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EPR pairing dynamics in Hubbard 
model with resonant U
X. Z. Zhang1,2 & Z. Song1

We study the dynamics of the collision between two fermions in Hubbard model with on-site interaction 
strength U. The exact solution shows that the scattering matrix for two-wavepacket collision is 
separable into two independent parts, operating on spatial and spin degrees of freedom, respectively. 
The S-matrix for spin configuration is equivalent to that of Heisenberg-type pulsed interaction with the 
strength depending on U and relative group velocity vr. This can be applied to create distant EPR pair, 
through a collision process for two fermions with opposite spins in the case of |vr/U| = 1, without the 
need for temporal control and measurement process. Multiple collision process for many particles is also 
discussed.

Pairing is the origin of many fascinating phenomena in nature, ranging from superconductivity to quantum telepor-
tation. Owing to the rapid advance of experimental techniques, it has been possible both to produce Cooper pairs of 
fermionic atoms and to observe the crossover between a Bose-Einstein condensate and a Bardeen-Cooper-Schrieffer 
superfluid1–3. The dynamic process of pair formation is of interest in both condensed matter physics and quan-
tum information science. On one hand, the collective behavior of pairs gives rise to macroscopic properties in 
many-body physics. On the other hand, a single entangled pair is a promising quantum information resource for 
future quantum computation.

In recent years, the controlled setting of ultracold fermionic atoms in optical lattices is regarded as a promis-
ing route to enabled quantitative experimental tests of theories of strongly interacting fermions4–7. In particular, 
fermions trapped in optical lattices can directly simulate the physics of electrons in a crystalline solid, shedding 
light on novel physical phenomena in materials with strong electron correlations4,8,9. A major effort is devoted to 
simulate the Fermi-Hubbard model by using ultracold neutral atoms10–12. This approach offers experimental access 
to a clean and highly flexible Fermi-Hubbard model with a unique set of observables13 and therefore, motivate a 
large number of works on Mott insulator phase14,15 and transport properties16,17, stimulating further theoretical 
and experimental investigations on the dynamics of strongly interacting particles for the Fermi Hubbard model.

In this paper, we study the dynamics of the collision between two fermions with various spin configurations. The 
particle-particle interaction is described by Hubbard model, which operates spatial and spin degrees of freedom 
in a mixed manner. Based on the Bethe ansatz solution, the time evolution of two fermonic wave packets with 
identical size is analytically obtained. We find that the scattering matrix of the collision is separable into two inde-
pendent parts, operating on spatial and spin degrees of freedom, respectively. The scattered two particles exhibit 
dual features. The spatial part behaves as classical particles, swapping the momenta, while the spin part obeys the 
isotropic Heisenberg-type exchange coupling. The coupling strength depends on the Hubbard on-site interaction 
and relative group velocity of two wavepackets. This finding can be applied to create distant EPR pair, through a 
collision process for two fermions with opposite spins without the need for temporal control and measurement 
process. Multiple collision process for many particles is also discussed.

Results
Fermi-Hubbard Model. A one-dimensional Hubbard Hamiltonian on an N-site ring reads
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where σ,
†ci  is the creation operator of the fermion at the site i with spin σ = ↑ , ↓ and U is the on-site interaction. 

The tunneling strength and the on-site interaction between fermions are denoted by κ and U. For the sake of clarity 
and simplicity, we only consider odd-site system with = +N N2 10 , and periodic boundary condition =σ σ, + ,c ci i N .
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Now based on the symmetry analysis of the Hamiltonian (1) as shown in Methods section, we can construct 
the basis of the two-fermion invariant subspace as following
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where K is the momentum vector, indexing the subspace. These bases are eigenvectors of the operators σN , T1, S
2 

and Sz. The corresponding definitions of the operators are detailed in Methods section. Straightforward algebra 
yields
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Then there are four invariant subspaces with ( , ) = ( , )S S 0 0z , ( , )1 0 , and ( , ± )1 1  involved.

Dynamics of wavepacket collision. We now want to investigate the dynamics of two-wavepackets collision 
based on the two-particle solution, which is shown in Methods section. We begin with our investigation from the 
time evolution of an initial state

Φ = Φ Φ , ( )σ σ, , ′ 15a b

which represents two separable fermions a and b, with spin σ and σ′, respectively. Here
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with γ = a, b and α− /N N 1a b , is a wavepacket with a width α/2 ln 2 , a central position γN  and a group 
velocity υ κ= −γ γk2 sin . We focus on the case σ σ( , ′) = (↑, ↓). The obtained result can be extended to other 
cases. In order to calculate the time evolution of state Φ , two steps are necessary. At first, the projection of Φ  on 
the basis sets φ ( )+ K{ }r  and φ ( )− K{ }r  can be given by the decomposition.
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Secondly, introducing the transformation.
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where Ω ,1 2 is the normalized factor.
We note that the component of state Φ  on each invariant subspace indexed by K represents an incident wave-

packet along the chain described by H K
eq  that is presented in Eq. (59) of Methods. This wavepacket has width 

α/2 ln 2 , central position = −r N Nc b a  and group velocity υ κ= − ( / ) ( / )K q4 cos 2 sin 2c . Accordingly, the 
time evolution of state Φ  can be derived by the dynamics of each sub wavepacket in each chain H K

eq, which even-
tually can be obtained from Eq. (60) of Methods section. According to the solution, the evolved state of ψ ( , )± r qK c c  
can be expressed approximately in the form of ψ ( ′, − )β ( )

, /
±′e R r qi r

k q K c c2 2
c

c c
, which represents a reflected wave-

packet. Here β ( ′)rc  is an overall phase, as a function of ′rc , the position of the reflected wavepacket, being independ-
ent of U and the , /R k q2 2c c

 is the reflection amplitude demonstrated in Eq. (61) of Methods. In addition, it is easy to 
check out that, in the case with α  1, the initial state distribute mainly in the invariant subspace =K k2 c, where 
the wavepacket moves with the group velocity υ κ υ υ= − ( ) ( / ) = −k q4 cos sin 2c c b ar . Then the state after collision 
has the approximate form
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which also represents two separable wavepackets at ′Na and ′Nb respectively. Here Ω  is the normalized factor and 
an overall phase is neglected. We would like to point out that the key point to achieve this interesting phenomenon 
is that the coordinates of the two particles can be decomposed into two independent parts in term of the center of 
mass coordinates and relative coordinate. We do not preclude that the initial two-particle state possessing the 
different shape may get to the same conclusion. However, the strict proof of this general condition is hardly 
obtained. For the sake of simplicity and clarity, we confine our disscussion to the case of two wavepackets Φ σ,a  
and Φ σ, ′b  with same shape.

Equivalent Heisenberg coupling. Now we try to express the two-fermion collision in a more compact 
form. We will employ an S-matrix to relate the asymptotic spin states of the incoming to outcoming particles. We 
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denote an incident single-particle wavepacket as the form of  λ σ, ,p , where λ = L, R indicates the particle in the 
left and right of the collision zone, p the momentum, and σ = ↑ , ↓ the spin degree of freedom. In this context, 
we give the asymptotic expression for the collision process as

σ σ σ σ, , , , , , , , , ( ) Sp q q pL R L R 26L R L R

where the S-matrix

= , ( )θ π− ( − )(→ ⋅→ − / )S e 27i s s 1 4L R

governs the spin part of the wave function. Here → ,s L R denotes spin operator for the spins of particles at left or right, 
θ υ υ= /( − )− U2tan [ ]1

R L , where υL and υR represent the group velocity of the left and right wavepacket, respec-
tively. Together with the scattering matrix M for spatial degree of freedom
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we have a compact expression

= , ( )MSf i 29

to connect the initial and final states. In general the total scattering matrix has the form of exp ∫−

−∞

∞i H td , which 
is not separable into spatial and spin parts. Then Eq. (29) is only available for some specific initial states, e.g., 
spatially separable two-particle wavepackets with identical size. This may lead to some interesting phenomena.

It is interesting to note that the scattering matrix for spin is equivalent to the propagator
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for a pulsed Heisenberg model with Hamiltonian

( ) = ( )(→ ⋅ → − / ), ( )h t J t s s 1 4 31L R

with ∫ θ π( ) = −J t dt . Here T is time-ordered operator, which can be ignored since only the coupling strength 
( )J t  is time dependent. This observation accords with the fact that, in the large positive U case, the Hubbard model 

scales on the −t J model18,19, which also includes the NN interaction term of isotropic Heisenberg type. Recently, 
we note that several perturbative techniques have been proposed to construct an effective spin Hamiltonian in the 
context of the one-dimensional interacting confined system20–24. Nevertheless, they confine their results to the 
strongly interaction regime. Here, we need to stress that the derivation of the Eq. (31) is obtained from the dynamic 
aspect and does not dependent on the approximation of large interaction strength U, which is different from that 
of those works.

The aforementioned scattering matrix for spin also indicates that the effect of collision on two spins is equivalent 
to that of time evolution operation under the Hamiltonian → ⋅ →s sL R at an appropriate instant. In this sense, the 
collision process can be utilized to implement two-qubit gate. For two coupled-qubit system, the time evolution 
operator is simply given by
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which indicates that π( / )U 2  and π( )U  are entangling and swap operators, respectively. In practice, such protocols 
require exact time control of the operation.

Comparing operator ( )U t  and the S-matrix in Eq. (27), we find that two-qubit operations can be performed by 
the collision process, where U and relative group velocity υ υ υ= −r L R are connected to the evolution time by 
the relation

θ π
υ

= − =
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Then we can implement entangling and swap gates for two flying qubits via dynamic process. To demonstrate 
the result, we consider several typical cases with =U 0, ∞, and υ± r , which correspond to the operations of swap, 
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standby, and entanglement, respectively. The collision processes are illustrated schematically in Fig. 1. The advan-
tage of such a scheme is that the temporal control is replaced by pre-engineered on-state interaction U.

In order to check the above conclusion, numerical simulation is performed. We define the initial and target 
states as

Ψ( ) = , , ↑ , , ↓ , ( )p q0 L R 37

θ θ
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where  ΨT  possess the same relative position but the exchanged momentum compared with the state Ψ( )0  as in 
Eq. (37). On the other hand, we consider the evolved state Ψ( )t  for the initial state being Ψ( )0  driven by the 
Hamiltonian (1), and caculate the fidelity Ψ Ψ( )tT  in Fig. 2. It is shown that when the state Ψ( )0  evolves to 
the same position with ΨT , the fidelity Ψ Ψ( )tT  is almost to 1, which is in agreement with our previous theo-
retical analysis.

In ultracold atomic gas experiments, an extra harmonic potential is usually introduced to investigate the inter-
action between the atoms. To make closer connections with experiment, we will study how an trapping potential 
can effect on the two-particle collision process. The concerned Hamiltonian can be rewritten as
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39i
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where V t describes an additional (slowly varying) external trapping potential, e.g., a magnetic trap. The presence 
of the V t destroy the translation symmetry of the system, therefore one can hardly obtain the analytical result for 
two-particle collision. Based on this, we perform the numerical simulation to investigate the influence of the 
external field on the results obtained in a potential free system. In Fig. 3 , we plot the fidelity Ψ Ψ( )−e 0T

H ti tr  as 
a function of time t, where Ψ( )t  is driven by the Hamiltonian Htr. The parameter κ/V t  is chosen from 10−4 to 
10−3 for a nearly realistic confinement15,25–27. It can be shown that the increase of the ratio of κ/V t  leads to decreas-
ing of the maximum of fidelity. This can be explained as follow: When the strength of the trapping potential V t is 
much smaller than the hopping constant κ, the moving particle will not feel the variation of potential between the 
adjacent sites, especially at the center of trapping potential. If we consider the collision process at such region, the 
collision for the two particles only occurs at the neighbour sites due to the short-range interaction between the 
two particles. Thus, the effect of the confining harmonic potential can be neglected within the collision process.

Figure 1. Schematic illustration of the collision process of two separated fermionic wavepackets with 
opposite spin orientations for three typical values of U. In all cases, the collisions result in momentum swap, 
but different spin configurations: (a) =U 0, swap; (b) = ∞U , unchange; (c) υ= ±U r , maximal entanglement.
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On the other hand, the Gaussian wavepacket is often employed to describe the moving particle in the lattice 
model. The presence of the trapping potential can change the shape and momentum of the moving wavepacket. 
When the strength of the trapping potential is much smaller than the hopping constant, if the time for the collision 
process is short enough, the trapping potential can be deemed as a homogeneous field to the involved particles 
and therefore can not effect on the collision process. For a given weak harmonic trapping potential, the wider of 
the wavepacket can lead to more time for finishing the collision process, in which the trapping potential can not 
be neglected. Nevertheless, one can not require the wavepacket to be narrow enough because it can make the 
two-particle state not to distribute mainly in the invariant subspace of center momentum =K k2 c, thereby pre-
venting the separation between the spatial and spin part of the two-particle collision. Based on this, the existence 
of the obtained results regarding the two-particle collision process is a tradeoff between the strength of the har-
monic potential and the width of the wavepacket. To check this conclusion, the function α( )F  is introduced to 
characterize the variation of the maximum of fidelity  Ψ Ψ( )tT  with respect to the width of the wavepacket α, 
which can be defined as

α α( ) = Ψ Ψ( , ) , ( )−F e 0 40T
H ti ftr

where t f  is the time that F takes to reach the maximum value for a given α. In Fig. 4, we plot α( )F  versus α, from 
which one can see that the function α( )F  first increase then decrease as the variation of α. According to the above 
analysis, the decrease of width of the wavepacket can bring about two effects: On the one hand, the presence of the 
trapping potential can be approximately deemed as a homogeneous field due to the slight variation of trapping 

Figure 2. Plots of the fidelity Ψ Ψ( )tT  with the parameters Na = 20, Nb = 62, ka = −kb = π/2, in the 
system Eq. (1) with N = 81 and U = vr. The red, blue and black lines represent the plots of fidelity Ψ Ψ( )tT  in 
the condition of α = .0 13, 0.26, and 0.33, respectively. It shows that the fidelity is close 1, as α approaches to 0, 
which accords with the theoretical analysis in the text.

Figure 3. Plots of the fidelity Ψ Ψ( )−e 0T
H ti tr  as a function of time t with parameters Na = 20, Nb = 62, 

ka = −kb = π/2, in the system Eq. (1) with N = 81 and U = vr. The blue, red, black and green lines represent the 
plots of fidelity Ψ Ψ( )−e 0T

H ti tr  in the condition of κ/ = ,V 0t  0.0005 0.001 and 0.002, respectively. It 
indicates that the increase of κ/V t  result in decreasing of the maximum of fidelity, which accords with the 
theoretical analysis in the text.
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potential in effective collision process. This can enhance the α( )F . On the other hand, the initial state will not 
distribute mainly in the invariant subspace =K k2 c. Therefore, the spatial and spin part are not separable within 
the collision process, which can decrease the α( )F . As α( )F  increase, the former effect is dominant. On the 
contrary, the latter effect is dominant as α( )F  decrease. Moreover, the maximum of α( )F  can be seen as a tradeoff 
between two such effects in this point of view.

Combining both aspects, we can conclude that if the strength of the external trapping potential is much smaller 
than the hopping constant and the width of the wavepacket is optimum, the results for collision process in our 
manuscript are still hold.

Multiple collision. We apply our result to many-body system. Considering the case that the initial state is 
consisted of many separable local particles with the same group velocity, termed as many-particle wavepacket train 
(MPWT), our result can be applicable if each collision time is exact known. In this paper, we only demonstrate 
this by a simple example. We consider the collision of two MPWTs with particle numbers M and N ( ≥ )N M . All 
the distances between two adjacent particles in two trains are identical. The initial state is

∏ ∏σ τ, , , , ,
( )= =

p qL R
41m

M

m m
n

N

n n
1 1

where {L }m  and {R }n  denote the sequences of particles, σ{ }m  and τ{ }m  denote the spin configurations in each trains. 
According to the above analysis, after collisions the final state has the form of

∏ ∏σ τ, , ′ , , ′ ,
( )= =

q pL R
42m

M

m m
n

N

n n
1 1

where the spin configurations σ′{ }m  and τ ′{ }m  are determined by the S-matrix, which is the time-ordered product 
of all two-particle S-matrices. During the collision process, the positions of particles in each train are always spaced 
by equal intervals. This makes it easier to determine the times of each collisions. Then the final state can be written 
as

∏ ∏ ∏τ σ, , , , ,
( )= = =

S q pL R
43l

M

l
n

N

n n
m

M

m m
1 1 1

where

∏= ,
( )=

, − +S s
44l

n

N

l N n
1

1

and

)(= , ( )
θ π τ σ− ( − ) → ⋅→ − /s e 45jk

i 1 4j k

where τ→ jand σ→k are corresponding Pauli matrices. Applying the formula in Eq. (43) to the case with =M 1, 
σ = ↑1 , τ = ↓n , ∈ ,n N[1 ], we obtain

Figure 4. Plot of the function α( )F  with respect to α with parameters Na = 20, Nb = 62, ka = −kb = π/2, in 
the system Eq. (1) with N = 81 and U = vr. The system is subjected to a weak trapping potential = .V 0 0005t  in 
units of κ. One can see that the maximum of fidelity Ψ Ψ( )tT  first gets to 0.956 then decrease to 0.88 as the 
increase of α, which can be explained in the text.
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This conclusion is still true for the case with unequal-spaced {R }n . For illustration, we sketch the case with 
=M 1, σ = ↑1 , =N 3, τ = ↓n , ∈ ,n [1 3] in Fig. 5(a). One can see that the spin part of the final state is the super-

position of the combinations of the four spins.
Now we turn to investigate the entanglement between the single fermion and the MPWT with particle num-

ber N. As is well known, the generation and controllability of entanglement between distant quantum states have 
been at the heart of quantum information processing. Such as the applications in the emerging technologies of 
quantum computing and quantum cryptography, as well as to realize quantum teleportation experimentally28,29. 
Moreover, quantum entanglement is typically fragile to practical noise. Every external manipulation inevitably 
induces noise in the system. This suggests a scheme based on the above mentioned collision process for generating 

Figure 5. Schematic illustration of the collision between the two MPWTs. (a) An incident single fermion 
comes from the left denoted as blue spin and collides with 3-fermion train, which comes from the right denoted 
as red spins. It can be seen that the single fermion keep the original momentum, but it entangles with the 
3-fermion train at the end of the collision. The amplitudes of the four states are listed. It is shown that the final 
state is direct product between the states of single fermion and 3-fermion train when θ π= , θ = 0 with the 
corresponding parameter = ∞U , 0, respectively. (b) The collision between the two MPWTs come from the 
opposite direction with particle number =N 2. And the probability for the superposition of states is listed with 
θ π= /2.
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the entanglement between a single fermion and the N-fermion train without the need for the temporal control and 
measurement process. We note that although the incident single fermion keep the original momentum, it entangles 
with the N-fermion train after the collision, leading to a deterioration of its purity. To measure the entanglement 
between the single fermion and the N-fermion train, we calculate the reduced density matrix of the single spin

( )ρ (∞) = Λ
− Λ

, ( )
0

0 1 47R

where

θ
Λ = . ( )cos

2 48
N2

Thus the purity of the single fermion can be expressed as

ρ(∞) = ( ) =


Λ −



 + ,

( )
P Tr 2 1

2
1
2 49R

2
2

where Tr(...) denotes the trace on the single fermion. For the case of Λ = 0, 1, we have (∞) =P 1, which requires 
θ π= , and θ = 0, obtained from interaction parameter = ∞U , and 0, respectively. It indicates that the single 
fermion state and N-fermion train state are not entangled. In contrast, the purity (∞) = /P 1 2 at Λ = /1 2 when

( )θ = . ( )
− −2 cos 2 50N1 1

2

It corresponds to a completely mixed state of the outgoing single fermion, or maximal entanglement between 
the single fermion state and N-fermion train. Together with Eq. (61), we have

( )υ υ= ( − )











,

( )
− −U tan cos 2

51
NR L

1 1
2

which reduces to υ υ≈ ( − ) − /U Nln 2R L
1 2 for large N. This indicates that for large N, one needs to take a small 

U of order − /N 1 2 to generate the maximal entanglement between the single fermion state and N-fermion train, or 
result in full decoherence of the single fermion.

In the case of two-train collision, the calculation can still be performed in the similar way. However, it is hard 
to get analytical result for arbitrary system. Here, we sketch the case with M =  2, σ σ= = ↑1 2 , =N 2, τ τ= = ↓1 2 , 
in Fig. 5(b). The probability on each spin configuration is listed as illustration.

Discussion
Summarizing, we presented an analytical study for two-fermion dynamics in Hubbard model. We find that the 
scattering matrix of two-fermion collision is separable into two independent parts, operating on spatial and spin 
degrees of freedom, respectively, when two incident wavepackets have identical shapes. For two fermions with 
opposite spins, the collision process can create a distant EPR pair due to the resonance between the Hubbard 
interaction strength and the relative group velocity. The advantage of this scheme is without the need of temporal 
control and measurement process. Since it is now possible to simulate the Hubbard model via cold fermionic atoms 
in optical lattice, these results can be realized experimentally.

In conclusion, our finding is of both fundamental and practical interest, as it offers a concrete insight for the 
fundamental properties of particle paring in the context of the Hubbard model and provide a scheme to realize 
the distant EPR pair in the experiment.

Methods
Symmetry analysis. We analyze three symmetries of the Hamiltonian (1) as following, which is critical for 
achieving a two-particle solution. The first is particle-number conservation , =σN H[ ] 0, where = ∑σ σ σ, ,

†N c ci i i , 
which ensures that one can solve the eigen problem in the invariant subspace with fixed σN , no matter U is real or 
complex. The second is the translational symmetry, , =T H[ ] 01 , where T1 is the shift operator defined as

= ,

= , ( )

σ σ

σ σ

−
, + ,

−
,

−
,

† †

† †

T c T c

T c T e cor 52

i i

k
ik

k

1
1

1 1

1
1

1

with

∑

π

= ,

= / ∈ , . ( )

σ σ, ,
† †c

N
e c

k n N n N

1

2 [1 ] 53

k
j

ikj
j

This allows invariant subspace spanned by the eigenvector of operator T1. Based on this fact, one can reduce 
the two-particle problem to a single-particle problem. The final is the SU(2) symmetry, , =±,S H[ ] 0z  and 
, =S H[ ] 02 , where the spin operators are defined as
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∑= ( ) = ,
( )

+ −
,↑ ,↓

† †S S c c
54i

i i

∑= ( − ),
( ),↑ ,↑ ,↓ ,↓

† †S c c c c1
2 55

z

i
i i i i

which satisfy the relation , =+ −S S S[ ] 2 z.

Two-particle solutions. We present the detailed caculation for the two-particle solution in each invariant 
subspace. For the simplicity, we only focus on the solutions in subspaces ( , )0 0  and ( , )1 0 , since the one in subspace 
( , ± )1 1  can be obtained directly from that in subspace ( , )1 0  by operator ±S . A two-particle state can be written 
as

( )∑φ φ= ( ) ( ) , ( ) = (− ) = ,
( )

±
,
± ± +

,
−f r K f f0 1 0

56K
r

K k r K K k

where the wave function ( ),
±f rK k  satisfies the Schrödinger equations

δ ε( + ) + ( − ) + (− ) − 
 ( ) = , ( ),

+
− ,

+
, ,

+Q f r Q f r Q f r1 1 1 0 57r
K

K k r
K

K k
n

r
K

r N K K k1 0

and

δ δ ε( + ) + ( − ) +  + (− ) − 
 ( ) = , ( ),

−
− ,

−
, , ,

−Q f r Q f r U Q f r1 1 1 0 58r
K

K k r
K

K k r
n

r
K

r N K K k1 0 0

with the eigen energy εK in the invariant subspace indexed by K. Here factor κ= − ( / )Q K2 2 cos 2r
K  for =r 0 

and κ− ( / )K2 cos 2  for ≠r 0, respectively. As pointed in refs 30,31 in previous works, the eigen problem of 
two-particle matrix can be reduced to the that of single particle. We see that the solution of (58) is equivalent to 
that of the single-particle +N 10 -site tight-binding chain system with nearest-neighbour (NN) hopping amplitude 
Qj

K, on-site potentials U and κ(− ) ( / )+ K1 2 cos 2n 1  at 0th and N 0th sites, respectively. The solution of (57) corre-
sponds to the same chain with infinite U. In this work, we only concern the scattering solution by the 0th end. In 
this sense, −fK  can be obtained from the equivalent Hamiltonian

∑= + ( + + . .).
( )=

∞
H U Q i i0 0 1 H c

59
K

i
i
K

eq
1

Based on the Bethe ansatz technique, the scattering solution can be expressed as

( ) = + , ( ),
− −

,f j e R e 60K k
ikj

K k
ikj

with eigen energy ε κ( ) = − ( / )k K k4 cos 2 cosK , π∈ ,k [0 ]. Here the reflection amplitude

λ

λ
=

+

−
= ,

( )
,

,

,

∆R
i U
i U

e
61

K k
K k

K k

i

where

λ κ= ( / ) , ( ), K k4 cos 2 sin 62K k

λ
∆ =





−






.

( )
−

,

U2 tan
63K k

1

and 
,
+fK k can be obtained from 

,
−fK k by taking = ∞U . We note that (− ) = =, , ,−

⁎R U R RK k K k K k , which reveals a 
dynamic symmetry of the Hubbard model with respect to the sign of U.
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