PDB file 3S5352, 
whereas tipranavir was taken out of the PDB file 3SPK53. Non-polar hydrogen atoms of the protein and the ligands 
were merged. The center of grid was placed at the X =  − 2.036 Å, Y =  − 1.903 Å and Z =  0.031 Å (with respect to 
the geometry provided as supporting information). Grid dimensions were 20 Å ×  18 Å ×  20 Å and the spacing 
between the grid points was set to 1 Å. The exhaustiveness parameter of the global search was set at 8. Twenty 
binding modes were generated for each inhibitor and each binding site.

MM-GBSA binding free energy calculations. The binding free energy of tipranavir and darunavir to 
either the crystallographic catalytic pocket or the new binding pocket was estimated using the MM-GBSA tech-
nique35,54–56 employing the AMBER14 code57. To this aim, we performed MD simulations of the solvated complex 
including about 70,000 atoms employing the parm14SB force field for the protein58, TIP3P42 for the water and 
Joung & Cheatham parameters for ions59. For each complex we performed a sequence of simulations: structural 
relaxation with soft restraints, followed by annealing up to 340 K in 2 ns, followed by 5 ns of partially restrained 
MD at 310 K. The protocol is the same as in ref. 54 and is described in details in Supporting Information, together 
with the formulas employed to estimate the binding free energy.
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