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Inflammatory Eicosanoids Increase 
Amyloid Precursor Protein 
Expression via Activation of 
Multiple Neuronal Receptors
Katie J. Herbst-Robinson1,*, Li Liu1,*, Michael James1, Yuemang Yao1, Sharon X. Xie2 & 
Kurt R. Brunden1

Senile plaques comprised of Aβ peptides are a hallmark of Alzheimer’s disease (AD) brain, as are 
activated glia that release inflammatory molecules, including eicosanoids. Previous studies have 
demonstrated that amyloid precursor protein (APP) and Aβ levels can be increased through activation 
of thromboxane A2-prostanoid (TP) receptors on neurons. We demonstrate that TP receptor regulation 
of APP expression depends on Gαq-signaling and conventional protein kinase C isoforms. Importantly, 
we discovered that Gαq-linked prostaglandin E2 and leukotriene D4 receptors also regulate APP 
expression. Prostaglandin E2 and thromboxane A2, as well as total APP levels, were found to be 
elevated in the brains of aged 5XFAD transgenic mice harboring Aβ plaques and activated glia, 
suggesting that increased APP expression resulted from eicosanoid binding to Gαq-linked neuronal 
receptors. Notably, inhibition of eicosanoid synthesis significantly lowered brain APP protein levels in 
aged 5XFAD mice. These results provide new insights into potential AD therapeutic strategies.

A key pathological feature of the Alzheimer’s disease (AD) brain is the presence of senile plaques comprised of Aβ  
peptides, which are proteolytically-derived from the amyloid precursor protein (APP)1. These plaques are thought 
to contribute, either directly or indirectly, to the neuronal dysfunction and dementia associated with AD2. Other 
factors that are believed to contribute to AD pathogenesis include intracellular aggregates of hyperphosphorylated 
tau protein3, oxidative stress4, and neuroinflammation5.

The inflammation observed in AD brain results largely from increased microglial activation in the vicinity of 
senile plaques6,7 and a number of glial-derived inflammatory molecules, including cytokines, chemokines and 
eicosanoids, as well as oxidizing molecules, have been suggested to exacerbate AD neuropathology5,8. For example, 
isoprostane F2α III (iPF2α III), a lipid oxidation product thought to be elevated in AD brain9,10, can activate the 
thromboxane A2 (TXA2)-prostanoid (TP) receptor on neurons with a resulting increase of APP mRNA stability 
that leads to enhanced APP expression and Aβ  production11,12. Similarly, TXA2 itself may also be increased in AD 
brain, as this eicosanoid is produced by activated microglia13.

The signaling pathways that underlie the conversion of TP receptor activation into increases of APP expression 
and Aβ  production have not been previously explored, and here we demonstrate the involvement of Gα q and 
conventional PKC isoforms. Importantly, we have discovered that activation of additional eicosanoid receptors, 
including those that bind prostaglandin E2 (PGE2) and leukotriene D4 (LTD4), also results in increased APP 
levels in receptor-transfected cells, as well as in primary rat or mouse neurons. As PGE2, TXA2, and LTD4 can 
be released from microglia5,14, with the former shown to be elevated in the cerebrospinal fluid of AD patients15,16, 
these studies further implicate glial inflammation in the pathogenesis of AD. An assessment of 5XFAD transgenic 
mice that develop Aβ  plaques revealed an age-dependent elevation of PGE2 and TXA2, as well as APP. Importantly, 
inhibiting eicosanoid synthesis in aged 5XFAD mice led to significant diminutions of total APP levels and of 
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α - and β -secretase processed COOH-terminal fragments of APP. The results of these studies provide important 
new insights into the regulation of APP in the AD brain.

Results
TP Receptor Regulation of APP and Aβ Synthesis is Dependent on Gαq and Conventional PKC 
Isoforms. To investigate the intracellular signaling molecules involved in the previously reported TP recep-
tor-induced increases in APP expression and Aβ  production that result from APP mRNA stabilization11,12, we 
utilized siRNA directed to Gα q, Gα 12, and Gα 13, the G-protein α -subunits most commonly implicated in TP 
receptor signal transduction17. QBI293 cells stably expressing both the human TP receptor (hTP) and human 
APP695 (hTP-hAPP cells) were transfected with control siRNA or siRNA directed to each of the three G-proteins 
and incubated for 24 h, followed by 48 h treatment in the presence or absence of the TP receptor agonist, [1S-
1α ,2ß(5Z),3α (1E,3R*),4α )]-7-[-3-(3-hydroxy-4-(4”-iodophenoxy)-1-butenyl)-7-oxabicyclo-[2.2.1]heptan-2-yl]-
5-heptenoic acid (IBOP). In agreement with prior studies11,12, IBOP caused a 2-3-fold increase in APP mRNA and 
protein in cells receiving control siRNA relative to non-IBOP treated cells (Fig. 1). A significant and nearly complete 
reduction of the IBOP-induced APP mRNA (Fig. 1A) and protein (Fig. 1B) was observed in cells transfected with 
siRNA directed to Gα q, and not in those that received Gα 12 or Gα 13 siRNA. There was a substantial knockdown 
of each of the Gα  mRNAs and corresponding proteins under these conditions (Supplementary Table 1).

Figure 1. Knockdown of Gαq inhibits TP receptor-mediated increases in APP and Aβ. hTP-hAPP cells 
were transfected with 50 nM of control siRNA or siRNA directed to Gα q, Gα 12, or Gα 13 and cultured for 72 h, 
with IBOP (10 nM) added over the last 48 h. (A) qRT-PCR analysis revealed a reduction in IBOP-induced APP 
mRNA levels only in cells treated with Gα q siRNA [R.Q. (relative quantification) values of APP/GAPDH from 
qPCR are plotted relative to non-IBOP-treated cells without siRNA addition]. (B) Only cells treated with Gα q 
siRNA showed reduced APP protein expression, as determined by immunoblot analysis with 5685 antibody 
[values are relative to non-IBOP-treated cells without siRNA addition, with normalization to α -tubulin]. 
Statistical analyses consisted of a mixed-effects model, with values representing estimates from the least squares 
means fit of the mixed procedure from 2–6 independent studies with 1–3 replicates for each treatment/study. 
Error bars represent SEM; **p <  0.01; ***p <  0.001.
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Gα q involvement in promoting TP receptor-mediated increases in APP expression was further investigated 
by pre-incubation of IBOP-treated hTP-hAPP cells with the pan protein kinase C (PKC) inhibitor, Gο 698318, to 
inhibit the activation of PKC downstream of Gα q. Cells were also treated with the Rho-associated protein kinase 
inhibitor, Y-2763219, which blocks signaling downstream of Gα 12/13 activation20. Only cells that were pretreated 
with Gο 6983 showed decreased APP mRNA, APP protein, and Aβ 1-40 (Supplementary Figure 1) following IBOP 
stimulation, whereas Y-27632 alone had no effect and its addition did not further increase the effect of Go6983. 
Although small amounts of Aβ 1-42 could be detected in the cellular medium, quantification was not reliable. In 
conclusion, these studies demonstrate that TP receptor activation of Gα q results in increased levels of APP mRNA 
and protein, as well as increased production of Aβ .

As the addition of Go6983 revealed that one or more PKC species appeared to be key mediators of TP receptor 
regulation of APP expression, studies were conducted to examine which specific isoform(s) of PKC are critical 
to this pathway. There are three broad classes of PKCs21: conventional cPKC isoforms that are activated by Ca++ 
and diacylglycerol (DAG); novel nPKC isoforms that are activated by DAG, but are Ca++-insensitive; and atypical 
PKC isoforms that are insensitive to both DAG and Ca++, and are activated by other phospholipids. To determine 
which of the PKC classes are involved in the regulation of APP expression, hTP-hAPP cells were treated with the 
DAG mimic, phorbol 12-myristate 13-acetate (PMA)22, either alone or with the calcium ionophore, ionomycin 
(Iono)23. A significant increase in APP mRNA (Fig. 2A) and protein (Fig. 2B), as well as in Aβ 1-40 production 
(Fig. 2C), were observed upon PMA treatment. The co-treatment of cells with PMA plus ionomycin induced a 
greater increase of APP mRNA and APP protein expression than was observed with PMA alone (Fig. 2A,B), and 
the effect of PMA alone or PMA plus ionomycin was blocked by Go6983. A similar trend was observed when 
Aβ 1-40 levels were monitored, although the ionomycin enhancement of the PMA effect was not clearly evident 
(Fig. 2C). The enhanced APP expression observed with the Ca++ ionophore in the presence of PMA suggests that 
it is primarily cPKC isoforms that are responsible for the effects on APP.

To further define the cPKC isoforms involved in the regulation of APP expression, select cPKC (α  and β II) 
and nPKC (ε ) isoforms were knocked down via siRNA in hTP-hAPP cells. Efficient knockdown of the PKC iso-
forms was observed 72 h after transfection (see Supplementary Table 2), and siRNA-treated cells were incubated 
in the presence of IBOP. Cells that were treated with siRNA directed against PKCε  showed no decrease in APP 
protein expression (Supplementary Figure 2) relative to cells receiving control siRNA. Conversely, transfection 
with siRNA directed against PKCα  or PKCβ II reduced the IBOP-induced increases in APP mRNA and protein, 
with PKCβ  causing a greater reduction. Simultaneous PKCα  and PKCβ II siRNA addition did not completely 
inhibit IBOP-induced increases in APP expression, perhaps due to the residual PKCα  and PKCβ II that remain 
after knockdown, or because an additional cPKC isoform also contributes partially to the regulation of APP 
expression. Nonetheless, these findings further confirm that cPKCs are largely responsible for the effects of TP 
receptor activation on APP expression.

Additional Eicosanoid Receptors Regulate APP Expression. The aforementioned findings raised the 
question of whether other Gα q-coupled receptors, in addition to the TP receptor, might also affect APP levels. In 
particular, the compelling evidence of a connection between neuroinflammation and AD pathology prompted an 
investigation of additional Gα q-linked receptors that, like the TP receptor, are reported to be expressed on neurons 
and can be activated by inflammatory eicosanoids. This led to an evaluation of the PGE2 receptors, EP1 and EP324, 
the LTD4 receptor, CysLT125, and the LTB4 receptor, BLT126. QBI293 cells stably-expressing hAPP were transfected 
with constructs encoding each of these receptors, and these cells were subsequently exposed to known agonists. 
Ligand activation of the EP1, EP3, and CysLT1 receptors, but not the BLT1 receptor, led to increases in APP mRNA 
(Fig. 3A) and protein (Fig. 3B), as well as Aβ (1–40) (Fig. 3C). In the case of the EP1 and EP3 receptor-expressing 
cells, some Aβ (1–40) was produced in the absence of agonist, presumably due to a constitutive receptor activity. 
The lack of APP increase after BLT1 transfection was not the result of poor receptor expression, as qPCR analysis 
revealed the presence of appreciable transcript (Supplementary Table 3). Thus, activation of multiple Gα q-linked 
eicosanoid receptors results in enhanced APP expression and Aβ  release. However, this does not appear to be a 
feature of all Gα q-coupled receptors, as activation of the BLT1 receptor or the unrelated Gα q-linked angiotensin 
I receptor (not shown) did not result in changes of APP expression.

Each of the inflammatory eiscosanoids that were found to increase APP expression were examined for their 
effects on primary rat hippocampal neuron cultures that were treated with an anti-mitotic (cytosine arabinoside) 
to deplete dividing, non-neuronal cells. Consistent with prior observations11, IBOP addition resulted in a signif-
icant increase of APP (Fig. 4A) that could be blocked with the specific antagonist, CNDR-51280 [compound 5 
in12]. Treatment of the neurons with LTD4 or the PGE2 analogue, 17PGE2, also led to increased APP expression 
(Fig. 4B–D). The LTD4-mediated increase of APP was effectively inhibited with the CysLT1 receptor antagonist, 
pranlukast27 (Fig. 4B). Interestingly, the EP1 antagonist, ONO871128, did not block the 17PGE2-induced eleva-
tion of APP (Fig. 4C), whereas the EP3 antagonist, L798,10629, significantly inhibited the effect of 17PGE2 on 
APP expression (Fig. 4D). These data thus imply that the EP3 receptor, but not the EP1 receptor, mediated the 
17PGE2-triggered increase of APP expression in rat hippocampal neuron cultures.

The relative magnitude of the increase of APP expression in the rat neurons was similar upon activation of each 
of the eicosanoid receptors, suggesting a similar degree of intracellular signaling via cPKC isoforms. To examine 
this further, additional studies were conducted in which high concentrations of the receptor agonists were added 
singly, or concurrently, to rat hippocampal neuron cultures. The simultaneous addition of all three stimulatory 
eicosanoids did not increase APP expression beyond that observed when each of these agents was added individ-
ually (Fig. 5A). A similar observation was made with primary mouse cortical neuron cultures (Fig. 5B). Although 
the addition of saturating levels of multiple agonists to the eicosanoid receptors did not lead to additive increases of 
APP expression, concurrent treatment of rat hippocampal neurons with sub-saturating concentrations of IBOP and 
17PGE2 resulted in an increase of APP expression relative to that obtained with each agonist added alone (Fig. 5C).
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Figure 2. Phorbol ester and ionomycin treatment trigger increased APP expression. Treatment of QBI293 
cells stably-expressing hAPP with PMA (1 μ M) for 36 h resulted in increased (A) APP mRNA [R.Q. values 
of APP/GAPDH are relative to vehicle-treated cells], (B) APP protein expression [(top) representative blot 
and (bottom) quantification of APP detected with 5685 antibody, with values relative to vehicle-treated cells 
and normalization to α -tubulin], and (C) Aβ 1-40 production [values are relative to vehicle-treated cells and 
normalized to total cellular protein content]. Addition of ionomycin (1 μ M) to PMA further increased APP 
mRNA and protein expression, and Go6983 treatment inhibited these increases. Statistical analyses consisted 
of a mixed-effects model, with values representing estimates from the least squares means fit of the mixed 
procedure from 2–4 independent studies with 2–5 replicates for each treatment/study. Error bars represent 
SEM; *p <  0.05; **p <  0.01; ***p <  0.001.
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Figure 3. Additional Gαq-linked receptors regulate APP expression and Aβ release. hAPP-expressing 
QBI293 cells were transiently transfected with cDNA encoding the human EP1, EP3, CysLT1 or BLT1 receptors. 
(A-C) The cells were treated for 36 h with vehicle or with agonist (100 nM 17PGE2 for EP1 and EP3; 1 μ M LTD4 
for CysLT1; 1 μ M LTB4 for BLT1), followed by analysis of (A) APP mRNA [R.Q. values of APP/GAPDH are 
relative to vehicle-treated cells], (B) APP protein [(top) representative blot and (bottom) quantification of APP 
with 5685 antibody relative to the vehicle-treated cells, normalized to GAPDH], or (C) Aβ 1-40 released into 
the culture medium. The presented data are the means obtained from a single independent study conducted 
with each treatment in triplicate. For Aβ 1-40 ELISA determinations, each sample was analyzed in triplicate. 
A second independent study was conducted to confirm the findings (not shown). A two-tailed, t-test was 
applied to test if the values of the treatment groups differed relative to receptor-transfected cells in the absence 
of agonist. A one sample t-test was conducted in (C) for the CysLT1 samples, as the Aβ 1-40 was below the level 
of detection in the vehicle group. Error bars represent SEM; *p <  0.05; **p <  0.01; ***p <  0.001. <LOD = below 
limit of detection.
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Evidence of Eicosanoid Enhancement of APP Expression in the 5XFAD Transgenic Mouse Model 
of AD. The discovery that multiple eiscosanoids could increase APP expression through interaction with neu-
ronal receptors suggested that a vicious cycle may ensue in the AD brain, whereby initial glial activation by Aβ  
oligomers and/or plaques results in a release of inflammatory eicsosanoids that subsequently up-regulate APP and 
Aβ  production. PGE2 is reported to be elevated within the CSF of AD patients16, and to further explore whether 
there are increased eicosanoid levels in a mouse model with Aβ  plaques, we measured both PGE2 and the TXA2 
metabolite, TXB2, in 5XFAD transgenic mice in which robust Aβ  deposition and glial inflammation are observed 
with age30. The levels of PGE2 (Fig. 6A) and TXB2 (Fig. 6B) were comparable in brain homogenates from 1.5-month 
old 5XFAD transgenic mice and age-matched non-transgenic littermates, an age where the 5XFAD mice show 
relatively little Aβ  deposition30. In contrast, significant increases in these eicosanoids were observed in the brains 
of 6.5-month old 5XFAD mice, which have profound Aβ  deposition30, relative to age-matched non-transgenic 
mice and to the younger 5XFAD mice (Fig. 6A,B). Attempts were made to quantify LTD4 levels in 5XFAD mouse 
brain homogenates, but the amounts were below the level of detection by LC-MS/MS. The observation of an 
age-dependent increase of brain eicosanoids in 5XFAD mice suggested that there may be a comparable increase of 
APP expression in the older mice due to activation of neuronal receptors, as described above. Notably, total APP 
levels in the cortex and hippocampus were elevated approximately two-fold in 6-month old 5XFAD mice relative 
to younger mice (Fig. 6C and Supplementary Figure 3). The age-dependent increase in APP appeared to occur 
in both genders of 5XFAD mice, although the inclusion of only two female mice in both the 1.5- and 6-month 

Figure 4. Activation of eicosanoid receptors increases APP expression in primary rat hippocampal 
neurons. Rat hippocampal neurons that were grown in culture for 14 days were treated for 2 days with receptor 
agonist alone or in combination with a specific receptor antagonist, and APP expression was compared to that of 
control cultures by immunoblotting (22C11 antibody). (A) IBOP (100 nM) increased APP expression and was 
blocked by the TP receptor antagonist, CNDR-51280 (10 μ M); (B) LTD4 (1 μ M) increased APP expression and 
was inhibited by the CysLT1 receptor antagonist, Pranlukast (1 μ M); and (C,D) 17PGE2 (1 μ M) enhanced APP 
expression, and was not inhibited by the EP1 receptor antagonist, ONO8711 (20 nM), but was blocked by the 
EP3 receptor antagonist, L798,106 (30 nM). Statistical analyses consisted of a mixed-effects model, with values 
representing estimates from the least squares means fit of the mixed procedure from 3 independent studies, with 
4 replicates per study. Error bars represent SEM; **p <  0.01; ***p <  0.001.
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old groups did not allow for a statistical comparison of age effect by gender. Interestingly, whereas a significant 
increase in APP levels was observed with antibodies that recognize α - and β -secretase cleaved APP (i.e., sAPP) as 
well as intact APP (Fig. 6C; 22C11 antibody and Supplementary Figure 3B; Karen antibody), the age-dependent 
elevation in APP was not observed when only intact APP was measured with a COOH-terminal antibody (Fig. 7 
and Supplementary Figure 4; 5685 antibody). This suggested that there was an increase of sAPP in the older 
transgenic mice, and analysis of APP COOH-terminal fragments generated after α - and β -secretase cleavage 
of APP also revealed a significant increase in these fragments in the older 5XFAD mice (Fig. 7). Notably, both 
the larger COOH-terminal fragment, which should correspond to the C99 fragment generated after β -secretase 
cleavage of APP, and the smaller C83 COOH-terminal fragment that results from α -secretase cleavage of APP31, 
are increased in the older 5XFAD mice. This commensurate increase of sAPP and both α /β -secretase-generated 
COOH-terminal fragments of APP in the 6.0-month old 5XFAD mice suggests that there is an overall increase 
of APP expression in the older mice, with the majority of the increased APP undergoing processing, rather than 
an elevation of sAPP species that results from slowed sAPP degradation or a specific change in activity of one of 

Figure 5. Activation of eicosanoid receptors in primary neurons with saturating and sub-saturating 
concentrations of receptor agonists. Rat hippocampal neurons (A) or mouse cortical neurons (B) that were 
grown in culture for 14 days were treated for 2 days with vehicle or high concentrations of IBOP (100 nM), 
LTD4 (1 μ M), 17PGE2 (1 μ M), or the combination of these agonists (I +  L +  17). In (C), rat hippocampal 
neurons were treated with vehicle or sub-saturating concentrations of IBOP (50 nM; IBOP(L)), 17PGE2 
(0.5 μ M; 17PGE2(L)), or the combination of these agonists (I(L) +  17(L)). In addition, neurons were also 
treated with a high concentration of IBOP (100 nM; IBOP(H)). APP was quantified from immunoblots (22C11 
antibody), and statistical analyses consisted of a mixed-effects model, with values representing estimates from 
the least squares means fit of the mixed procedure from 3–4 independent studies, with 2–3 replicates per study. 
Error bars represent SEM; *p<0.05, **p <  0.01; ***p <  0.001.
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the enzymes that cleaves APP. A future comparison of APP mRNA levels in young and aged 5XFAD mice would 
further strengthen this interpretation.

To confirm an involvement of eicosanoids in the regulation of APP in aged 5XFAD mice, we inhibited the key 
enzymes involved in their synthesis. PG and TX synthesis depends on the metabolic conversion of arachidonic acid 
to PGH2 by COX-1 and/or COX-232, and we evaluated known COX inhibitors for their ability to achieve meaning-
ful brain concentrations upon oral administration. Both the selective COX-1 inhibitor, SC-56033 and the COX-2 
inhibitor, rofecoxib34, demonstrated good brain exposures (brain/plasma drug ratios ≥ 0.3) after oral dosing. This 
led to the administration of a mixture of these two inhibitors in drinking water to 5.5-6-month old 5XFAD mice 
for 7 days, with a separate group of mice receiving vehicle only. The drug-treated group had appreciable levels of 
the two compounds in their brains (Supplementary Table 4) that resulted in a nearly complete reduction of PGE2 
and TXB2 (Supplementary Figure 5). An evaluation of combined sAPP and intact APP species by immunoblotting 
with the 22C11 antibody revealed that the COX inhibitors caused a significant reduction of APP levels of approx-
imately 30% within the cortex (Fig. 8A) and hippocampus (Fig. 8B).

Figure 6. Aged 5XFAD transgenic mice show increased levels of PGE2 and TXB2, as well as APP. Whole 
hemisphere brain homogenates from 5XFAD mice and non-transgenic (non-Tg) littermates that were 1.5 or 6.5 
months of age were analyzed by LC-MS/MS for (A) PGE2 and (B) TXB2 (n =  3–4 per group). In (C), the level 
of total APP expression in cortical and hippocampal brain homogenates from 1.5 month old and 6.0 month 
old 5XFAD mice was determined by immunoblotting (22C11 antibody), with normalization to GAPDH. Lane 
loading in the immunoblot was randomized for study blinding during quantification (n =  5 per group; 2 females 
(F) and 3 males (M) in each age group). Statistical analyses consisted of a one-way ANOVA with a Tukey’s 
multiple comparison test for (A) and (B), and a two-tailed t-test in (C). Error bars represent SEM; *p <  0.05; 
**p <  0.01; ***p <  0.001.
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In addition to the evaluation of COX-derived eicosanoids, a potential role of LTD4 was also investigated 
through inhibition of 5-LOX, the enzyme responsible for the synthesis of cysLTs32. As LTD4 and related LT levels 
were found to be below the limit of LC-MS/MS detection, and because a commercial LTB4 ELISA gave artifac-
tual readings from brain homogenates, we could not directly quantify inhibition of 5-LOX activity through the 
measurement of these species. Thus, we chose to investigate the potential use of the dual COX/5-LOX inhibitor, 
licofelone35. Although this compound shows poor blood-brain barrier permeability, preliminary studies showed 
that 0.6 μ M brain concentrations could be achieved by administering a high dose (0.7 mg/ml) via drinking water 
to mice. Importantly, this dose led to ~40–50% reductions in COX activity as assessed by measurements of PGE2 
and TXB2 in the brains of aged 5XFAD mice (Supplementary Figure 6). As licofelone has nearly identical IC50 
values for the inhibition of COX-1, COX-2 and 5-LOX35, a ~40–50% inhibition of 5-LOX should also occur at 
this dose. Attempts to further increase the licofelone dose to increase 5-LOX inhibition could not be achieved 
because of compound insolubility. Thus, licofelone was added at 0.7 mg/ml to drinking water containing SC-560 
and rofecoxib, which was administered to 5.5-6-month old 5XFAD mice for 7 days. As expected, nearly complete 

Figure 7. COOH-terminal APP antibody (5685) reveals increased COOH-terminal APP fragments, but 
not intact APP, in aged 5XFAD mice. APP expression in (A) cortical and (B) hippocampal brain homogenates 
from 1.5 month old and 6.0 month old 5XFAD mice (same samples as in Fig. 6) was determined by 
immunoblotting with the COOH-terminal 5685 APP antibody after protein separation on a 4–12% gradient gel, 
with normalization to GAPDH. Lane loading in the immunoblot was as in Fig. 6. Statistical analyses consisted 
of a two-tailed t-test N =  5/group; *p <  0.05; **p <  0.01.
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inhibition of TXB2 and PGE2 production was observed in the treated mice (Supplementary Figure 5) and 0.6 μ M 
licofelone levels were again achieved in the brain (Supplementary Table 4), although the mice that received the 
mixture containing licofelone consumed less water than the groups receiving vehicle or the COX inhibitors only, 
presumably due to taste aversion since the mice otherwise seemed unaffected, without a significant change in body 
weight. This resulted in lower SC-560 and rofecoxib brain concentrations than achieved upon treatment with COX 
inhibitors only (Supplementary Table 4). The addition of licofelone to the COX inhibitors resulted in a greater 
suppression of APP expression in both the cortex (40%; Fig. 8A) and hippocampus (43%; Fig. 8B) than obtained 
with the COX inhibitors alone. However, the difference between the COX-only and COX/Licof treatment groups 
did not reach statistical significance under these conditions of partial 5-LOX inhibition. Thus, although these data 

Figure 8. Inhibition of eicosanoid production reduces APP expression in aged 5XFAD transgenic mice. 
5XFAD mice (5.5–6.0 months of age) were provided drinking water containing SC-560 and rofecoxib for a 
total of 7 days (COX group; 3 females and 6 males). Another group of similarly aged 5XFAD mice received 
the COX inhibitor mixture supplemented with licofelone (COX/Licof group; 5 females and 4 males). A group 
of age-matched 5XFAD mice received drinking water containing the vehicle only (5 females and 5 males). 
Quantification of total APP (22C11 antibody) normalized to GAPDH for cortical (A) and hippocampal  
(B) homogenates revealed a significant reduction in both the COX and COX/Licof treatment groups compared 
to the vehicle group. Primary immunoblots are shown for the COX/Licof-treated (CL) and vehicle-treated  
(V) mice, with lane loading randomized for study blinding during quantification. The 9 COX/Licof inhibitor-
treated samples were run on each gel, with the 10 vehicle-treated samples split between the two gels. The relative 
APP/GAPDH value for each drug-treated mouse sample was normalized to the vehicle mean on each gel, with 
the final APP/GAPDH value consisting of the average sample value derived from the two separate gels.  
A similar analysis was conducted for the COX inhibitor treatment group. Statistical analyses consisted of a one-
way ANOVA with a Tukey’s multiple comparison test. *p <  0.05; **p <  0.01, ***p<0.001.
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are suggestive, we cannot definitively conclude that the combination of COX and 5-LOX inhibition results in a 
greater decrease of APP levels than is achieved with COX inhibitors only.

Interestingly, the reduction in total APP upon treatment of the aged 5XFAD mice with inhibitors of eicosanoid 
synthesis appeared to result from a decrease in sAPP species, as no changes in intact APP were observed when 
brain samples were analyzed with the COOH-terminal 5685 APP antibody (Supplementary Figure 7). However, 
there was a significant reduction in COOH-terminal APP fragments in the inhibitor-treated 5XFAD mice, without 
evidence of a preferential reduction of C99 vs. C83 fragments (Supplementary Figure 7). The coordinate changes 
in sAPP and COOH-terminal APP fragments are essentially identical to what was observed as the 5XFAD mice 
aged from 1.5 months to 6.0 months of age. Thus, these data provide further evidence that the increase of APP 
observed in aged 5XFAD mice results from the age-dependent elevation in eicosanoid levels.

Whereas the reduction of eicosanoids in the aged 5XFAD mice led to a significant diminution of 
COOH-terminal APP fragments, total Aβ  levels in the brains of these mice did not change after the 7 days of 
drug treatment (Supplementary Figure 8). As nearly all of the Aβ  in 5XFAD mice of this age is within insoluble 
plaques, it may not be surprising that a short-term reduction in APP would not lead to meaningful change of total 
Aβ . In fact, this result is consistent with what has been observed in APP transgenic mice treated with a potent 
β -secretase inhibitor36, where reduced Aβ  production did not lead to a significant reduction of total Aβ  after only 
one week of dosing.

Discussion
There is value in identifying new mechanisms and targets for regulating Aβ  levels in AD brain. In this regard, 
antagonism of the TP receptor has been suggested as a potential strategy to reduce Aβ  production in AD, as acti-
vation of this receptor by iPF2α III or TXA2 results in increased APP mRNA and APP protein expression, as well 
as elevated Aβ  release11,12. The TP receptor-mediated increase of APP expression results from mRNA stabilization 
that does not appear to require 5′ - or 3′ -untranslated sequences, as this effect can be seen in cellular and animal 
models utilizing APP transgenes lacking these regions11. We have further investigated the intracellular pathways 
responsible for TP receptor-mediated elevation of APP, and reveal the involvement of cPKC isoforms that are acti-
vated via Gα q-mediated signaling. The observation that the PKC activator, PMA, increased APP and Aβ  production 
contrasts with earlier studies37,38 showing reduced Aβ  release after phorbol ester treatment of APP-expressing cells 
due to increased α -secretase activity. However, these prior studies examined acute phorbol ester treatment, whereas 
our studies were performed over a longer treatment period. The data presented here are consistent with a prior 
report39 of 8 h phorbol ester treatment causing increased APP expression, as well as Aβ  production.

A key finding from our studies that has important implications for AD is the identification of the EP1, EP3 
and CysLT1 receptors as additional Gα q-linked GPCRs that can modulate APP and Aβ  expression. This discovery 
adds to a growing body of evidence implicating glial-derived eicosanoids in AD pathology. For example, genetic 
knockout of the EP1, EP2 or EP3 receptors has been shown to result in a significant reduction of plaque burden 
in APP transgenic mice40–42 via a number of postulated mechanisms. Similarly, knockout and pharmacological 
inhibition of the PGE2 EP4 receptor has been reported to reduce plaque burden in an APP Tg mouse model43, 
although an opposite effect was observed in another APP Tg model44. There is also evidence of APP regulation in 
glia via activation of EP2 receptors45,46. Finally, LTD4 injection into mouse brain was shown to increase expression 
of APP and Aβ 47, and 5-LOX-derived LTs have also been suggested to contribute to Aβ  plaque deposition through 
an effect on γ -secretase activity48,49.

The evidence of eicosanoid contribution to Aβ  plaque pathology suggests possible therapeutic strategies to 
mitigate the effects of these molecules in AD. A dampening of microglial activation might result in the diminished 
release of these species. However, it could prove difficult to selectively decrease the detrimental aspects of activated 
microglia without also affecting potential beneficial properties (e.g., Aβ  phagocytosis). An alternative approach 
could be antagonism of eicosanoid receptors, but the evidence implicating multiple neuronal eicosanoid receptors 
as contributing to the regulation of APP expression and Aβ  production presents a multi-target pharmacological 
challenge. Nonetheless, there may be merit in further exploration of this strategy, as selective antagonism of the 
most detrimental eicosanoid receptor(s) could provide an effective therapeutic strategy.

Perhaps the most straightforward potential therapeutic strategy to prevent the eicosanoid-driven increases of 
APP and Aβ  in AD would be through inhibition of eicosanoid production, an approach that has been explored 
with varying results. COX inhibitors have been shown to fairly consistently reduce Aβ  pathology in several AD 
mouse models, although negative reports exist33,50,51 and in some instances reduction of plaques may have resulted 
in whole or part from the ability of certain non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen, to 
modulate γ -secretase activity52,53. Moreover, although multiple epidemiological studies suggest that non-steroidal 
anti-inflammatory drug (NSAID) regimens can reduce the incidence of AD51,54, NSAIDs have not generally proven 
effective in AD clinical trials55–57. There are possible explanations for this lack of clinical success. For example, 
several of the trials utilized COX-2-selective agents, and it may be COX-1 that is up-regulated upon glial activa-
tion in AD33,51. In this regard, asymptomatic individuals treated with the dual COX-1/COX-2 inhibitor naproxen 
showed some evidence of reduced AD onset 2–3 years after completion of the ADAPT trial, whereas those receiv-
ing a COX-2 selective agent did not58. Moreover, it is possible that COX inhibition alone may lead to shunting of 
arachidonic acid to the 5-LOX pathway, resulting in increased production of LTs59,60. This might cause CysLT1 
receptor activation and increased APP and Aβ  levels, as well as increased Aβ  via enhanced γ -secretase cleavage 
of APP48,49. Thus, the utilization of a combination of COX and 5-LOX inhibitors, or dual-acting COX/5-LOX 
inhibitors61, may merit consideration for AD. It has been reported that 5-LOX and COX levels are increased in 
the AD brain32,48,62,63, and combined COX/5-LOX inhibitors should reduce the production of PGs, TXs and LTs. 
Furthermore, whereas NSAIDs can cause gastrointestinal or cardiovascular complications, and were poorly tol-
erated by a percentage of AD patients64, dual COX/5-LOX inhibitors such as licofelone appear to have decreased 
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side-effects when compared to typical NSAIDs35,65. Thus, there would appear to be merit in evaluating the effects of 
prolonged inhibition of both COX and 5-LOX enzymes in APP Tg mouse models of plaque formation to test this 
therapeutic strategy. However, such an approach would result in a systemic reduction of PGs, TXs and LTs, some 
of which clearly play a beneficial role within the body, so as with all drugs, a benefit-to-risk assessment would be 
important if such a strategy were pursued.

In summary, our studies further elucidate how inflammatory eicosanoids might contribute to AD pathogenesis, 
and provide important new information about GPCR regulation of APP expression. The approximately two-fold 
increase of APP levels that are observed in culture systems upon activation of the multiple Gα q-linked eicosanoid 
receptors described herein is consistent with reports of elevated APP in AD brain66,67, as well as the increased 
APP expression that we observed in plaque-bearing 5XFAD mice. These observations suggest that initial Aβ  
plaque formation and glial activation in the brain results in the initiation of a vicious cycle, whereby glial-derived 
eicosanoids may further elevate APP and Aβ  expression, thereby accelerating additional plaque deposition. Our 
data showing that inhibition of eicosanoid synthesis decreases total APP levels and reduces COOH-terminal APP 
fragments in aged 5XFAD mice supports this cascade hypothesis, and provide impetus to further investigate the 
contribution of these inflammatory molecules and their receptors to Aβ  plaque pathology.

Methods
Cell culture and transfection. QBI293 cells expressing hTP and/or hAPP12 were grown in DMEM cell 
culture plus 10% FBS and 1% pen/strep at 37 °C with 5% CO2. For studies utilizing siRNA, cells in 6-well plates 
were transfected with 30–50 nM siRNA via Lipofectamine RNAiMax reagent according to the manufacturer’s 
protocol (Life Technologies; Grand Island, NY) 18–24 h prior to any subsequent treatment. The following siRNAs 
were used: Cntl, Gα q and PKCβ  siRNA (Santa Cruz Biotechnologies, Inc.; Dallas, TX); Gα 12 and Gα 13 (Thermo 
Scientific; Waltham, MA); and PKCε  and PKCα  (Qiagen; Hilden, Germany). For transfection of GPCRs, 5 μ g of 
cDNA for the human EP1 receptor (Missouri S&T cDNA Resource Center; Rolla, MO) or human EP3, CysLT1, 
and BLT1 receptors (Origene; Rockville, MD) was introduced into QBI293 cells stably expression hAPP695 using 
Lipofectamine 2000 (Life Technologies; Grand Island, NY) in 70% confluent 10 cm dishes. Cells were replated 
into 6-well culture plates and treated as indicated after adhering to the plates. Primary hippocampal neurons from 
embryonic Sprague Dawley rats or cortical neurons from embryonic CD1 mice were obtained from a core facility 
(University of Pennsylvania; Philadelphia, PA). The neurons were cultured in 1xNeurobasal A medium with B27 
and penicillin/streptomycin (Life Technologies, Grand Island, NY). Mouse neuron medium was also supplemented 
with 1xGlutamax (Life Technologies, Grand Island, NY ). All neuronal cultures had 2.3 μ M cytosine arabinoside 
(Sigma-Aldrich, St. Louis, MO) added starting 2 days after plating to inhibit the proliferation of mitotic cells (largely 
astrocytes), and the cultures were allowed to grow 14 – 16 days prior to treatment. QBI293 cells or neurons were 
treated as indicated in the figure legends with IBOP, LTD4, LTB4 (Cayman Chemical Company, Inc.; Ann Arbor, 
MI); 17PGE2 (Santa Cruz, Biotechnologies, Inc.; Dallas, TX); and/or PMA, ionomycin, Y-27632, and Gο 6983 
(Sigma-Aldrich; St. Louis, MO).

RNA isolation and qRT-PCR. Cells were washed, lysed, and RNA was isolated according to the RNEasy 
manufacturer’s protocol (Qiagen; Hilden, Germany). RNA (3 μ g) was converted to cDNA using SuperScript III 
Reverse Transcriptase (Life Technologies; Grand Island, NY). For RT-PCR, the cDNA was diluted 1:8 in water 
and 7.6 μ L of the product was added to each well containing SYBR Green Master Mix (Life Technologies; Grand 
Island, NY) and forward and reverse primers at a final concentration that was determined to yield the greatest 
amplification efficiency (100 nM for APP and 300 nM for all other primer sets). qRT-PCR was run on the Applied 
Biosystems 7500 Fast Real-time PCR system (Life Technologies; Grand Island, NY) using the Δ Δ Ct comparative 
method of the analyzed gene product vs. GAPDH. The sequences of the primers used for qRT-PCR analysis are 
shown in Table 1.

Sense Antisense

hGαq CATCAATGGGTCAGGATACTCTGATGAAG GTGCATGAGCCTTATTGTGCTCATAC

hGα12 CAAGGGCTCAAGGGTTCTTGTTG CTGATGCCAGAATCCCTCCAGA

hGα13 CTGGTGAAGATCCTGCTGCTGG CCAGCACCCTCATACCTTTGATCAC

hAPP CCAACCAGTGACCATCCAGAACTG GCACTTGTCAGGAACGAGAAGGG

hGAPDH GAAGGTGAAGGTCGGAGTCAACG CCAGAGTTAAAAGCAGCCCTGGTG

hPKCα CCACCATTCAAGCCCAAAGTGTG GGCTGTCCTCGTGTGTGAAGAAC

hPKCε GCTTGAAGCCCACAGCCTG CTTGTGGCCGTTGACCTGATG

hPKCβII GGATTGGGAGAAACTTGAACGCAAAGAG CCTGATGACTTCCTGGTCGGG

hTP ACGGAGAAGGAGCTGCTCATC GCGGCGGAACAGGATATACA

hEP1 CCTGTCGGTATCATGGTGGTGTC GCTTACCGGAAGTGGCTGAGG

hEP3 AAGGCCACGGCATCTCAGT TGATCCCCATAAGCTGAATGG

hCysLT1 GAGAAACATGGATGAAACAGGAAATCTGACAG CAAAGCATAGGTGCTGAGGCG

hBLT1 GTCTGCGGAGTCAGCATTGTACG GTAGCCGACGCCCTATGTCC

Table 1.  qPCR primer pairs.
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Immunoblot analysis. Cells were lysed in RIPA buffer (50 mM Tris, 150 mM NaCl, 0.5% sodium deoxycho-
late, 0.1% SDS, 1% NP-40, 5 mM EDTA, pH 8.0) containing a protease inhibitor cocktail (Sigma-Aldrich; St. Louis, 
MO) and 2 mM PMSF. Lysate was vortexed and then centrifuged at 13,000 x g at 4 °C for 30 min. For examination 
of APP levels in brains of 5XFAD transgenic mice, cortex and hippocampus were removed from freshly dissected 
brains obtained from mice euthanized according to protocols approved by the Institutional Animal Care and Use 
Committee (IACUC). The samples were quick frozen on dry ice, and subsequently homogenized and sonicated 
in 2% SDS containing the protease inhibitor cocktail and 2 mM PMSF. The homogenates were centrifuged at 
40,000 x g for 30 min at room temperature. The supernatants were collected and the pellets were again sonicated 
in 2% SDS containing protease inhibitors and 2 mM PMSF. After another centrifugation at 40,000 x g for 30 min 
at room temperature, the supernatant was combined with the initial supernatant. The total protein concentration 
of cell- or brain-derived samples was determined by BCA assay (Pierce Biotechnologies; Rockford, IL). For most 
analyses, proteins were separated on 10% SDS-PAGE gels, transferred to nitrocellulose membranes, blocked in 
blocking buffer (LiCor Biosciences; Lincoln, NE), and incubated overnight with one of the following primary anti-
bodies: APP (amino-terminal, 22C1168 and Karen69; carboxyl-terminal, 568531); α -tubulin (Covance; Princeton, 
NJ); GAPDH (Millipore; Billerica, MA); Gα q, Gα 12, PKCε  (Santa Cruz Biotechnologies, Inc.; Dallas, TX); Gα 13 
(AbCam; Cambridge, MA); or PKCα  (Cell signaling; Danvers, MA). Membranes were washed 3 times for 10 min 
in Tris-buffered saline and incubated with IRDye 800CW- or 680RD-conjugated 2o antibodies, followed by imaging 
and quantification with the Odyssey Imaging System (LI-COR Biosciences; Lincoln, NE). For the analysis of APP 
and COOH-terminal APP fragments, proteins were separated on 4–12% Bis-Tris gradient gels with MES running 
buffer (Life Technologies, Grand Island, NY), transferred to nitrocellulose membranes, blocked in 5% milk and 
incubated overnight with the 5685 APP carboxyl-terminal antibody, followed by treatment with 2o antibodies as 
above. Membranes of transfers from 10% gels were routinely cut between the 50 kD and 75 kD molecular weight 
markers prior to primary antibody incubations so as to allow for independent staining of APP species and house-
keeping genes. For studies with 5XFAD transgenic mice, the identity of brain samples were masked prior to gel 
loading so that the individual conducting immunoblot quantification was unaware of the lane assignments.

Aβ40 and Aβ42 ELISA. Aβ 1-40 and Aβ 1-42 levels were determined by ELISA as previously described12. In 2% 
SDS cortical homogenates from vehicle- or drug-treated 5XFAD mice, the samples were diluted at least 100-fold, 
such that the final readings fell within the linear portion of a standard curve.

COX and 5-LOX Inhibitor Administration to 5XFAD Transgenic Mice. All mouse studies were 
approved by the University of Pennsylvania IACUC. Male and female 5XFAD transgenic mice30 were utilized in 
these studies, with the age of the mice, the number of mice per group, and their gender distribution listed in the 
figure legends. The 5XFAD mice express human APP and PS1 that contain 5 mutations associated with familial AD, 
with germ-line transmission and stable genomic cointegration of both transgenes30. Heterozygous male 5XFAD 
mice (B6/SJL background) were bred with B6/SJL F1 hybrids, and transgenic mice were identified by PCR analysis 
of tail clips using primers specific for the human APP and human PS1 transgenes. Only mice that were positive 
for both transgenes were classified as 5XFAD transgenics. Mice from different breedings were grouped together 
to obtain sufficient group sizes that were within 2 weeks of age. Aged 5XFAD mice were administered either a 
combination of SC-560 and rofecoxib, a mixture of SC-560, rofecoxib, and licofelone, or vehicle alone for 7 days 
via drinking water. SC-560 and rofecoxib were formulated at 70 μ g/mL each, and licofelone at 0.7 mg/ml, in 3% 
(v/v) polyethylene glycol 400, 0.5% (w/v) methyl cellulose 400 cP and 10% (w/v) sucrose. The mice were given ad 
libitum access to the water.

Quantification of TXB2 and PGE2 in Brain Extracts. PGE2 and TXB2 were extracted from mouse 
brain homogenates and quantified using stabile isotope dilution (SID) LC-MS/MS. Mouse brain hemispheres 
were homogenized in 10 mM ammonium acetate buffer pH 5.8 (50% w/v) and extracted essentially as described70. 
Briefly, 3 ml of an acetone/saline solution (2:1) with 0.01% butylated hydroxytoluene (BHT) as an antioxidant was 
added to 0.1 mL (50 mg) of brain homogenate that had been spiked with 1 ng PGE2-d4 and 1 ng TXB2-d4. This 
mixture was vortexed for 4 min and then centrifuged at 2000 x g for 10 min. The supernatant was moved to a new 
tube and 2 ml of hexane was added. After 1 min of vortex mixing and centrifugation as above, the upper hexane 
phase was discarded. The lower phase was acidified with 30 μ l of 2M acetic acid, followed by the addition of 2 ml 
of chloroform containing 0.01% BHT. This mixture was vortexed, centrifuged as above, and the lower chloroform 
phase dried under nitrogen in a 35 °C water bath. Dried samples were reconstituted in 0.1 ml of ethanol for sub-
sequent analysis by LC-MS/MS (Acquity UPLC-TQD; Waters Corporation, Milford, MA, USA). Samples (10 μ L) 
were separated on a BEH C18 column (1.7 um, 2.1 ×  50 mm) using a water/acetonitrile gradient with 0.1% formic 
acid from 5 to 95% acetonitrile over 5 minutes at 0.6 mL/min and 35 °C. Compounds were detected in negative elec-
trospray ionization mode. Source voltages and MS parameters were optimized for PGE2 and TXB2 during direct 
infusion of standard solutions (Cayman Chemical, Ann Arbor, MI). Analytes and standards were detected using 
multiple reaction monitoring of their specific collision induced ion transitions as follows (negative m/z): PGE2 
(351 >  271), PGE2-d4 (355 >  275), TXB2 (369 >  169), TXB2-d4 (373 >  173). Standard solutions were prepared 
with a constant 1 ng of deuterium-labeled internal standard and varying amounts of analyte over concentrations 
from 1 to 1000 ng/mL. Peak area ratios (analyte/internal standard) were plotted versus standard concentration 
and a linear regression curve was fit to the data.

Statistics. Linear mixed-effect models were used to compare the outcomes in cell culture studies when there 
were three or more treatment groups. The fixed-effects in the linear mixed-effects model were the treatment 
types and replicate runs, whereas experiment-specific random intercepts were used to account for the correlation 
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between repeated measures within an experiment. Analyses were conducted with SAS v.9.2 (SAS Institute, Inc., 
Cary, NC). All statistics were two-tailed, with P ≤  0.05 considered significant. For cell culture or mouse experi-
ments in which only two treatment types were compared, statistical analysis consisted of an unpaired, two-tailed 
T-test (GraphPad Prism, GraphPad Software, La Jolla, CA). For mouse studies in which three or more treatment 
conditions were compared, an ANOVA analysis was conducted with either a Dunnett’s or Tukey’s post-hoc multiple 
comparison test (GraphPad Prism, GraphPad Software, La Jolla, CA). Detailed statistical outcomes are provided 
in the Supplementary Materials.
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